Analysis and Design of $\mathbf{G + 1 5}$ Building With Connecting Skywalk in Gorakhpur

Rishabh Singh
M.Tech Student, Department of Civil Engineering, Madan Mohan Malviya University of Technology, Gorakhpur, Uttar Pradesh

Abstract

The structural analysis and design of G+15 building with the connection skywalk is done using software StaddPRO V8i. The planning is done in AUTOCAD 2019. The G+15 building with the connection skywalk which connect the two buildings to facilitates the movement of the people inside the building. The plan of the $G+15$ building will be drawn. The analysis of the speed, quality and construction aspects will be done. The building will be designed as per the IS codes. The various loads acting on the G+15 building will be calculated based on the Indian Standard Code books. It gives a platform to work hand to hand with the people of other department such IT department. The building will be designed keeping the economic aspect in mind with sufficient durability and strength.

I. INTRODUCTION

The high rise building concept which is the demand of the future generation. We are moving toward the era where the land is less and the population demand is quite high. To meet the basic demand of each individual human being was residence which can be fulfilled by the making the high rise building. The tall building can fulfill the demand. They save space and accommodate more residents as compared to individual houses. Tall buildings provide a aesthetic and a modern look to the city. Due to much space inside of the building it could fit more than one company in it. Hence saves much space in the city. Another advantage of the tall building is that it can saves more land for agricultural purpose. Hence in this project we have planed, analysed and designed the $\mathrm{G}+15$ building with the connection skywalk which connect the two buildings to facilitates the movement of the people inside the building. The successful construction of $\mathrm{G}+15$ buildings are based upon clear understanding of the conduct of the structure, relevant analysis theory and methodologies, use of software, and explicit design principles.

II. PLANNING

This building was being made in the location of taramandal which is located in the Gorakhpur, Uttar Pradesh. The location coordinates of the site is $26^{\circ} 43^{\prime} 54.6^{\prime \prime} \mathrm{N} 83^{\circ} 22^{\prime} 53.2^{\prime \prime} \mathrm{E}$ and the altitude is 73.7176827 . The total plot area required for this peoject was 9000 m 2 . The total height of the building is 48 m . The building connecting skywalk at the 8 th floor of the building which is of 9 m in length. The building project was economical and this project help us to understand the various components of the building and the loads acting on the building and their effects on the building. And to design the structural components like slab, beam, column, foundation of the $\mathrm{G}+15$ building. The plan of the $\mathrm{G}+15$ building will be drawn. The analysis of the speed, quality and construction aspects will be done. The various loads acting on the $\mathrm{G}+15$ building will be calculated based on the Indian Standard Code books. It gave us the opportunity to work with the other department students which help us to gain knowledge.

A. Data Collection

TABLE I

Dead Load Value	$4.125 \mathrm{KN} / \mathrm{m}$
Live Load Value	$5.5 \mathrm{KN} / \mathrm{m}$
Loading Cases	DL, WL, EQL, LL
External Loads	Wind, Earthquake
Wind Speed	$47 \mathrm{~m} / \mathrm{s}$
Earthquake Zone	III
Foundation Type	Isolated Footing

B. Building Details

TABLE II

Total Length	50 m
Total Width	26 m
Height of each floor	3 m
Total floor height	48 m
Total no. of floors	$\mathrm{G}+15$
Length of skywalk	9 m
Location of skywalk	8 th floor

Fig 1. Shown the top view of the building on AutoCAD

Fig 2. Shown the front view of the building on AutoCAD
C. Analysis

Based on the information obtained from many relevant sources, the design was examined in STAAD.Pro. The structure was examined in order to determine its limit and, as a result, a critical value that could be used to build the structure. The structure was tested under self-weight, axial load, shear along the Y, Z axes, and bending along the Y, Z axes. The results of the investigation are displayed below.

Fig 2. Rendered view

1) Bending Moment

Fig. 3. Shows the bending moment in the building.
TABLE III

Direction of bending moment	Maximum positive $\mathrm{BM}(\mathrm{Kn}-$ $\mathrm{m})$	Maximum negative $\mathrm{BM}(\mathrm{Kn}-$ $\mathrm{m})$	Load combination $(\mathrm{Kn}-\mathrm{m})$
My	48.419	48.546	$1.5(\mathrm{DL+LL})$
Mz	73.559	53.433	$1.5(\mathrm{DL}+\mathrm{LL})$

2) Shear Force

Fig 4. Shows the shear force in the building
TABLE IV

$\left.$| Direction
 of shear
 force | Maximum
 positive
 SF
 (kN) | Maximum
 negative | Load
 sF
 (kN) |
| :--- | :--- | :--- | :--- | | combinations |
| :--- |
| (kN) | \right\rvert\,

3) Torsion

Fig 5. Shows the torsional force in the building
TABLE V

Direction of Torsion	Maximum torsion	Minimum Torsion	Load combination
M_{x}	23.770	24.644	$1.5($ DL+LL)

D. Design

The design of the components was done based on the data obtained from analysis.

1) Design Of Slab
$\frac{l y}{l x}=\frac{3}{3}=1<2$ two-way slab
Effective depth of slab $=125 \mathrm{~mm}$
$\mathrm{D}=150 \mathrm{~mm}$
Step 1: Load Calculation
Self weight (slab) $=0.125 \times 25=3.125 \frac{\mathrm{KN}}{\mathrm{m}^{2}}$
Floor finish $=1 \frac{\mathrm{KN}}{\mathrm{m}^{2}}$
L.L. $=5.5 \frac{\mathrm{KN}}{\mathrm{m}^{2}}$

Total load $=12.125 \frac{\mathrm{KN}}{\mathrm{m}^{2}}$
Factored load $=12.125 \times 1.5=18.187 \frac{\mathrm{KN}}{\mathrm{m}}$
seismic zone- zone $=3$
Response factor $=3$
Zone factor $=0.16$
Importance factor $=1$
Factored Moment $\left(\mathrm{M}_{\mathrm{ux}}\right)=\alpha_{\mathrm{x}} \times \mathrm{W}_{\mathrm{u}} \times \mathrm{I}_{\mathrm{x}}^{2}$

$$
\begin{aligned}
& =0.0672 \times 18.187 \times 3^{2} \\
& =10.9 \mathrm{KN}-\mathrm{m}
\end{aligned}
$$

Factored Moment $\left(\mathrm{M}_{\mathrm{uy}}\right)=\alpha_{\mathrm{x}} \times \mathrm{W}_{\mathrm{u}} \times \mathrm{I}_{\mathrm{y}}{ }^{2}$

$$
=0.056 \times 18.187 \times 3^{2}=9.166 \mathrm{kN}-\mathrm{m}
$$

Step 2: Check for depth
$\mathrm{M}_{\mathrm{ulimit}}=0.133 \mathrm{fck} \mathrm{bd}^{2}$
$10.9 \times 10^{6}=0.133 \times 30 \times 1000 \times \mathrm{d}^{2}$
$\mathrm{d}=52.26<150$
Depth of 150 mm is adequate
Step 3: Calculation of ast
$\frac{M}{b d 2}=\frac{10.9 \times 106}{1000 \times 1502}=0.4 \mathrm{~mm}^{2}$
sp16 table $4 \mathrm{pt}=0.344$
Ast $=\frac{\mathrm{ptbd}}{100}=\frac{0.344 \times 1000 \times 150}{100}=516 \mathrm{~mm} 2$
Diameter of bar $=10 \mathrm{~mm}$
Area of bar $=\frac{\pi}{4} \times 10^{2}=80 \mathrm{~mm} 2$
Spacing $=\frac{80 \times 1000}{516}=155 \mathrm{~mm}$
Use 10 mm diameter bar @ 150 mm c/c
LONGER DIRECTION:
$\mathrm{d}=150-10=140 \mathrm{~mm}$
$\frac{M}{b d^{2}}=\frac{9.16 \times 10^{6}}{1000 \times 140^{2}}=0.467$
from sp16 table $4 \mathrm{pt}=0.342$
Ast $=\frac{0.342 \times 1000 \times 140}{100}=479 \mathrm{~mm} 2$
spacing $=\frac{80 \times 1000}{480}=167 \mathrm{~mm}$
use 10 mm diameter bar @ 160 mm c/c
2) Design Of Column (1 TO 8 FLOOR)
$\mathrm{L}=3 \mathrm{~m}$
Yield strength $=600 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
Compressive strength $=40 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
Dimension of column $=500 \times 500$
$\mathrm{Pu}($ factored load $)=3000 \mathrm{KN}$
Step 1: Calculation of Minimum Eccentricity
$\operatorname{Emin}=\frac{\mathrm{L}}{500}+\frac{\mathrm{D}}{30}=\frac{3000}{500}+\frac{500}{30}=22.66 \mathrm{~m}$
Emax $=0.05 \times \mathrm{D}=0.05 \times 500=25 \mathrm{~m}$
Emin < Emax
Step 2: Check for short or long column
$\frac{\mathrm{Lex}}{\mathrm{D}}=\frac{3000}{500}=6$
$\frac{\text { Ley }}{\mathrm{D}}=\frac{3000}{500}=6$
$\frac{\text { Lex }}{\mathrm{D}}$ and $\frac{\text { Ley }}{\mathrm{D}}<12$
\therefore The column is short column.
Step 3: Reinforcement calculation
$\mathrm{Pu}=0.4 \times \mathrm{fck} \times \mathrm{Ac}+0.67 \mathrm{fy} \times \mathrm{Asc}$
$\mathrm{Ac}=\mathrm{Ag}-\mathrm{Asc}$
$\mathrm{Pu}=0.4 \times \mathrm{fck} \times(\mathrm{Ag}-\mathrm{Asc})+0.67 \times \mathrm{fy} \times \mathrm{Asc}$
$\mathrm{Pu}=0.4 \times \mathrm{fck} \times \mathrm{Ag}+(0.67 \mathrm{fy}-0.4 \mathrm{fck}) \mathrm{Asc}$
Asc $=3715.17 \mathrm{~mm} 2$
assuming 16 mm diameter bars
Ast $=\frac{\pi}{4} \times 16^{2}=200 \mathrm{~mm}^{2}$
No. of rods $=$ Asc $\times \frac{\text { Asc }}{\text { Ast }}=\frac{3715.17}{200}=19$
\therefore Take 20 no. of rods
Asc provided $=20 \times 200=4000$
Step 4: Design of Lateral ties

1. Tie diameter $=\frac{1}{4} \times$ diameter of $\mathrm{bar}=4 \mathrm{~mm}$
2. $\leq 16 \mathrm{~mm}$

Provide 8 mm diameter ties.
Ties spacings: -
Provide minimum of below three conditions.
(a) Size of column i.e, 500 mm
(b) $16 \times$ longitudinal diameter $=16 \times 16=256 \mathrm{~mm}^{2}$
(c) 300 mm

Figure 6: Design of Column (1-4 floor)
3) Design Of Column (9 to 16 floor)
$\mathrm{L}=3 \mathrm{~m}$
Yield strength $=600 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
Compressive strength $=40 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}}$
Dimension of column $=400 \times 400$
$\mathrm{Pu}($ factored load $)=3000 \mathrm{kN}$
Step 1: Calculation of Minimum Eccentricity
Emin $=\frac{\mathrm{L}}{500}+\frac{\mathrm{D}}{30}=\frac{3000}{500}+\frac{400}{30}=19.33 \mathrm{~m}$
$\operatorname{Emax}=0.05 \times \mathrm{D}=0.05 \times 400=20 \mathrm{~m}$
Emin < Emax
Step 2: Check for short or long column
$\frac{\text { Lex }}{\mathrm{D}}=\frac{3000}{400}=7.5$
$\frac{\text { Ley }}{D}=\frac{3000}{400}=7.5$
$\frac{\text { Lex }}{\mathrm{D}}$ and $\frac{\text { Ley }}{\mathrm{D}}<12$
\therefore The column is short column.
Step 3: Reinforcement calculation
$\mathrm{Pu}=0.4 \times \mathrm{fck} \times \mathrm{Ac}+0.67 \mathrm{fy} \times \mathrm{Asc}$
$\mathrm{Ac}=\mathrm{Ag}-\mathrm{Asc}$
$\mathrm{Pu}=0.4 \times$ fck $(\mathrm{Ag}-\mathrm{Asc})+0.67 \times \mathrm{fy} \times \mathrm{Asc}$
$\mathrm{Pu}=0.4 \times \mathrm{fck} \times \mathrm{Ag}+(0.67 \mathrm{fy}-0.4 \mathrm{fck}) \mathrm{Asc}$
Asc $=1322.47 \mathrm{~mm} 2$
assuming 12 mm diameter bars
Ast $=\frac{\pi}{4} \times 12^{2}=114 \mathrm{~mm}^{2}$
No. of rods $=$ Asc $\times \frac{\text { Asc }}{\text { Ast }}=\frac{1300.4}{114}=11.6$
\therefore Take 12 no. of rods
Asc provided $=12 \times 114=1368$
Step 4: Lateral ties design

1. Tie diameter $=\frac{1}{4} \times$ diameter of bar $=3 \mathrm{~mm}$
2. $\leq 16 \mathrm{~mm}$

Provide 8 mm diameter tie.
Ties spacings: -

Provide minimum of three condition.
(a) Size of column i.e, 400 mm
(b) $16 \times$ longitudinal diameter $=16 \times 12=192 \mathrm{~mm}^{2}$
(c) 200 mm

Figure 7: Design of Column (5-8 floor)
4) Design Of Beam (1-8 Floor)

Beam design for 3 m span
Effective length of beam $=3 \mathrm{~m}$
Width of beam $b=500 \mathrm{~mm}$
Grade of concrete $\mathrm{M} 40=40 \frac{N}{\mathrm{~mm}^{2}}$
Grade of steel $=600 \frac{N}{\mathrm{~mm}^{2}}$
Step 1: Cross Sectional Area
Assume span depth ratio as 15
Effective depth d=$\frac{\text { span }}{15}=\frac{3000}{15}=200 \mathrm{~mm}$
Adopt d $=450 \mathrm{~mm}$, clear cover as 50 mm
Total depth $\mathrm{D}=500 \mathrm{~mm}$
Step 2: Load Calculation
Self weight of beam $=0.23 \times 0.5 \times 25=2.875 \mathrm{kN} \mathrm{m} 2$
D.L. $=25.8 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$

Total dead load $=28.8 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Live load $=12 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Total load $=40.8 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Factored load $=1.5 \times 40.8=61.2 \mathrm{kN}-\mathrm{m}$
Ultimate bending moment and shear force
$\mathrm{Mu}=\frac{\mathrm{Wl}^{2}}{8}=\frac{61.2 \times 32}{8}=68.85 \mathrm{kN}-\mathrm{m}$
$\mathrm{Vu}=\frac{\mathrm{Wl}}{2}=\frac{61.2 \times 3}{2}=96.3 \mathrm{kN}$
Step 3: Limiting Moment Resistance
Mu limit $=0.133 \mathrm{fck} \mathrm{bd}^{2}$

$$
\begin{aligned}
& =0.133 \times 40 \times 500 \times 500^{2} \\
& =665 \mathrm{kN} \mathrm{~m}
\end{aligned}
$$

$\mathrm{Mu}<\mathrm{Mu}_{\text {lim }}$ (section is underreinforced)
Step 4: Main Reinforcement
$\mathrm{Mu}=(0.87 \times \mathrm{fy} \times$ Ast d$)\left[1-\frac{\text { Ast fy }}{\text { bd fck }}\right]$
$68.85 \times 10^{6}=1744000$ Ast -12.16 Ast 2
Ast $=421 \mathrm{~mm}^{2}$
Provide 6 bars of 12 mm diameter bar Ast $=6 \times \frac{\Pi}{4} \times 12^{2}=678.24 \mathrm{~mm} 2$
Step 5: Shear Reinforcements
$\tau \mathrm{v}=\frac{\mathrm{Vu}}{\mathrm{bd}}=\frac{96.3 \times 10^{3}}{500 \times 500}=0.385$
$\mathrm{pt}=\frac{100 \mathrm{Ast}}{\mathrm{bd}}=\frac{100 \times 678.24}{500 \times 500}=0.271$
from table 19 of IS $456 \tau \mathrm{c}=0.5612$
Since $\tau \mathrm{c}<\tau \mathrm{v}$, shear reinforcement is to to resist the balance shear computed below
Vus $=\mathrm{Vu}-(\tau \mathrm{c} \times \mathrm{bd})$
Vus $=96.3 \times 10^{3}-(0.56 \times 500 \times 500)=43.7 \mathrm{kN}$
Using 8 mm dia bar @ 2 legged stirrups
$\mathrm{Sv}=\frac{0.877 \mathrm{Fy} \times \mathrm{Asvd}}{\text { Vus }}$
$S v=191$
Sv $>0.75 \times \mathrm{d}$
$=0.75 \times 400=300$
$\mathrm{Sv} \ngtr 300$
Step 6: Check for Deflection
$\mathrm{Pt}=0.22, \mathrm{kt}=1.2, \mathrm{Kc}=\mathrm{kf}=1$
$\left(\frac{\mathrm{L}}{\mathrm{d}}\right) \max =\left(\frac{\mathrm{L}}{\mathrm{L}}\right)$ basic $\times \mathrm{kt} \times \mathrm{kc} \times \mathrm{kf}$
$=\left(\frac{3000}{400}\right) \times 1.2 \times 1 \times 1=9$
$\left(\frac{\mathrm{L}}{\mathrm{d}}\right)$ actual $=\frac{3000}{400}=7.5<9$
Hence deflection control is satisfied.

Figure 10: Design of Beam (1-8 floor)

5) Design Of Beam (9 TO 16 Floor)

Beam design for 3 m span
Effective length of beam $=3 \mathrm{~m}$
Width of beam $b=400 \mathrm{~mm}$
Grade of concrete M40 $=40 \frac{N}{\mathrm{~mm}^{2}}$
Grade of steel $=600 \frac{N}{\mathrm{~mm}^{2}}$
Step 1: Cross Sectional Area
Assume span depth ratio as 15
Effective depth $\mathrm{d}=\frac{\text { span }}{15}=\frac{3000}{15}=200 \mathrm{~mm}$
Adopt $\mathrm{d}=450 \mathrm{~mm}$, clear cover as 50 mm
Total depth $\mathrm{D}=500 \mathrm{~mm}$
Step 2: Load Calculation
Self-weight of beam $=0.23 \times 0.5 \times 25=2.875 \mathrm{kN} \mathrm{m}^{2}$
D.L. $=25.8 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$

Total dead load $=28.8 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Live load $=12 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Total Load $=40.8 \frac{\mathrm{kN}}{\mathrm{m}^{2}}$
Factored load calculation $=1.5 \times 40.8=61.2 \mathrm{KN} \mathrm{m}$
Ultimate bending moment and shear force
$\mathrm{Mu}=\frac{\mathrm{W}^{2}}{8}=\frac{61.2 \times 32}{8}=68.85 \mathrm{kN}-\mathrm{m}$
$\mathrm{Vu}=\frac{\mathrm{wl}}{2}=\frac{61.2 \times 3}{2}=96.3 \mathrm{kN}$
Step-3: - Limiting Moment Resistance
Mu limit $=0.133 \mathrm{fck} \mathrm{bd}^{2}$

$$
=0.133 \times 40 \times 400 \times 400^{2}=340 \mathrm{kN} \mathrm{~m}
$$

$\mathrm{Mu}<\mathrm{Mu}_{\text {lim }}$ (underreinforced)
Step 4: Main Reinforcement
$\mathrm{Mu}=(0.87 \times \mathrm{fy} \times$ Ast $\times \mathrm{d})[1-$ Ast fy bd fk $]$
$68.85 \times 10^{6}=1744000$ Ast -12.16 Ast 2
Ast $=421 \mathrm{~mm}^{2}$
Provide 6 bars of 10 mm diameter bar Ast $=6 \times \frac{\Pi}{4} \times 10^{2}=471 \mathrm{~mm}^{2}$
Step5: Shear Reinforcements
$\tau \mathrm{v}=\frac{\mathrm{Vu}}{\mathrm{bd}}=\frac{96.3 \times 103}{400 \times 400}=0.601$
pt $=\frac{100 \text { Ast }}{\text { bd }}=\frac{100 \times 471}{400 \times 400}=0.348$
from table no. 19 of IS 456 the value of $\tau \mathrm{c}=0.2937$
Since $\tau \mathrm{c}<\tau \mathrm{v}$, the balance shear computed as
Vus $=\mathrm{Vu}-\left(\tau_{\mathrm{c}} \times \mathrm{bd}\right)$
Vus $=96.3 \times 10^{3}-(0.56 \times 400 \times 400)=67 \mathrm{kN}$
Using 8 mm dia bar @ 2 legged stirrups
$S v=\frac{0.877 \mathrm{Fy} \times \mathrm{Asvd}}{\text { Vus }}$
$S v=191$
Sv $>0.75 \times \mathrm{d}$
$=0.75 \times 400=300$
Sv >300
Step-6: - Check for Deflection
$\mathrm{Pt}=0.22, \mathrm{kt}=1.2, \mathrm{Kc}=\mathrm{kf}=1$
$\left(\frac{\mathrm{L}}{\mathrm{L}}\right) \max =\left(\frac{\mathrm{L}}{\mathrm{d}}\right)$ basic $\times \mathrm{kt} \times \mathrm{kc} \times \mathrm{kf}$
$=\left(\frac{3000}{400}\right) \times 1.2 \times 1 \times 1=9$
$\left(\frac{\mathrm{L}}{\mathrm{d}}\right)$ actual $=\frac{3000}{400}=7.5<9$
Hence deflection control is satisfied.

Figure 11: Design of Beam (9-16 floor)

6) Design Of Skywalk

Step: 1
$\frac{l y}{l x}=\frac{9}{6}=1.5<2$
Hence, Two-way slab
Step 2: Depth of slab

Depth $=\frac{\text { Span }}{28}=214.28$

$$
\mathrm{d} \approx 220 \mathrm{~mm}
$$

F.O.S $=1.5$

Adapt clear cover of 20 mm and using 10 mm dia. Bar
Total depth is computed as
$=20+220+5=245 \mathrm{~mm}$
Step 3: Effective span
Effective span $=$ Clear span + Effective depth

$$
\begin{aligned}
& =6+0.220 \\
& =6.22 \mathrm{~m}
\end{aligned}
$$

Step 4: Calculation of load
Self wt. of the slab $=0.245 \times 25$

$$
=6.125 \frac{\mathrm{kn}}{\mathrm{~m} 2}
$$

L.L. on $\mathrm{slab}=4 \frac{\mathrm{kn}}{\mathrm{m}}$

Floor finish $=0.6 \frac{\mathrm{kn}}{\mathrm{m}}$
Total working load $=10.725 \frac{\mathrm{kn}}{\mathrm{m}}$
Ultimate load $=1.5 \times 10.725$

$$
=16.08 \frac{\mathrm{kn}}{\mathrm{~m}^{2}}
$$

Step 5: Moment and shear force
$\mathrm{Mx}=\alpha \mathrm{x} \times \mathrm{wl}^{2}$
$\mathrm{My}=\propto \mathrm{y} \times \mathrm{wl}^{2}$
$\propto x=0.0885, \propto y=0.057$
Mux $=0.0885 \times 16.08 \times 6.220^{2}=55.05 \mathrm{Kn} . \mathrm{M}$
Muy $=0.059 \times 16.08 \times 6.220^{2}=36.70 \mathrm{Kn} . \mathrm{M}$
Vux $=\frac{\mathrm{Wx} \times \mathrm{lx}}{2}=50 \mathrm{Kn}$
Step 6: Check for depth
$\mathrm{Mu}_{\text {lim }}=0.138 \times \mathrm{fck} \times \mathrm{bd}^{2}$
$\mathrm{d}=\sqrt{\frac{55.05 \times 106}{0.138 \times 20 \times 1000}}=141.22 \mathrm{~mm}<220 \mathrm{~mm}$
Hence the effective depth is sufficient
$\operatorname{Ast}(\min)=12 \%$

$$
\begin{aligned}
& =\frac{0.12}{100} \times 1000 \times 245 \\
& =294 \mathrm{~mm}^{2}
\end{aligned}
$$

Step 7: Reinforcement
$\mathrm{Mu}=0.87 \times \mathrm{fy} \times \mathrm{Ast} \times \mathrm{d}\left[1-\sqrt{\frac{A s t \times 415}{b d \times f c k}}\right]$

$$
=450 \mathrm{~mm}^{2}
$$

Step 8: Spacing

$$
\begin{aligned}
\mathrm{S} & =\frac{1000 \times a s t}{A s t} \\
& =174 \mathrm{~mm}
\end{aligned}
$$

Adapt 10mm bar @ 180 mm c/c
Use 10 mm bar in the long spam
Effecive depth $=220-10=210 \mathrm{~mm}$
$\mathrm{Mu}=0.87 \times \mathrm{fy} \times \mathrm{Ast} \times \mathrm{d}\left[1-\sqrt{\frac{A s t \times 415}{b d \times f c k}}\right]$

$$
\text { Ast }=315 \mathrm{~mm}^{2}
$$

Spacing $=\frac{1000 \times \text { ast }}{\text { Ast }}$

$$
=\frac{1000 \times 0.785 \times 102}{315}=249 \mathrm{~mm}
$$

Hence, provide 10 mm dia. Bar @ 249 mm c/c
Step 9: Check for shear
$\mathrm{K} \tau \mathrm{c}>\tau_{\mathrm{v}}$ (Safe)
$K \tau c<\tau_{v}$ (Unsafe)
$\tau \mathrm{V}=\frac{V u}{b d}=\frac{50 \times 103}{1000 \times 220}=0.227$
$\mathrm{Pt}=\frac{100 \text { Ast }}{b d}=\frac{100 \times 0.5 \times 450}{1000 \times 220}=0.102$
Permissible shear stress in slab is computed
as $=\mathrm{K} \tau \mathrm{c}$ for the value of K refer 40.2.1.1 for 245
$\mathrm{x}=0.08$
$\tau \mathrm{c}=0.327$
$\mathrm{K} \tau \mathrm{c}=0.402>\tau_{\mathrm{v}}$
Hence the slab is safe
Step 10: Check for deflection control

$$
\begin{aligned}
&\left(\frac{L}{d}\right) \max =\left(\frac{L}{d}\right) \text { bacic } \times \mathrm{kt} \times \mathrm{kc} \times \mathrm{kf} \\
& \mathrm{kt}=1.4 \\
& \mathrm{kc}=1 \\
& \mathrm{kf}=1 \\
&\left(\frac{L}{d}\right) \max =20 \times 1.4=28 \\
&\left(\frac{L}{d}\right) \text { provided }=\frac{4150}{220}=18.8<30
\end{aligned}
$$

Hence the deflection coltrol is satisfied.
Step 11: Torsion reinforcement (corners)
Area of the reinforcement in each layer
$0.75 \times 415=307.5 \mathrm{~mm}^{2}$
Divide $=\frac{\text { Shoretr span }}{5}=\frac{6000}{5}=1200$
Spacing $=\frac{100 \text { ast }}{\text { Ast }}=\frac{100 \times 0.785 \times 62}{307.5 \mathrm{mm2}}=90$
Use 6 mm dia bar @ 100 mm c/c
Length of 1200 mm at all 4 corners in four layer.
Step 12: Reinforcement of edge stirrup
Ast $=0.12 \%$ of crosssection area
$\frac{0.12}{100} \times 100 \times 170=204 \mathrm{~mm}^{2}$
Provide 10 mm dia bar at $300 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

7) Design Of Footing

Step 1: Footing Size
Loading on columns $=1000 \mathrm{Kn}$
Weight of the footings and backfill @ $10 \%=\frac{10}{100} \times 1000=100$
Total load $=1000 \mathrm{KN}$
Area of footing $=\frac{1100}{200}=5.5 \mathrm{~m}^{2}$
Size of footing $=\mathrm{L}=\mathrm{B}=\sqrt{5.5}=2.3 \mathrm{~m}$
Adopt $2.4 \times 2.4 \mathrm{~m}$ (square footing)
$\mathrm{Q}_{\mathrm{u}}=\frac{1000}{(2.4 \times 2.4)} \times 1.5=260 \frac{\mathrm{kn}}{\mathrm{m} 2}$
Step 2: One-way shear
Critical section is at ' d ' distance from the column face
Factoral shear $\mathrm{V}_{\mathrm{u}}=0.26 \times 2400 \mathrm{x}(1000-\mathrm{d})$

$$
=162 \times(1000-\mathrm{d})
$$

Assuming reinforcement in the footing
$\mathrm{Pt} \%=0.25 \%$ fy M20 concrete
Permissible shear stress from table no. 19 IS5456 2000
$\tau \mathrm{c}=0.36 \frac{\mathrm{~N}}{\mathrm{~mm} 2}$
One way shear resistance Vc= $0.36 \times 2400 \times \mathrm{d}$

$$
\begin{aligned}
&=864 \mathrm{~d} \\
& 624(1000-\mathrm{d})=864 \mathrm{~d} \\
& \mathrm{~d}=722 \mathrm{~mm} \approx 725 \mathrm{~mm}
\end{aligned}
$$

Step 3: Two-way shear
Assuming $\mathrm{d}=722 \mathrm{~mm}$
Two way shear at critical section $\frac{d}{2}$ from face of column.

$$
\begin{aligned}
\mathrm{Vu} & =0.26\left[2400^{2}-(400+\mathrm{d})^{2}\right] \\
& =0.26\left[2400^{2}-(400+725)^{2}\right] \\
& =1170290 \mathrm{~N}
\end{aligned}
$$

Two way shear
$\mathrm{Vc}=\mathrm{K}_{\mathrm{s}} \times \tau_{\mathrm{c}}[4(400+\mathrm{d}) \mathrm{d}]$
where $\mathrm{Ks}=1.0$ and $\tau_{\mathrm{c}}=0.25=1.118 \frac{\mathrm{~N}}{\mathrm{~mm}}$

$$
\begin{aligned}
\mathrm{Vc} & =1 \times 1.118[4(400+\mathrm{d}) \mathrm{d}] \\
& =1788.8 \mathrm{~d}+4.722 \mathrm{~d}^{2} \\
& =\mathrm{d}=349 \mathrm{~mm}
\end{aligned}
$$

Hence, one way shear is critical.
Adapting effective depth ' d ' $=725 \mathrm{~mm}$
And overall depth $=800 \mathrm{~mm}$.
Step 4: Reinforcement Designs
Ultimate moment $\mathrm{Mu}=260 \times 1 \times 0.5=130 \mathrm{KNm}$

$$
\frac{M u}{b d 2}=\frac{130 \times 106}{1000 \times 725}=0.247
$$

Ast $=\frac{\text { Pt d }}{1000}=\frac{0.25 \times 1000 \times 725}{1000}=1813 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Use $20 \mathrm{~mm} \varnothing$
Spacing $S=\frac{1000 \times 12.56 \times 202}{1813}=173 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Use $20 \mathrm{~mm} \varnothing$ @ $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
Step 5: Transfer of force at column face
Ultimate load on the column base $=1.5 \times 1000=1500 \mathrm{KN}$

$$
\mathrm{Fbr}=0.45 \mathrm{Fck} \sqrt{\frac{\mathrm{~A}_{1}}{A 2}}
$$

1. Column Face

$$
\text { Fck }=20 \mathrm{~N} / \mathrm{mm}^{2}
$$

$\mathrm{A} 1=\mathrm{A} 2=400 \mathrm{~mm}^{2}$

$$
=0.45 \times 20 \times 1=9 \mathrm{~N} / \mathrm{mm}^{2}
$$

2. At footing face

Fck $=20 \mathrm{~N} / \mathrm{mm} 2$
A1 $=2400 \mathrm{~mm} 2$

A2 $=4002$
$\operatorname{Fbr}($ footing $)=0.45 \times 20 \times 2=18 \frac{\mathrm{~N}}{\mathrm{~mm} 2}$
Hence govern by column face
$\mathrm{Fbr}=9 \mathrm{~N} / \mathrm{mm}$
Check for stress $=\mathrm{fbr}=\frac{9 \times 400^{2}}{1000}=14000 \mathrm{Kn}<1500 \mathrm{Kn}$ Hence Safe

Figure 4.15: Design of foundation

III. CONCLUSION

The Planning, analysis and design of $\mathrm{G}+15$ building is done successfully. The methodology and plan for a $\mathrm{G}+15$ building is presented in this project. Limit state of method has been used as the method for the design of the building. The successful construction of $\mathrm{G}+15$ buildings are based upon clear understanding of the conduct of the structure, relevant analysis theory and methodologies, use of software. They take longer to build and are generally $25-40 \%$ more expensive per square meter than a lowrise building. It will increase the pollution caused during the construction of a building. Hence followed the NBC guide lines during the construction. The design of joints connecting slabs and RC walls is designed constrain.

REFERENCES

[1] B.Gireesh babu,"seismic analysis and design of G+7 Residential building using STAAD.Pro;" international journal of advance research ,ideas and innovations in technologyISSN:2454132X,volume3,issue3,2017.
[2] Mohit Sharma, Dr. Savita Maru," Dynamic Analysis of Multi-storey Regular Buildings IOSR Journal of Mechanical Engineering and Civil Engineering (IOSRJMCE). Volume 11, Issue 1 Ver. II (Jan. 2014).
[3] Prof. S.S. Patil, Miss. S.A. Ghadge, Prof. C.G. Konapure, Prof. Mrs. C.A. Ghadge, "Seismic Analysis of Multi-storey Building" International Journal Of Computational Engineering Research (Ijceronline.Com) Vol. 3 Issue. 3.march 2013.
[4] Mahesh N. Patil, Yogesh N. Sonawane. "Seismic analysis of multi-storeyed buildings (IJEIT) Volume 4, Issue 9, March 2015.
[5] Anoop singh, Vikassrivastava, N.N. Harry. "Seismic and design of building structure using STADD.pro "International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Issue 7, July 2016.
[6] Aman, Manjunath Nalwadgi, Vishal T, Gajendra. "Analysis and design of multi-storey building" International Research Journal of Engineering and Technology ,Volume: 03 Issue: 06 | June-2016.
[7] Girum mindaye, Dr. shaik yajdani. "Seismic Analysis of Multi-storey RC Frame Buildings in many Seismic Zone ",International Journal of Innovative Research in Science, Engineering and Technology. Vol. 5, Issue 9, September 2016.
[8] E. Pavan Kumar, A. Naresh, M. Nagajyothi ,M. Rajasekhar ,"Earthquake analysis of multi-stored residential building case study", Int. Journal of Engineering Research and Applications . Vol. 4, Issue 11, November 2014.
[9] Anoj Surwase1, Dr. Sanjay K. Kulkarni 2, Prof. Manoj Deosarkar3 "Seismic Analysis and Comparison of IS 1893 (Part-1) 2002 and 2016 of (G+4) Regular and Irregular Building" International Journal of Innovative Research in Science, Engineering and Technology Vol. 7, Issue 6, June 2018
[10] Gauri G. Kakpure*, Dr. A. R. Mundhada "Comparative Study of Static and Dynamic Seismic Analysis of Multistoried RCC Buildings by ETAB Int. Journal of Engineering Research and Application; ISSN: 2248-9622, Vol. 7, Issue 5, (Part -5) May 2017, IJESC, June 201923057 http://ijesc.org/

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

