

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: I Month of publication: January 2025
DOI: https://doi.org/10.22214/ijraset.2025.66277

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Analysis and Design of PEB Warehouse

Vishnu Kumar¹, Ilavendan S²

¹Assistant Professor, Department of Civil Engineering, Mangalayatan University-Aligarh, UP, India ²PG Scholar, Department of Civil Engineering, Mangalayatan University-Aligarh, UP, India

Keywords: Stress analysis, Load Cases, Pre-Engineered Building, Loading, etc.

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to our Project Guide Vishnu Kumar, Assistant Professor, Department of Civil Engineering, Mangalayatan University-Aligarh, who have contributed to the completion of this project "Analysis and Design of PEB Warehouse". Your support, guidance, and encouragement have been invaluable throughout this journey.

I extend my sincere appreciation to my Guide, for his unwavering support, mentorship, and insightful feedback.

Lastly, I extend my gratitude to all the individuals, resources, and institutions that have in any way contributed to the successful completion of this Course Project. Thank you all for being an integral part of this journey.

I. INTRODUCTION

This thesis is about analysis and design of a warehouse (Location: Chennai) using Pre-Engineered Building concept, which is widely used in modern-day construction. We will be using Staad Pro software to analysis and design building components like columns, rafters, bracing members, etc. Design will be carried with reference to Indian standard codes. The major load action on the building will be Dead load, Live load, Wind load & Seismic load. Using Staad pro analysis will be carried out and stresses of the member will be calculated. Based on the stress levels, members will be reshaped for better usage and cost effectiveness. The analysis and design cover most of the thesis and is the most important part of any project. There were many dependent steps involved in the analysis part.

A. Pre-Engineered Building

These are steel buildings which are created / manufactured using various methods at factory and assembled at site. In simple words, as per the requirement building components are prefabricated at one place and erected at another place.

Advantages	Disadvantages				
Reduced Construction time	Low Thermal Resistivity				
Less Manpower at Site	Low Fire Resistance				
Reduction in Cost	Sensitive to corrosion				
Flexibility in Design	Finishing Details May Take Time				
Scope for Future Expansion	Limited Architectural Freedom				
Low Maintenance	Technical Expertise				
Seismic Resistance					

Table 1 – Advantages	&	Disadvantages of PEB	
----------------------	---	----------------------	--

Structural analysis is necessary as the reliability of the structure is investigated for all the requirements and loadings on the structure. Structural analysis is important since it finds out the critical components that need special attention or the special concept. Furthermore, understanding the design of the structure in more detail helps.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

B. Warehouse

A structure or room for the storage of merchandise or commodities. A warehouse is a commercial space vital in the supply chain that is used to store finished goods and raw materials and is widely used in industries such as manufacturing and distribution. Warehouses are used for storing goods for an extended period and are typically equipped with storage areas, loading docks, conveyors, and other material-handling equipment.

A. Rigid Frame

II. STRUCTURAL COMPONENTS

The frame with members interconnected by predominantly rigid connection, which resist movements induced at the joints of member. Its members can resist bending moments, shear and axial loads.

B. Post & Beam Frame

These frames are also known as braced frames. The frame with members interconnected by pin-like manner. Its members can resist shear and axial loads.

C. Canopy

The steel structure canopy is a kind of engineering facility used to keep out rain and high-altitude falling objects. It is mainly located at the entrance and exit of buildings.

D. Pulin & Girts

Roof purlins are used to support metal roofing panels. Wall girts are used for the fastening of metal siding. They are available in stainless steel or galvanized.

E. Bracing Member

The members in a braced frame are generally made of structural steel, which can work effectively both in tension and compression.

F. Wall Framed Opening

A wall framed opening is a section of a wall that's been created to accommodate a door, window, or shutter. The framing members and flashing that surround the opening are also known as a framed opening.

G. Wall Light

The translucent panel is an economical method to allow natural light into a metal building. The translucent panels are field installed with self-drilling screws to a roof or wall panel. Generally, if located at roof these are called skylight and if in a wall it is called wall light.

H. Cage Ladder

A cage on an access ladder serves several important purposes, including Fall Protection: The cage acts as a safeguard against falls, especially in situations where the ladder's height is significant. It provides a barrier that can prevent a person from falling off the ladder or losing their balance.

I. Roof Monitor

A roof monitor is a raised section that runs along the ridge of a double-pitched roof, with its own roof that runs parallel to the main roof. The long sides of the monitor often have clerestory windows or louvers to allow light and ventilation.

III. PROBLEM STATEMENT

The Client wanted to construct a warehouse extended over the existing property and the architect proposed to go for steel shed. The proposal was for the warehouse which is rectangular in shape and steel columns supported on the ground by considering RCC foundation for the design and Consulting Engineers were approached to undertake a feasibility scheme to design the necessary support to the shed (roof and columns), ensuring the safety and durability of the structure.he key issue is predicting the effects of wind on the building, as typical wind design regulations make little reference to the layout provided by Architect. Wind will apply uplift or down pressure on any solid object depending on what kind of conditions.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

We designed a rigid frame which transfers the loads effectively to the base of the support. The supports at base are designed properly, taking care of all the required specifications, making the warehouse structure more useful for a longer period during the period.

Figure – 1 Warehouse Picture

IV. MODELLING

A. Model Details

Table 2 – Modelling details for the structure

Description	Specifications				
Type of Structure	Multi Span				
Plan Dimensions	42 m x 33 m C/C of Steel Column				
Height	5.0 m Clear Height				
Brick Wall	1.25m				
Column Base Level	+0.2m from FFL				
Location	Chennai				
Roof/ Wall Sheeting	0.50mm Color Coated Galvalume Sheet				
Wall light	1Nos. per Bay				
Roof Access	1Nos. of Cage Ladder				
Ventilator	Roof Monitor at Ridge				

CONSULTANT/ ARCHITECT DRAWING

Figure - 2 Customer/ Architect Layout

Figure – 5 Staad Pro rendered model

VIII. ANALYSIS OF COLUMN & RAFTER

Figure – 6 BMD for the column member

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue I Jan 2025- Available at www.ijraset.com

			Beam No = 2	24		
	_					
121 -35.71 ection Forces Dist.	Fy	Mz		Dist	-3 Fy kN	122 35.71 Mz kN-m
m	kŇ	kN-m	0	000	-35.712	0.000
1.092	-35.712	110.410				
.533	-35.712	126.183		Selection Ty	pe	
.975	-35.712	141.955	1	Load Case	: 101:COM	B - 1.5 DE 🗸
.417	-35.712	157.728			L	
.858 .300	-35.712	173.501		Bendin	g-Z (Bending - Y
	-35.712	189.274		O Shear -	× (Shear - Z

Figure – 7 SFD for the column member

Figure – 8 BMD for the rafter member

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue I Jan 2025- Available at www.ijraset.com

Figure – 9 SFD for the rafter member

IX. MATERIAL SPECIFICATIONS

Sl. No.	Materials		Specifications			
1	3 - Plate Welded Sections		ASTM A572Gr50 and IS2062 E350A.			
	Built-Up Se	ections	IS2062E350 Grade			
	Hot	Beams, Angles	ASTM A36 Gr.36 or IS 2062 – 2011 Gr A			
2			IS 2062 E250A or SAE 1018 with minimum 250MPa yield strength.			
Sections Pip		Pipes	IS 1161 – 1998 and IS 806 – 1968 (240 MPa)			
3	Cold Formed sections		ASTM A570 Gr 50 (painted), min. yield 340MPa			
4	Anchor Bolts		IS:5624 (minimum 240 MPa) Galvanized 900 GSM, material MS confirming IS:2062			
5	High Strength Bolts		ASTM A325M or IS 1367 Part 3 – 2002 Gr. 8.8 min.			
6	Machine or	Mild Steel	IS1367 Part 3 -2002 class 4.6, Grade-B of IS1367 Part-2 & IS-5624			
7	Nuts & was	shers	Grade 8.8 as per IS: 1367 and shall be hot dip galvanized			

Table – 3 Material Specifications

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

X. LOAD CALCULATIONS

Following Basic Loads shall be considered in Design of Structure and its elements

- Dead Loads (DL)
- Imposed Loads or Live Loads (LL)
- Wind loads (WL)
- Earthquake Loads (EQ)

A. Dead Load Calculation

Dead Load comprises of the weight of all permanent construction including frames, columns, beams, walls, roofing elements, cladding elements, sheeting and other steel elements permanently attached to building or structure. In general, dead loads for the materials used in Construction will be evaluated as per IS: 875-1987(Part-1) - "Weight of Building Materials" or as per the manufacturer's literature. The following unit weights shall be used for the materials listed. Table 4 – Unit weight of Materials

6		
Material	Unit weight	Unit
Structural Steel	78.50	kN/m ³
RCC Structure	25.00	kN/m ³
Brick Wall including plaster	21.00	kN/m ³

Self-weight of elements which are modelled in analysis programs shall be computed automatically. For other elements computation shall be carried out as per listed unit weights.

DEAI			
Width of the building (W) -	33.84	m	
Building Tributory (T) -	6	m	
No of Purlins in One Bay (N) -	24	Nos	
Purlin Section -	200Z1.5]	
Purlin Lapping -	Cont.\385 Lap		
Roof Sheeting -	0.50 mm Thk. CCGL		
Weight of Purlins -	N x Unit Wt. of Purl	ins x Length of Purlin Including	, Lap
		WxT	
Weight of Purlins -	3.25	Kg/m ²	
Weight of Panel -	4.49	Kg/m ²	
Total Dead Load on Roof -	7.74	Kg/m ²	
	or		
	0.08	kN/m ²	
	= 0.10	kN/m ²	

Figure – 10 Dead Load Calculation

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

B. Live Load

Imposed Load or otherwise Live Load is assessed based on the occupancy type and use of floor. Considered Non-Accessible Roof – 0.75kN/m² (IS875-Part2_Table-2)

Wind Load Calculation С.

IS 875 (Part 3): 2015 is used to determine wind loads.

- Identify the basic wind speed (V) for your location from the wind map provided in the standard. •
- Determine the importance factor (I) and the exposure factor (K) based on the building's characteristics. •
- As per IS875-2015 guidance, Cyclone factor considered for Chennai Location. •
- Calculate the wind pressure (Pd) •
- Once you have wind pressure, determine the design wind force (F_d) using the formula:
- The effective area is calculated based on the projected area of the structure perpendicular to the wind direction. •

	Figure	-11 to 15 Wind Le	ad Calcula	tion		
	WIND	-OAD CALCULATIO	۷			
	AS PER I	S : 875 (PART 3) - 2	015			
<u>User Input</u>						
Basi	c Wind Speed = 50	m/ sec				
Building Ea	ave Height (H) = 10	m Build	ing Mean He	eight (H) =	10.846	m
	Roof Slope = 1	: 10 5.71	Degrees			
Length of t	he building (L) = 42.84] m				
Width of th	e building (W) = <u>33.84</u>	m				
Cla	ss of Structure = 1	All general buildings	and structu	ires		
Probab	lity Factor $(k_1) = 1.00$			IS875(Par 1	t-3)-2015, Clau	ıse 6.3.1, Table -
Те	rrain Category = 2	Open terrain with w between 1.5 to 10m	ell scattered	lobstructio	ns having heigh	ts generally
Terr	ain Factor (k_2) = 1.000			IS875(Part-	3)-2015, Clause	6.3.2.2, Table -2
Topograp	bhy Factor (k_3) = 1.00			IS875(Par	t-3)-2015, Clau	ıse 6.3.3.1
	Cyclone Zone = Yes					
Cyclo	ne Factor (k4) = 1.15			IS875(Par	t-3)-2015, Clau	ıse 6.3.4
Design Wind	Pressure (p _z) = 1.984	KN/m ²				
	$P_{Z}=0.6 \times (V_{b} \times K1 \times I)$	K2 x K3 x K4)²	KN/m²		IS875(Part-3) 7.2	2015, Clause
For Frame						
Wind Directiona	lity Factor (kd) = 1.00			IS875(Par	t-3)-2015, Clau	ıse 7.2.1
Max. F	rame Tributary= 6.00					
Effectiv	ve Frame Area = 33.96					
Area Averaging	Factor (ka) = 0.89			IS875(Par	t-3)-2015, Clau	ıse 7.2.2
Combinati	on Factor (kc) = 0.90			IS875(Par	t-3)-2015, Clau	ıse 7.3.3.13

Design Wind Pressure (p _d) = 1.586 KN/m ²				
Pd=kd x ka x kc x Pz	KN/m ²		IS875(Part-3)-2015,	Clause 7.2
Not Less Than				
Design Wind Pressure (p _d) = 1.389 KN/m ²	KN/m ²			
Pd=0.7 x Pz	KN/m ²		IS875(Part-3)-2015,	Clause 7.2
Therefore Design Wind Pressure (p _d) =	1.586	KN/m ²		
For Sheeting & Coldform				
Wind Directionality Factor (kd) = 1.00			IS875(Part-3)-2015,	Clause 7.2.1
Max. Purlin / Girts Tributary= 1.50				
Effective Purlin Area = 9.00				
Area Averaging Factor (ka) = 1.00			IS875(Part-3)-2015,	Clause 7.2.2
Combination Factor (kc) = 0.90			IS875(Part-3)-2015,	Clause 7.2.3.3.13
Design Wind Pressure (p _d) = 1.786 KN/m ²				
$P_d = kd x ka x kc x P_z$	KN/m ²		IS875(Part-3)-2015,	Clause 7.2
Not Less Than				
Design Wind Pressure (pd) = 1.389 KN/m ²	KN/m ²			
Pd=0.7 x Pz	KN/m ²		IS875(Part-3)-2015,	Clause 7.2
Therefore Design Wind Pressure (p _d) =	1.786	KN/m ²		
Permeability Condition = Low Permea	ability	Opening A	rea - Below 5%	
Internal Press.Co-efficient Cpi=	±0.2]	IS875(Part-3)-2015,	Clause 7.3.2
Wind Load on Individual members F = (Cpe - (Cpi) x A P _d		IS875(Part-3)-2015,	Clause 7.3.1
Where, $C_{pi} = Internal Pressure C$	Co-efficient			
$C_{pe} = External Pressure$	Co-efficient			
A = Surface area of stru	uctural eleme	ent or cladd	ling unit	
$P_z = Design Wind Press$	ure			

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

Based on IS875(Part-3)-2015, Table 5 & 6, External pressure has to be calculated Wind Left (Case 1 & Case 2) -1.14 -0.60 0.74 -0.20 0.50 -0.40 0.90 Side Walls & Roof 0.00 Wind Right (Case 1 & Case 2) -0.60 -1.14 -0.20 -0.74 -0.40 0.50 0.00 0.90 Side Walls & Roof LONGITUD INAL DIRECTION (Wind Angle $\theta = 90^{\circ}$) Wind End (Case 1 & Case 2) -1.00 -1.00 0.60 -0.60 -0.70 -0.70 0.30 0.30

Note:- The Values are [[Cpe ± C pi)]

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

D. Seismic Load Calculation

The following parameters shall be considered as per IS: 1893-2016 (Part-1) Seismic Zone III = Seismic Zone Factor 0.16 Z = Structure Importance Factor (Table -8, IS1893-2016 (Part-1)) Ι 1 = Response Reduction Factor (Table-23, Chapter-12 - IS800-2007) 3 (For OMF) R = **Response Reduction Factor** R 4 (For OCBF) = *As this a hybrid structure, we have considered R 4 In Staad (Conservative Side) = 5 % Damping factor (Steel) Soil type for Spectral Acceleration Co-efficient (As Per Tender) = Soft Fundamental period of vibration in seconds, T shall be estimated by Eigen value analysis using analysis model.

Design Horizontal Seismic Coefficient Design Seismic Base Shear

 $V_b = A_h x W$

Where,

"W" is the seismic weight of the building "A_h" is Design Horizontal Seismic Coefficient "Sa/g" is Average response acceleration co-efficient

For computing design seismic forces, following factors shall be considered

100% Dead load of structure, collateral loads,

E. Serviceability Requirements

Deflection limits followed as per table 6 of IS800-2007.

Table 5 – Deflection	Limitation
----------------------	------------

Column (Lateral)	Lateral Deflection-Height/150
Rafter (Vertical)	Vertical deflection-Span/180
Girt	Vertical deflection-Span/150
Purlin	Vertical deflection-Span/150
Cantilever Canopy beam	Vertical deflection-Span/120

XI. ANALYSIS AND DESIGN CONSIDERATIONS

- *1)* The lateral stability of the building is provided through the frame action of the rigid frame Structure.
- 2) The longitudinal stability of the building is provided through the system of cross bracing.
- 3) The sidewall girts are by pass beams (Continuous) supported at frame column location and span the bay spacing of the building.
- 4) The end wall girts are by pass beams (Continuous) supported at end wall column locations.
- 5) All columns are pinned to the base.
- 6) End frame frames are considered as non-expandable (Post & Beam).

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

XII. LOAD COMBINATION

Figure – 16 Load Combination as per IS 800-2007

Table 4 Partial Safety Factors for Loads, γ_{t} for Limit States

(Clauses 3.5.1 and 5.3.3)

Combination		Limit State of Strength					Limit State of Serviceability			
	DL		LL"	WL/EL	AL	DL			WL/EL	
		Leading	Accompanying				Leading	Accompanying		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
DL+LL+CL	1.5	1.5	1.05			1.0	1.0	1.0		
DL+LL+CL+	1.2	1.2	1.05	0.6		1.0	0.8	0.8	0.8	
WL/EL	1.2	1.2	0.53	1.2						
DL+WL/EL	1.5 (0.9) ²⁰			1.5		1.0			1.0	
DL+ER	1.2 (0.9) ²⁾	1.2					—	-	—	
DL+LL+AL	1.0	0.35	0.35		1.0				-	

¹⁾ When action of different live loads is simultaneously considered, the leading live load shall be considered to be the one causing the higher load effects in the member/section. ²¹ This value is to be considered when the dead load contributes to stability against overturning is critical or the dead load causes

²¹ This value is to be considered when the dead load contributes to stability against overturning is critical or the dead load causes reduction in stress due to other loads.

Abbreviations: DL = Dead load, LL = Imposed load (Live loads), WL = Wind load, CL = Crane load (Vertical/Horizontal), AL = Accidental load, ER = Erection load, EL = Earthquake load.

NOTE — The effects of actions (loads) in terms of stresses or stress resultants may be obtained from an appropriate method of analysis as in 4.

XIII. CONNECTION DESIGN - SAMPLE

		1	III. U	United	TION DESIGN	- SAMI LE		
A. Anchor Bolt And Bas	se Plate L	Design						
Material Properties								
Concrete:								
Grade of concrete	=	M25		=	25.0Mpa			
Maximum Bearing Press	ure	= ($(0.45 F_{ck})$	=	11.25Mpa	IS 800:2007;	Cl. 7.4.1	
Steel Section:								
Yield Stress	F_{y}	=	345Mpa	a				
Ultimate Stress F _u	=	490Mp	oa -					
		_						
Anchor Bolts:	Grade 4	4.6						
Ultimate Tensile Stress o	f Bolt	f_{ub}	=	400Mpa	a IS 1367 (Part 3)	: 2002, Table 3	3	
Yield Stress of Bolt		\mathbf{f}_{yb}	=	240Mpa	a IS 1367 (Part 3)	: 2002, Table 3	3	
Total number of Anchor	bolt	Ň	=	4Nos.				
COLUMN SECTION DI	ETAILS						L 🛉]	
Web Depth	d_w	=	300mm			_	b∳∥	
Web Thickness tw	=	5mm			a		>	
Flange Width	\mathbf{B}_{f}	=	175mm					B
Flange Thickness t _f	=	10mm			g	• • •	>	
								↓ I
BASE PLATE DETAILS	S – Assun	ne Dime	nsions					•
Length of Base Plate			L	=	350mm	L		
Width of Base Plate			В	=	200mm			
Cantilever along Length		a or c	=	15mm				
Cantilever along Width		b or c	=	12.5mm	1			

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

CONNECTION DETAILS – Assume

Diameter of Bolts to be used		d _b	=	20mm	
Diameter of Hole	d_h	=	(d+6)	=	26mm
Spacing/Pitch of Bolts Provided	g	=	100mm	$\geq 2.5*d_b$	
Spacing/Pitch of Bolts Provided	р	=	100mm		

1) Loads From Staad Output

LOAD COMBINATION	VERTICAL	SHEAR ALONG
	(KN)	MAJOR AXIS(KN)
(DL + LL)	93.0	96.0
(DL + WL)	-159.0	96.0

2) Check For Bearing Pressure Under Base Plate

AS PER IS 800:2007; Cl. 7.4.3

3) Check For Thickness Of Base Plate For Verticle Pressure

Max. Intensity of the Pressure Under Base Plate w = 3.86N/mm²

$$t_{s} = \sqrt{2.5 w (a^{2} - 0.3 b^{2}) \gamma_{m0} / f_{y}} > t_{f}$$

$$(a^{2} - 0.3b^{2}) = c^{2} \text{ IS 800:2007; Cl. 7.4.3.1}$$

used

Thickness of Base Plate Required $t_s = 2.63mm$

4) Check For Thickness Of Base Plate For Uplift

Spacing of Bolts Provided along width = 100 mmg Spacing of Bolts Provided along length = 100 mmр Distance from bolt to flange A = 100mmMaximum Tension Force acting on each Bolt Т = 39750NUplift force in web per bolt row \mathbf{P}_{w} $1 | {\binom{0.5g}{.5g}}^3$ $P_{w} = 70667N$ $= \frac{PL}{8}$ Plate moment due to the uplift force in web Μ Μ $= 2P_w (g-0.5d_b)/8,$ Where $P=2P_w \& L = (g-0.5d_b)$

 $\sqrt{(6 * M * Y_{m0})/(1.2 * f_v * d_w)}$

= 159000N-MM

depth of web

Μ

 $t_s =$

Thickness of Base plate required due to Uplift

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

Where $d_w =$

 $t_s = 9mm$ Hence, Provide Thickness of Base Plate 16mm t. = [HENCE SAFE] 5) Check For Bolts Subjected To Combined Shear And Tension Gross Area of Bolts (A_{sb}) 314mm² A_{sb} = 245mm² Net Tensile/Shear Stress Area of Bolts (A_n) As = Y_{mo} 1.1 Partial safety factor for material = Partial safety factor for bolt Y_{mb} = 1.25 Vsh Factored shear force acting on each bolt = V/NWhere N = Nos. of Bolts = 24kN V_{sh} Th T/N Factored shear force acting on each bolt = Where N = Nos. of Bolts Th = 39.75kN $= 0.9 f_{ub} A_n < f_{yb} A_{sb} (Y_{mb} / Y_{ma})$ T_{nb} Nominal tensile capacity of bolt $0.9 f_{un} A_n$ = 88.22kN $f_{yb}A_{sb}(Y_{mb}/Y_{m0})$ = 85.68kN T_{nb} = 85.68kN $= \frac{T_{nb}}{Y_{mb}}$ Design Tensile capacity of bolt T_{db} = 68.54kN T_{db} $V_{nsb} = \frac{f_u}{\sqrt{3}} (n_u A_{nb} + n_s A_{sb})$ Nominal Shear capacity of bolt Where $n_n = 1$, $n_s = 0$ = 56.59kN V_{nsb}/Y_{mb} V_{dsb} Design Shear capacity of bolt V_{dsb} = 45.27kN Design shear capacity of bolt = 45.27kN V_{db} Design Tensile capacity of bolt T_{db} = 68.54kN Factored shear force acting on each bolt V_{sh} 24.00kN Factored Tensile force acting on each bolt Ts = 39.75kN [HENCE SAFE] A Bolt subjected to Combined Shear & Tension shall satisfy $\left(\frac{V_{sb}}{V_{db}}\right)^2 + \left(\frac{T_b}{T_{db}}\right)^2 \leq 1.0$ IS 800:2007; Cl. 10.3.6 $\left(\frac{V_{SD}}{V_{SD}}\right)^2 + \left(\frac{T_D}{T_{AB}}\right)^2 = 0.62 < 1$ [HENCE SAFE] © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

6) Calculati	on Of Anch	or Bolt Length				
Anchor Lengt	h required	=	T/(π*d*ζł	od*N)	IS 456:2	2000, Cl. 26.2.1
Т	=	Total Tension in	the Bolt			
D	=	Diameter of Bolt				
ζbd	=	Design Bond Stre	ength of Co	oncrete		
Ν	=	No. of Bolts				
For M25 Grad	le of Conct	re, Bond Strength (,bd =	=	1.4	IS 456:2000, Cl. 26.2.1.1
	Anchor	: Length required	=	=	452mm	
	Anchor	Length of Dia Bol	lt		=	600mm
		[HENCE	SAFE]			

7) Therfore provide 16mm thick base plate & 4nos. Of 20mm dia. Anchor bolt Design Of Knee Connection – Column To Rafter

besign of finter connection	001011111
LOAD FROM STAAD ANAL	<u>YSIS</u>

(M)	=	34kN-m
(P)	=	127kN
=	73kN	
=	600mm	
=	6mm	
=	175mm	
=	8mm	
	(P) = = =	(P) = 73kN = 600mm = 6mm = 175mm

COLUMN SIZE

Web Depth	=	600mm
Web Thk.	=	5mm
Flange Width	=	175mm
Flange Thk.	=	10mm

CONNECTION PLATE SIZE

Assume		
Length	=	820mm
Width	=	250mm
Thickness	=	25mm
Yield Stress	=	345Mpa

USE OF HIGH TENSILE BOLTS:

Assume					
Bolt Dia.	=	27mm			
No. of Bolts	=	8Nos.			
e1	=	50mm			
e2	=	70mm			
p/g	=	110mm			
LOADING PER	BOLT				
Shear per Bolt		=	S/Nos. of Bolts	=	73/8
		=	9.13kN		
Tension per Bolt	;				
Due to Axial Bolt=		P/Nos.	of Bolts =	127/8	
		=	15.88kN		

45mm

Volume 13 Issue I Jan 2025- Available at www.ijraset.com

Effective Lever	Arm Calculation
Lifective Level	a min Culculation

X1	=	670mm,	$X1^2$	=	0.45m				
X2	=	560mm,	$X2^2$	=	0.31m				
X3	=	55mm,		X3 ²	=	0.00m			
Effect	ive lever a	arm	=	$\frac{X_1}{\sum X^2}$	=	0.88m			
Maxin	num Tens	ion in extre	eme Bol	t		=	$\frac{M * X_1}{\sum X^2}$	=	304.6kN
Numb	er of rows	5				=	2		
Tensio	on due to a	moment in	each ex	treme Bo	olt		=	152.28	8kN
Tensio	on due to .	Axial Force	e				=	15.88k	N
Tensio	on in each	extreme B	olt	(Mome	ent + Axia	l Force)	=	168.2k	N
Prying	g Force					Q	=	$\frac{l_{v}}{2l_{g}}\Big[T_{e}$	$-\frac{\beta\eta f_0 b_{\theta} t^4}{27 l_{\theta} l_{v}^2} \bigg]$

Where

Distance from the bolt centre line to toe of fillet weld $l_{\rm IF}$

=

Distance between prying force and bolt centre line	lei	=	50mm		
End distance		l _{e2}	=	50mm	
Minimum of either of above two values	lez	=	50mm		
2 for non pre tensioned bolt and 1 for pretensioned bo	olt	β	=	2	
			η	=	1.5
Proof stress			Ťo	=	$0.56 kN/mm^2$
Effective width of flange per pair of bolts		b₂	=	125mm	
Assumed Fillet weld size		=	6mm		
		Q	=	62.61kN	1
Total Tension in each extreme Bolt (Tension + Pryin	g Force)	=	231kN		
Shear in one bolt	=	9.1kN			
Design shear force for slip resistance (V_{dsf})	=	<u>µf*ne*i</u>	$\frac{K_h * (F_0 - F)}{\Upsilon_{mf}}$	* T f)	
Where,					
Coefficient of friction	μ _f	=	0.55		

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

No. of effective interface n_{φ} 1 for clearance hole	=	1.00	
0.85 for short, slotted holes 0.7 for long slotted holes	K _n	=	1.0
Partial slip factor for slip resistanc	e y_f	=	1.25
Minimum bolt tension (proof load)) F o	=	$0.7*f_{ub}*A_n$
2 if external load is repetitive		F	= 2.0
1.7 if external load is non repetitiv	e		
Total external tension in each bolt	T_f	=	230.77kN
Design shear force for slip resistance (V_{dsf})	=	0.0kN	< 9.13
		(Conne	ection will govern in bearing)

CHECK FOR BOLTS SUBJECTED TO COMBINED SHEAR AND TENSION

A_{sb}	= 573mm ²
A _n	= 447mm ²
$\Upsilon_{\rm mo}$	= 1.1
	$\Upsilon_{\rm mb}$ = 1.25
\mathbf{f}_{ub}	= 800MPa
	$f_{yb} = 640 MPa$
	= 1
	= 0
$\mathbf{f}_{\mathbf{u}}$	= 450MPa
=	$0.9 f_{ub} A_n < f_{\gamma b} A_{sb} (\Upsilon_{mb} / \Upsilon_{m0})$
$F_{uh}A_n$	= 321.5kN
"n)	= 416.4kN
T _{nb}	= 321.5kN
	T_{nb}/γ_{mb}
=	$\gamma_{\gamma_{mb}}$
T_{db}	= 257.2kN
V_{nsb}	$= \frac{f_u}{\sqrt{3}}(n_u A_{nb} + n_s A_{sb})$
	Where $n_n = 1$, $n_s = 0$
	= 206.3kN
	$V_{dsb} = \frac{V_{nsb}}{Y_{mb}}$
	$V_{dsb} = 165.02 \text{kN}$
	$l_{i} = 726 > 405$
	Reduction for Long Joint required
	$\beta_{ij} = 0.941,$
	where $0.75 \le \beta_{ij} \le 1.0$
V_{dsh}	= 155.21kN
450	$K_{\rm b} = 0.602$
	$K_b = \min \text{ of } e/3d_0, p/3d_0-0.25, f_{ub}/f_u, 1$
	$V_{dpb} = 365.964 kN$
	$V_{db} = 155.21 \text{kN}$
T_{db}	= 257.20kN
	A_{n} Y_{mo} f_{ub} f_{u} f_{u} $F_{ub}A_{n}$ T_{nb} $=$ T_{db} V_{nsb} V_{dsb}

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

Factored shear force acting on each bolt Factored Tensile force acting on each bolt

$$\begin{array}{rcl} V_{sb} &=& 9.13 kN \\ T_b &=& 230.77 kN \\ [HENCE SAFE] \end{array}$$

A Bolt subjected to Combined Shear & Tension shall satisfy
$$\left(\frac{V_{sb}}{V_{db}}\right)^2 + \left(\frac{T_b}{T_{db}}\right)^2 \leq 1.0$$

IS 800:2007; Cl. 10.3.6

$$\left(\frac{V_{sb}}{V_{db}}\right)^2 + \left(\frac{T_b}{T_{db}}\right)^2 = 0.81 < 1$$

[HENCE SAFE]

CALCULATION OF THICKNESS OF CONNECTION PLATE								
Bending Moment in	Bending Moment in the end plate at flange force							
Тх	$l_v - Q (l_e + l_v)$	=	4.46kN	[-m				
At Bolt Line	Q x le		=	3.10kN-m				
Design Bending Mor	nent	=	4.46kN	[-m				
Thickness of Plate R	equired t	=		oment*1.1 Fy*bo				
		t	= [HENC	21.3mm < CE SAFE]	25mm			

CALCULATION OF COLUMN WEB THICKNESS ADEQUACY CHECK

= 616mm
= 620mm
5.02mm
[HENCE SAFE]

8) Therfore provide 25mm thick connection plate & 8nos. Of 27mm dia. Connection bolt

Design Of Pinned End Plate Connection	
LOAD FROM STAAD ANALYSIS	

Q

Volume 13 Issue I Jan 2025- Available at www.ijraset.com

USE OF HIGH TENSILE BOLTS:

Assume						
Bolt Dia.	=	16mm				
No. of Bolts	=	4Nos.				
ed1	=	40mm				
ed2	=	40mm				
p/g	=	90mm				
LOADING PER	Ρ ΒΟΙ Τ					
Shear per Bolt	UDULI	=	S/Nos. of Bolts	=	19/4	
Shear per Dolt		=	4.75kN	—	17/4	
Tension per Bol	t					
Due to Axial Bo	olt=	P/Nos.	of Bolts =	78/4		
		=	9.5kN			
Tension due to A	Axial For	ce			=	9.5kN
Tension in each	extreme	Bolt	(Moment + Axia	l Force)	=	9.5kN
Prying Force				Q	=	$\frac{l_v}{2l_{\theta}} \left[T_{\theta} - \frac{\beta \eta f_0 b_{\theta} t^4}{27 l_{\theta} l_v^2} \right]$
Where						
Distance from the	he bolt ce	ntre line	to toe of fillet weld	۱ <mark>ا</mark> ۳	=	8.5mm
				le	=	$1.1t \int_{f_V}^{\beta f_0}$
						8 <i>P</i>

Distance between prying force and bolt centre line	l _{e1}	=	24mm		
End distance		l_{c2}	=	40mm	
Minimum of either of above two values	l _{e2}	=	24mm		
2 for non pre tensioned bolt and 1 for pretensioned b	olt	β	=	2	
			η	=	1.5
Proof stress			fo	=	0.56kN/mm ²
Effective width of flange per pair of bolts		b _e	=	100mm	
Assumed Fillet weld size		=	6mm		
		Q	=	-11.72k	N (-Ve)
			=	0	
Total Tension in each extreme Bolt (Tension + Pryin	ng Force)	=	9.5kN		
Shear in one bolt	=	4.75kN			

Design shear force for slip resistance (V_{dsf})			=	µ _{f*ne*i}	$\frac{K_h * (F_0 - F + T_f)}{\gamma_{mod}}$
Where,					• <i>nu</i> j
,	Coefficient of friction		μ _f	=	0.55
	No. of effective interface	n_e	=	1.00	
	1 for clearance hole				
	0.85 for short, slotted hole	es	K_n	=	1.0
	0.7 for long slotted holes				
	Partial slip factor for slip	resistance	y _r	=	1.25
	Minimum bolt tension (pr	oof load)	F ₀	=	$0.7 * f_{ub} * A_n = 87.82 \text{kN}$
	2 if external load is repeti	tive		F	= 2.0
	1.7 if external load is non		e		
	Total external tension in e	-		=	9.5kN
Design shear for	ce for slip resistance (V_{dsf})		=	30.3kN	> 4.75
U	1 (1)			(Conne	ction will govern in bearing)
Bearing capacity	of plate/bolt			=	2.5*kL*11*fu
Dearing express					Y _{mb}
(This shash is n	at required as the compactic	m og thor	acultant	= friational	122.7 > 4.75
	ot required as the connection				
Gross Area of Bo			A _{sb}	=	$\frac{12101011}{201 \text{mm}^2}$
	r Stress Area of Bolts (A _n)		An	=	157mm ²
Partial safety fact			Υ_{mo}	=	1.1
Partial safety fact	tor for bolt			Υ_{mb}	= 1.25
Ultimate Tensile			\mathbf{f}_{ub}	=	800MPa
Yield Stress of B				\mathbf{f}_{yb}	= 640MPa
	ne with thread intercepting			=	1
	ne without thread interception	ing	c	=	0
	Stress of PLATE	m	f_u	=	450MPa
Nominal tensile of	capacity of bolt	T _{nb}	=	$0.9f_{ub}$	$A_n < f_{yb} A_{sb} (\Upsilon_{mb} / \Upsilon_{m0})$
		$0.9 f_{ub}$		=	112.9kN
	$f_{ub}A_nA_{sb}(\Upsilon_m$	<mark>b</mark> /Υ _{m0})		=	146.2kN
			T_{nb}	=	112.9kN
Design Tensile c	apacity of bolt	T_{db}	=	T_{nb}/γ	
			T_{db}	=	90.3kN
Nominal Shear ca	apacity of bolt		V_{nsb}	$= \frac{f_u}{\sqrt{3}}$	$(n_u A_{nb} + n_s A_{sb})$
					Where $n_n = 1$, $n_s = 0$ = 72.4kN
Design Shaan aan	a sites of h alt			V	$= \frac{V_{nsb}}{Y_{mb}}$
Design Shear cap	bacity of bolt			V_{dsb}	
				V_{dsb}	= 57.95kN
Distance between	n extreme rows of bolt			lj Deducati	= 90.3 > 240
Reduction Factor	for shoor				on for Long Joint required
Reduction Factor	IUI SIICAI			β _{ij} where (= 1.0, $0.75 \le \beta_{ij} \le 1.0$
				where	

= 0.7407

K_b=min of e/3d₀,p/3d₀-0.25,f_{ub}/f_u,1

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

Design shear capacity of bolt after the reduction Reduction Factor for Bearing

Design Bearing Strength of the Bolt Design shear capacity of bolt Design Tensile capacity of bolt

V_{dpb} = 128kN V_{db} = 57.95kN = 90.30kN

= 57.95kN

 K_b

Factored shear force acting on each bolt Factored Tensile force acting on each bolt

 V_{sb} 0.00kN = T_b = 9.50kN [HENCE SAFE]

V_{dsb}

 $T_{db} \\$

A Bolt subjected to Combined Shear & Tension shall satisfy $\left(\frac{v_{sb}}{v_{db}}\right)^2 + \left(\frac{T_b}{T_{db}}\right)^2 \leq 1.0$

IS 800:2007; Cl. 10.3.6

$$\left(\frac{V_{sb}}{V_{ab}}\right)^2 + \left(\frac{T_b}{T_{ab}}\right)^2 = 0.01 < 1$$

[HENCE SAFE]

CALCULATION OF THICKNESS OF CONNECTION PLATE

Bending Moment in the end plate at flange force							
	$T \ge l_v - Q (l_e + l_v) =$	=	0.08k	N-m			
At Bolt Line	Q x le		=	0.00kN-m			
Design Bending	Moment :	=	0.08k	N-m			
Thickness of Pla	te Required t	=	√ <u>4*</u> ₽	foment*1.1 Fy*bo			
		t	=	3.20mm <	12mm		
			[HEN	ICE SAFE]			

9) Therfore provide 12mm thick connection plate & 4nos. Of 16mm dia. Connection bolt

Pipe Bracing Connection

Member Force		= 58kN
Tension Member	=	ISNB 125 (L)
Length of Member (L)	=	8.16m
Yield Strength		= 250N/mm ²

STRENGTH DUE TO YIELDING OF GROSS SECTION

	Strength due to y	vielding o	of gross se	ection	$T_g =$	$= \frac{A_g * f_y}{\Upsilon_{mo}}$	IS 800:	2007; Cl. 6.2
	Gross area of sec	ction			A_{g}	=	1910mm	n^2
	Resistance gover	rned by y	ielding	Υ_{mo}	=	1.1		
	Strength due to y	vielding o	of gross se	ection T _g	=	434.1kN	N >	58kN
			[HENCI	E SAFE]				
SLEND	ERNESS CHECK	<u>K</u>						
	L_{xx}/r_{xx}	<=	180					IS 800:2007; Table-3
		=	8160/47	.8				
	L_{xx}/r_{xx}	=	170.72		<	180		

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

 L_{yy}/r_{yy} L_{yy}/r_{yy} <= 180 = 8160/47.8 = 170.72 < 180 [HENCE SAFE]

CONNECTION DETAIL

Bolt Pattern	=	2Rows
Bolt Dia.	=	20mm Dia.
Total No. of Bolts	=	4
Plate Thickness =	12mm T	ĥk.
Weld Thickness =	3mm	
Weld Length	=	150mm

BOLT SHEAR CAPACITY

Shear Strength of bolt	V _{asp} =	$=\frac{V_{nsb}}{Y_{nc1}}$		IS 800:2007; Cl. 10.3.3
Where	$V_{nsb} =$	$=\frac{\hbar u}{\sqrt{3}}(n_nA_{nb}+$	$n_s A_{ns}$)	
Shear Strength of one Bolt	=	60.19kN		
Shear Strength of 4Nos. of Bolts	=	240.76kN	>	58kN
[HENC	E SAFE]		

BEARING ON PLATE

Bearing strength of bolt on plate
$$V_{sb} = \frac{V_{npb}}{\gamma_{mb}}$$

Where $V_{npb} = 2.5k_b dt f_u$
 $k_b = Smaller of, \frac{s}{3a_0}, \frac{F}{3a_0} = 0.25, \frac{f_{ub}}{f_u}, 1.0$
Bearing strength of 4Nos. of bolts on plate = 432kN > 58kN

BLOCK SHEAR CHECK

 $T_{ilb} = \frac{A_{vy} * f_y}{\sqrt{3} * \gamma_{mo}} + \frac{0.9 * A_{lu} * f_u}{\gamma_{m1}}$ IS 800:2007; Cl. 6.4.1 Strength due to block shear OR $T_{db} = \frac{A_{tg} * f_y}{Y_{m0}} + \frac{0.9 * A_{vn} * f_u}{\sqrt{3} * Y_{m1}}$ Gross area in shear 5040mm² Net area in shear 3528mm² 720mm² Gross area in tension 504mm² Net area in tension Shear Strength due to block shear T_d 885.771kN 58kN = >[HENCE SAFE]

WELD STRENGTH

Design weld strength

$$P_{wul} = L_w * t_w * \frac{f_u}{\sqrt{3}*Y_{mw}} * k_w$$

= 284.17kN > 58kN
[HENCE SAFE]

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

XIV. COLD-FORM DESIGN (PURLIN & GIRTS)

Figure - 17 to 26 Cold-form Design

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue I Jan 2025- Available at www.ijraset.com

		aterally unbraced effective design = 14		f compressio	n elem	ient as pe	er cl. No. 5.2	2.1.1 of IS 8	01-1975
	Considering f (a	ctual stress in co	mpressio	on element)	=			N/mm² kgf/cm2	
	$\frac{\mathbf{w}}{t}$	=	<u>1.5*2)-(t</u> 2.50	<u>x 2)</u>		<u>1.50</u> 2.50	=	20.60	
	<u>1435</u> √f	=	<u>1435</u> 39.69	=	Hand	36.16 ce full flan	> ge effective	20.60 in compres	OK sion.
	L ² S _{xc} dl _{yc}	. No. 6.3 (b) of Is			5 m				
		f inertia of the co section parallel	ompressio	on portion of a		n about the 44.45 c		s of the enti	re
	Sxc=	Compression S extreme fibre =		odulus of the	entire s	ection abc 55.35 c		is, Ixx/ dista	ince to
	d =	Depth of sectio	n	=		20.00 c	m		
	$\frac{L^2 \times Zx}{depth \times lyc}$	=	1603.78				-1		
	<u>0.18 (Рі) ² Е С_ь </u> Fy	=	1040.54				2		
	<u>0.90 (Pi) ² E C_b</u>	=	5202.69				3		
	Fy (i) is	> (ii) < (iii							
nence	Fb =	2 <u>Fy</u> 3	-	<u>Fy</u> ² 2.7 (pi) ² E C	b	x	L ² S _{xc} d I _{yc}		
	Fb =	<u>2 x 3500</u> 3	- 2.7>	<u>3500^2</u> < (pi)2 x 2050	000 x1	×	1603.78	3	
	Fb =	2333.33	-	0.2242		x	1603.78	3	
	Fb =	1973.70 kg	/cm ²	OR		Fb =	197.37	′ N/mm²	
	Refering to cl.	No. 6.1 of IS 801	1-1975,	Hance Fb =	197.37	N/mm2			
	Fb (actual) (Ma	x Load Case) = =	184.73	(Span Mome N/mm ²	nt)*10)	/Zxx <	197.37	′ N/mm²	ок
	Fb (actual) (Ma	x Load Case) =	445.45	(Support Mo N/mm ²	ment*1	0)/Zxx <	107.07	N/mm²	ок
<u>Stress ir</u>	n Inclined Plane No of Sag Rod =						3	Nos	
	Total Load per r Maximum Span	metre = Moment over Sa	ag Rod, I	(DL+ LL+ CO M _{supp} =	LL) x Kj	() = =	2.52 252.30) Kg/m 2 Kg-m) Kg-cm	
	Developed Ber Allowable Ben	100 C 100 C 100 C		Mspan / Zy _{bot} 0.6 x fy =	-			Kg/cm ² Kg/cm2	OK
	σ _{dev, ver} σ _{per,ver}		dev, hor per,hor	-			0.945	5 <1.0	ок
Check fo	or deflection.								
			10403		27	2 10	alom		
	ATION - II [DEA ection = 0.0065 w.1	D LOAD + WINE	LOAD]		-	3.10 k 3.069 c	17.54 (PUL) 17.54		
	ection = 0.0065 w _x t		2007 - 6-	220/150	-	42.80 n			
		212 10	.007 = Sp	an 100				10.05	
Actual Def	lection for above co	poination			=	30.69 n	nm <	42.80	OK

	(b1/t) _{lim}		1435/(f) ^{1/2}				I. No. 5.2		
	Considering f (a	ctual stress ir	n compressic	on element)	=			N/mm ² kgf/cm2	
	$\frac{\mathbf{w}}{\mathbf{t}}$	=	(<u>t x 1.5*2)-(t</u> 1.75	<u>x 2)</u>	<u>55.:</u> = 1.7		=	31.57	
	<u>1435</u> √f	-	<u>1435</u> 39.69	=		36.16 full flange	> effective i	31.57 n compressi	OK on.
	Referring to Cl. L ² S _{xc} dl _{yc}	. No. 6.3 (b) d	of IS: 801-19	75					
	L= unbraced len	igth of the me	ember =	1.69	3 m				
	lyc = moment o		e compressic allel to web =			about the g 32.30 cm²		s of the entire	Э
	Sxc=	Compressio extreme fibr		odulus of the e =		tion about 39.42 cm3		s, Ixx/ distan	ce to
	d =	Depth of see	ction	=		20.00 cm			
	$\frac{L^2 \times Zx}{depth \times lyc}$	=	1747.91				-(1)		
	<u>0.18 (Pi) ² Е С_ь Fy</u>	-	1040.54				2		
	0.90 (Pi) ² E C _b	=	5202.69				-3		
	Fy (i) is	>	(ii) (iii)						
nence	Fb =	< <u>2Fy</u> 3	(iii) -	<u>Fy²</u> 2.7 (pi) ² E C	x c		<u>L² S_{xc}</u> d I _{yc}		
	Fb =	<u>2 x 3500</u> 3	- 2.7×	<u>3500^2</u> x (pi)2 x 20500	x 00 x1		1747.91		
	Fb =	2333.33	-	0.2242	x		1747.91		
	Fb =	1941.38	kg/cm ²	OR		Fb =	194.14	N/mm ²	
	Refering to cl.	No. 6.1 of IS	801-1975,	Hance Fb = 1	94.14 N/	mm2			
	Fb (actual) (Ma	x Load Case) =		(Span Mome N/mm ²	nt)*10)/Z: >		194.14	N/mm²	ок
	Fb (actual) (Ma			(Support Mor N/mm ²			10111	N/mm ²	01
Diverse in	Inclined Dian	=	126.59	N/IIIII	<		194.14	19/11111	ОК
stress in	No of Sag Rod =						3	Nos	
	Total Load per n Maximum Span		r Sag Rod, M	(DL+ LL+ COL A _{supp} =	L) x Ky)	-	12.69 2.81	Kg/m Kg-m	
						-	280.56	2	
		ding Stress	$\sigma_v =$	Mspan / Zy _{bot} -	-			Kg/cm [*] < Kg/cm ²	ок
	Developed Ben Allowable Bend		σa =	0.6 x fy =				00175000000	
			σa = σ dev, hor	0.6 x fy =			0.339	<1.0	ок
	Allowable Bend			0.6 x fy =			0.339	<1.0	ок
Check fo	Allowable Bend 		σ _{dev, hor}	0.6 x fy =			0.339	<1.0	ок
Check fo	Allowable Bend $\sigma_{dev, ver}$ $\sigma_{per,ver}$ or deflection.		$\sigma_{ m dev, hor}$ $\sigma_{ m per, hor}$	0.6 x fy =		2.18 kg/c	0.0253500	<1.0	ок
COMBINA	Allowable Bend $\sigma_{dev, ver}$ $\sigma_{per,ver}$ or deflection.	ding Stress	$\sigma_{ m dev, hor}$ $\sigma_{ m per, hor}$	0.6 x fy =		2.18 kg/c 1.497 cm	0.0253500	<1.0	ок
COMBINA Max. Defle	Allowable Bend $\sigma_{dev, ver}$ $\sigma_{per,ver}$ or deflection. ATION - II [DEAL	ding Stress + D LOAD + WI	σ _{dev, hor} σ _{per,hor}			n an an an an a sa An an	m	<1.0	ок

DESIGN OF END S	DESIGN OF END SIDE WALL GIRT @6.42 M BAY SPACING						
The Girt shall be designed as 3-Span					_		
LOAD CALCULATION : Span of the Building = Girt Length Girt Spacing (maximum) Ps = Dead Load Intensity Wind Load Intensity Total Pr. Co-eff for Wind = Grade of Steel No of Sag Rod =	= Le = DL = WL = Cp = Fy =	178.5 1 350	m	Ref. Tab	le 5, IS:875-(III)-1987	
FOR DEAD LOAD - Total Load per metre, W _{dl} = [DL] Moment at Span, Mspan =	x Ps =				Kg-m	DOWNWARD	
Moment at Support, Msupp =				14.73	Kg-m		
FOR WIND LOAD - FOR END GIRTS: Total Load per metre, Wwl = [(WI Moment at Span, Mspan = Moment at Support, Msupp =	L x Cp)	x Ps] =		191.44 631.2 789.1	Kg-m	HORIZONTAL	
Design of Girt for End Span :							
Try with following Z-Section :-	1					1	
	b ₁	b ₂	L ₁	L ₂	D		
1.75 197	64	67	25	25	200		
Ч ы1		X =	100.80 3972920.1	$mm = mm^4 =$	10.08 397.29		
		I _{xx =}					
×	— ×	Z1 _{xx} top	39415.80		39.42		
a		Z1 _{xx} bot	40047.63		40.05		
		Y =		mm =	6.38		
b2 Y		l _{yy =}	645963.14		64.60		
t = Thickness		Z _{yy right}	$10120.07 \text{ mm}^3 = 10.12 \text{ cm}$			cm ³	
Input the value of section properties in mm		Z _{yy left}	$9874.07 \text{ mm}^3 = 9.87 \text{ cm}^3$				
		Area =	6.55 cm ²				
		Wt/m =	5.14	Kg.			
As per IS: 801-1975 cl. No. 5.2.4 Overall Depth	200	<	150*t 262.5	ОК			
Minimum overall depth required	d as pe	r cl. No. 5.2.1.1	of IS : 801-1	975			
=2.8 t $(b1/t)^2 - 281200/$	Fy		but not less t	then 4.8t	here Fy = 34	l5 N/sqmm	
16.26 not 16.26 >	less the 8.40		ОК				
Calculation for laterally unbraced Calculation of effective design $(b1/t)_{lim} = 143$		f compressior	i element as	per cl. No. 5.	2.1.1 of IS 80)1-1975	
Considering f (actual stress in cor	mpressi	on element)	=		N/mm ² kgf/cm2		

	w/t	=	<u>1.5*2)-(t</u> 1.75	<u>x 2)</u>		<u>5.25</u> .75	=	31.	57	
	<u>1435</u> √f	=	<u>1435</u> 39.69	=	Hand	36.16 ce full fla	> nge effective	31.57 in compre	OK ssion.	
	$\frac{L^2 S_{xc}}{dl_{yc}}$	I. No. 6.3 (b) of I			14 m					
	lyc = moment	of inertia of the c section paralle			a sectio	n about 32.30		is of the er	ntire	
	Sxc=	Compression S extreme fibre =		odulus of the =	e entire s	ection a 39.42		kis, Ixx/ dis	tance to	
	d =	Depth of section	n	=		20.00	cm			
	L ² x Zx depth x lyc	=	2794.41							
	<u>0.18 (Pi) ² E C</u> i Fy	= a	1040.54				2			
	<u>0.90 (Pi) ² E C</u> i Fy	= a	5202.69				3			
	(i) is	> (ii) < (ii								
hence	Fb =	<u>2Fy</u> 3	-	<u>Fy²</u> 2.7 (pi) ² E	Cb	x	L ² S _{xc} d I _{yc}			
	Fb =	<u>2 x 3500</u> 3	- 2.7×	<u>3500^2</u> (pi)2 x 2050	0000 x1	x	2794.41	[
	Fb =	2333.33	-	0.2242		x	2794.41	ſ		
	Fb =	1706.71 kg	/cm²	OR	Fb =		170.67	⁷ N/mm ²		
	Refering to cl.	No. 6.1 of IS 80	1-1975,	Hance Fb =	170.68	N/mm2				
	Fb (permissible Fb (actual) (Ma	e) = ax Load Case]= =	160.15	170. (Span Mom N/mm ²	67 N/mr ent)*10),		170.67	7 N/mm ²	OK	
	Fb (actual) (Ma	ax Load Case] = =	100.09	(Support Mo N/mm ²	oment*1	0)/Zxx <	170.67	• N/mm²	OK	
Check fo	or deflection.									
Wind load	(WL)				=	1.91	kg/cm			
Max. Defle	ection = 0.0065 w _x	Le ⁴ /EI			=	2.66	cm			
Permissible	e deflection on pur	lin as per Tende	r = Span/*	150 for DL+I	L =	42.80	mm			
Actual Def	lection for above lo	bad			=	26.60	mm <	42.80	ОК	

The Girt s	DESIGN OF			IDE WALL G	iiri @ 6.00) M BAY SP	ACING	
		eu as 5-5						
LOAD CALC	CULATION :	ling		22.040	1_			
	Span of the Build Girt Length Girt Spacing (ma Dead Load Inten Wind Load Inten Total Pr. Co-eff f Grade of Steel No of Sag Rod =	aximum) F sity sity or Wind =	= Le = Ps = DL = WL = Cp = Fy =	179 0.9 350	m m Kg/m2 Kg/m2	Ref. Tabl	e 5, IS:875-(III)-1987
FOR DEAD	LOAD - Total Load per m	netre W	[DI] v Pe -			15.00	Ka/m	DOWNWARD
	Moment at Span Moment at Supp	, Mspan =					Kg-m	boundarie
FOR WIND	LOAD -							
	FOR END GIRTS: Total Load per m Moment at Span Moment at Supp	netre, Wwl = , Mspan =		x Ps] =		180.73 207.1 828.3	Kg-m	HORIZONTAI
Design of	Girt for Interm	nediate Sp	oan :					
	Try with followi	-						1
	t	d	b ₁	b ₂	L ₁	L ₂	D	-
	1.75 Y	197	64	69.5 X =	25 101.45	25 mm =	200 10.14	
	т ы1			I _{xx =}	4014940.0		401.49	
				Z1 _{xx} top	39576.32		39.58	
×			×	Z1 _{xx} bot	40739.32		40.74	
L2				Y =		mm =	6.44	
L				l _{yy =}	678562.18	$mm^4 =$	67.86	
t =	- Thickness			Z _{yy right}	10532.27		10.53	
Input the v	alue of section pro	operties in m	m	Z _{yy left}	10079.20		10.08	
input the v	and of bootion pre			Area =	6.59		10.00	
				Wt/m =	5.17			
	As per IS: 801-1	975 cl. No. : Overall Dep		<	150*t			
			200	<	262.5	ОК		
	Minimum overa	II depth req	uired as per	^r cl. No. 5.2.1.1	of IS : 801-1	975		
	=2.8 t 6	(b1/t) ² - 281	200/Fy		but not less	then 4.8t	here Fy = 34	15 N/sqmm
	16.26 16.26	>	not less the 8.40		ОК			
	Calculation for la Calculation of e (b1/t) _{lim}			f compression	element as	per cl. No. 5.2	2.1.1 of IS 80	1-1975
	Considering f (ad	ctual stress in	n compressi	on element)	=	157.50 1575.00	N/mm² kgf/cm2	

	w t	<u>b1-(t</u>	<u>x 1.5*2)-(t</u> 1.75	<u>x 2)</u>		<u>5.25</u> .75	=	31.	57	
	<u>1435</u> √f	=	<u>1435</u> 39.69	=	Hand	36.16 ce full flange	> effective	31.57 in compres	OK sion.	
	Referring to Cl $\frac{L^2 S_{xc}}{dl_{yc}}$ L= unbraced ler				26 m					
	lyc = moment c	of inertia of the section paral			a sectio	n about the 33.93 cm4	-	s of the er	itire	
	Sxc=	Compression extreme fibre		odulus of the =	entire s	ection abou 39.58 cm3		is, Ixx/ dist	ance to	
	d =	Depth of sect	ion	=		20.00 cm				
	$\frac{L^2 \times Zx}{depth \times lyc}$	=	2970.16	(<u> </u>			-(1)			
	<u>0.18 (Pi) ² E C_b</u> Fy	=	1040.54				-2			
	<u>0.90 (Pi) ² E C_b Fy (i) is</u>	> (5202.69 ii)	·			-3			
hence	Fb =	< (<u>2Fy</u> 3	iii) -	<u>Fy²</u> 2.7 (pi) ² Ε	Cb	x	<u>L² S_{xc}</u> d I _{yc}			
	Fb =	<u>2 x 3500</u> 3	- 2.7:	<u>3500^2</u> k (pi)2 x 2050	0000 x1	x	2970.16			
	Fb =	2333.33	-1	0.2242		x	2970.16			
	Fb =	1667.29	kg/cm ²	OR	Fb =		166.73	N/mm ²		
	Refering to cl.	No. 6.1 of IS 8	01-1975,	Hance Fb =	166.73	N/mm2				
	Fb (permissible) Fb (actual) (Ma			166. (Span Mom N/mm ²	73 N/mr ent)*10)		166.73	N/mm ²	ОК	
	Fb (actual) (Ma	ax Load Case] = =	104.65	(Support Mo N/mm ²	oment*1	0)/Zxx <	166.73	N/mm ²	ОК	
Check fo	r deflection.									
Wind load (WL)				=	1.81 kg/c	cm			
Max. Deflec	ction = 0.0026 wx	Le4/EI =			=	1.23 cm				
Permissible	deflection on purl	in as per Tend	er = Span/	150 for DL+II	- =	45.13 mm				
Actual Defle	ection for above lo	ad			=	12.29 mm	<	45.13	OK	

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

XV. CONCLUSION

In this paper we have effectively noticed that PEB structures can be easily designed effortlessly using software and simple calculations for connection design. By using Cold-form sections for sheeting support, dead load on the structure can be reduced. By using simpler profiles like "I", "C", "Z", etc. sections PEB structures can be constructed fastly which end up in energy saving and cost effective against conventional steel structures. There are many choices that can be made in structural configuration of PEB.

REFERENCES

[1] N. Subramanian,2010 "Steel Structures Design and Practice" oxford University press.

[2] The relevant Standard/Codes used for the design for various elements and components of the building are given below

Table 6 –	IS Code	used in	Building	Design
1 4010 0	ID COUC	usea m	Dunung	Design

S. No	Code	Description
1.	IS:875(Part-1)-1987	Code of Practice for Design Loads (other than earthquake) for buildings and structures – Unit weights of buildings materials and stored material.
2.	IS:875(Part-2)-1987	Code of Practice for Design Loads (other than earthquake) for buildings and structures – Imposed loads.
3.	IS:875(Part-3)-2015	Code of Practice for Design Loads (other than earthquake) for buildings and structures – Wind loads.
4.	IS:1893(Part-1)-2016	Criteria for Earthquake Resistant Design of Structures-General Provisions and Buildings
5.	IS:1893(Part-4)-2015	Criteria for Earthquake Resistant Design of Structures-Industrial Structures including Stack-Like Structure
6.	IS: 800-2007	Code of Practice for General Construction in Steel
7.	IS:2062-2011	Hot rolled low, medium and high tensile Structural Steel.
8.	IS: 1161-1998	Specification for Steel tubes for Structural Purposes.
9.	IS:4923-1997	Hollow Steel Sections for Structural use
10.	IS:808-1989	Dimensions for hot rolled steel beams, columns, channels and angle sections
11.	IS: 801-1975	Code of practice for Cold-formed Light gauge steel structural members in General Building Construction
12.	SP	Special Publications of Bureau of Indian Standards

Annexure – A

Figure 27 – India Wind speed map As per IS 875 Part-3 (2015)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue I Jan 2025- Available at www.ijraset.com

Figure 28 - Inida Seismic zone Map As per 1893 Part-1 (2016)

Annexure – B

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)