

12 IX September 2024

https://doi.org/10.22214/ijraset.2024.64189

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue IX Sep 2024- Available at www.ijraset.com

484 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Analysis of ERP Based Framework Expert
Opinion in Early Software Defect Prediction

Prasanna Kumar1, Dr. Kamdeo Prasad Yadav2

1PhD Scholar (Department of Computer Science, Patliputra University)
2Associate Professor, College of Commerce Arts and Science (Patliputra University)

Abstract: The software industry necessitates early prediction of software defects for effective quality assessment and resource
allocation. During the initial stages of the software development life cycle (SDLC), failure data is often unavailable.
Consequently, the insights of domain experts can be crucial in estimating potential software defects during these early phases.
This paper introduces a model designed to forecast software defects prior to the testing phase, emphasizing the structure of the
software development process. The model is developed using metrics derived from early artifacts of the SDLC. The development
and experimental aspects of the model are presented through the application of a Bayesian belief network (BBN). The
qualitative aspects of software metrics, along with expert opinions, form the core of this methodology. To demonstrate the
practicality and effectiveness of the proposed approach, ten datasets from real software projects have been utilized. The analysis
and validation of predicted software defects, based on varying levels of uncertainty from domain experts, are compared against
actual defect occurrences.
Keywords: Software Reliability, Prediction, Quality, Fault Tolerance

I. INTRODUCTION
In the software industry, the predominant method for estimation is often referred to as "expert opinion" [1]. Numerous authors
discussing software estimation highlight 'expert judgment' as a prevalent technique, which is frequently characterized as a form of
'guessing' [2]. Managers and decision-makers typically depend on expert insights when faced with uncertainty. This reliance may
encompass facts or evidence recalled by the expert, deductions made regarding new or undocumented scenarios, and the synthesis
of various information sources to tackle novel challenges [3]. Experts can facilitate decision-making by structuring problem
frameworks, developing conceptual models, or choosing analytical methodologies. They may also provide estimates concerning
variables or event outcomes, along with their associated uncertainties. Particularly in situations where time or resources are
constrained, experts serve as a vital alternative source of information for decision-makers [4]. Expert opinion is grounded in
specialized knowledge and extensive experience with relevant tasks. Cooke [5] observed that expert opinion has been utilized in
numerous project developments over the years, manifesting in various forms such as value-based opinions, scenario-based opinions,
and estimate-based opinions. Jorgensen [6] examined expert estimation in software development efforts and concluded that expert
estimation remains the primary strategy for assessing the effort required in software development projects. In recent years, Bayesian
Belief Networks (BBN) have gained popularity as a means of representing uncertain expert knowledge. Ouchi [7] asserted that the
Bayesian method is arguably the most effective technique for integrating expert opinions. The literature [8-16] has proposed
numerous prediction and estimation techniques within the software engineering domain utilizing BBN. The estimation of software
defects during the development process has recently garnered significant interest from researchers [8-12].
The early identification of software defects during the initial stages of the software development life cycle (SDLC) is crucial for the
software industry, as it promotes cost efficiency and effective resource management. Software metrics are integral to the process of
defect estimation in these early phases of the SDLC. Research conducted by Zhang and Pham identified thirty-two factors that
influence software reliability throughout all stages of development. Similarly, a study by Li et al. ranked various software reliability
metrics based on their predictive capabilities, utilizing expert opinion to inform their assessments. Catal et al. conducted a
systematic review of different software defect prediction models, emphasizing the role of software metrics. During the early phases
of the SDLC, failure information is often derived from expert knowledge, which can be quantified through software metrics. It is
important to note that many software metrics are inherently uncertain. The Bayesian belief network (BBN) is particularly effective
in modeling such uncertainty, making it a valuable tool for predicting software defects in the early stages of the SDLC. The
literature indicates that while expert estimations are valuable, they may require training for accurate communication. The Bayesian
method stands out as a robust approach for integrating expert opinions.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue IX Sep 2024- Available at www.ijraset.com

485 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Consequently, this paper employs a BBN approach to train expert opinions, yielding reliable estimations even when the expert
knowledge is limited.
The subsequent sections of this paper are organized as follows. Section 2 provides an overview of the Bayesian belief network. The
methodology proposed is detailed in Section 3. Section 4 presents case studies involving ten actual software projects. An analysis
and validation of the proposed method are discussed in Section 5. Finally, Section 6 offers the conclusions drawn from this research.

II. BAYESIAN BELIEF NETWORK
A Bayesian Belief Network (BBN) serves as a visual tool to illustrate the logical connections among various variables while also
accounting for the uncertainty inherent in their interdependencies through the use of conditional probabilities. This framework is
grounded in Bayes' theorem, which was formulated by the Reverend Thomas Bayes. An example illustrating Bayes' theorem is
depicted in Figure 1, showcasing the logical relationships among five distinct variables.
In this context, the stock market is represented as having two descendants, G and S. Each of these descendants further leads to two
additional descendants, U and D. Notably, the stock market itself does not possess any parent nodes, categorizing it as a root node.
Conversely, U and D are identified as leaf nodes since they do not have any further descendants. The network diagram presented in
Figure 1 is characterized as a directed acyclic graph, where the variables are denoted by nodes and the dependencies are illustrated
through arcs. The fundamental mathematical expression of Bayes' theorem is articulated in Equation 1, which represents the basic
formulation of Bayes' rule.

Figure 1. An example of BBN.

.Where P(G/U) is the posterior probability of hypothesis; P(U/G) is the likelihood of observed data: P(U) is the prior probability of
hypothesis. Equation 2 is used for calculation the probability value when evidence is applied. For example if market is up, then what
will be the the probability values of econ grow can be obtained using Equation (2).

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue IX Sep 2024- Available at www.ijraset.com

486 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

III. PROPOSED METHODOLOGY
The following are the steps that our suggested methodology uses:
Step 1: Choose the most important software metrics from the SDLC's first stages.
Step 2: Build the BBN model with a few chosen software metrics. Step 3: Create an NPT (Node Probability Table) for each node.
Step 4: Integrate the findings with the BBN model's compiled mode.
Step 5: Use the BBN model to determine the software defect's probabilistic value.
Step 6: Ask a domain expert to provide you with the optimistic and pessimistic software defect values.
Step 7: Calculate the anticipated cost of the software flaw.
While steps 1, 2, and 3 are taught in this part, case studies that are displayed in part will be used to demonstrate steps 4, 5, 6, and 7.

A. Selection of software Metrics
It is impractical to forecast software system reliability taking into account every metric that becomes available during the SDLC
phases. But it's crucial to take into account the indicators that matter most in terms of reliability. Li et al. [19, 20] identified thirty
software metrics that affect software reliability in relation to this problem. Through the process of eliciting expert opinions, these
software measures were graded according to their predictive power. Based on research in [19, 20], our suggested BBN model
includes seven of the most reliability-relevant software metrics that are taken from the early stages of the SDLC (i.e., requirements
analysis, design, and coding phases). Table 1 displays the chosen best relevant measures for reliability.

B. Construct the BBN based on the selected metrics
The directed acyclic graph construction is the task of building the BBN. A large number of important SDLC phase-related
components and their causal interactions need to be modeled in BBN.

Table 1. Selected software metrics
Name of Early Phases Software Metrics

Requirements Analysis
Phase

1. Requirement Stability (RA1)
2. Review, Inspection and Walkthrough (RA2)

3. Requirement Fault Density (RA3)
4. Quality of software requirement

specification document (RA4)

Design Phase

1. Design Review Effectiveness (D1)
2. Software Complexity (D2)

3. Quality of software design (D3)

Coding Phase

1. Programmer Capability (C1)
2. Process Maturity (C2)

3. Quality of software coding (C3)

A methodical process for creating Bayesian causal maps was detailed by Nadkarni et al. [24]. The BBN model, depicted in Figure 2,
is created using this process. To construct models, one tool that is employed is Netica [25]. The quality of SRS (RA4), quality of
design (D3), and quality of code (C3) are determined using three metrics from the requirement analysis phase, two measurements
from the design phase, and two metrics from the coding phase as input metrics. As a result, the model's output metrics are these
three metrics: RA4, D3, and C3.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue IX Sep 2024- Available at www.ijraset.com

487 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

C. Construct the node probability table
likelihood functions in BBN define the causal links between variables by taking as input a set of values from the parent nodes and
computing the likelihood of the provided node. Tables, specifically node probability tables (NPTs), are frequently used to express
these probability functions. One of the basic problems with the BBN is designing the NPT data. The literature has presented a
number of approaches [26–30] for constructing NPT, although each approach is problem-specific. A method to create the NPT by
domain experts and utilizing the qualitative value of software metrics was proposed by Kumar et al. [31]. This technique is based on
fuzzy logic and the methodology of Tang et al. [30].

Figure 3. NPT of Quality of SRS.

IV. CASE STUDY
The suggested methodology is explained through ten case examples with illustrations. Table 2 replicates the data sets of 10 actual
software projects, with H, M, and L denoting high, medium, and low, respectively, from [9].

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue IX Sep 2024- Available at www.ijraset.com

488 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Table 2. Qualitative value of software metrics

Case Study

Req. Analysis Phase Design Phase Coding Phase
RA1 RA2 RA3 D1 D2 C1 C2

1 L M H H M H H
2 H H H H H H H
3 M H L H L H H
4 H H L M M H H
5 H H M H M H H
6 L M M M H M H
7 L H H H H H H
8 M H H H L H H
9 M L M H L H H

10 L M H H M H H

A. Apply the evidence to the compiled mode of BBN model
Applying the evidence to the compiled mode of the BBN model is required in order to determine the model's output. After creating
the NPT for each node in the BBN model, the compile mode of the model may be acquired. The compiled mode of the BBN model
is applied to the qualitative value of the software metrics (evidence) for case study 1 from Table 2. Figure 4 displays the final BBN
model that was created after the evidence was applied.

 Figure 4. Experimented result of case study 1.

B. Probabilistic value of software defect
To find the probabilistic value of a software error at the Low, Medium, and High levels, the evidence is applied to the compiled
mode of the BBN Model. Applying the facts shown in Figure 4, the BBN model produces the software defect probability number
for Case Study 1. In a similar manner, to ascertain the likelihood value of the software flaw, the data from the remaining nine cases
are individually applied to the compliant mode of the BBN model. The probability values of software flaws in terms of High,
Medium, and Low are shown in Table 3 and were produced by the BBN model.

Table 3. Probabilistic value of software defect

Case Study High Medium Low
1 0.265 0.339 0.396
2 0.468 0.311 0.221
3 0.111 0.191 0.698
4 0.165 0.247 0.588
5 0.315 0.341 0.344
6 0.293 0.329 0.378
7 0.158 0.249 0.593
8 0.489 0.309 0.202
9 0.265 0.339 0.396

10 0.425 0.329 0.246

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue IX Sep 2024- Available at www.ijraset.com

489 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

C. Obtain or Produce The Software Defect's Optimistic And Pessimistic Values From A Domain Expert.
A domain expert can provide you with the optimistic and pessimistic values of software defects based on his experience, education,
knowledge of programming and technology, and the number of completed projects. The pessimistic (high) and optimistic (low)
values of software defect are derived using the real software defect due to the unavailability of domain expert assessment. Based on
real flaws, three distinct expert judgment uncertainty levels (20%, 40%, and 60%) are determined.
A high level deviates by 20%, 40%, and 60% from the actual defect, whereas a low level deviates by the same amounts from the
actual defect. Table 4 displays the expert assessment of software flaw that was designed.

Table 4. Designed expert assessment of software defect

Case
Study

Actual Defect [9]

Pessimistic (High) Optimistic (Low)

20%

40%

60%

20%

40%

60%

1 148 177.6 207.2 236.8 118.4 88.8 59.2

2 209 250.8 292.6 334.4 167.2 125.4 83.6

3 204 244.8 285.6 326.4 163.2 122.4 81.6

4 53 63.6 74.2 84.8 42.4 31.8 21.2

5 29 34.8 40.6 46.4 23.2 17.4 11.6

6 90 108 126 144 72 54 36

7 1768 2121.6 2475.2 2828.8 1414.4 1060.8 707.2

8 109 130.8 152.6 174.4 87.2 65.4 43.6

9 196 235.2 274.4 313.6 156.8 117.6 78.4

10 1597 1916.4 2235.8 2555.2 1277.6 958.2 638.8

D. Estimate the predicted value of software defect
The probability value of a software defect derived from the BBN model, together with the pessimistic (high level) and optimistic
(low level) values of software defects evaluated by a domain expert, are used to compute the anticipated value of the defect.
Medium level is defined as the average of the high and low levels. The following formula is used to get the total number of
anticipated software defects:

1) Case Study No: 1
Probability of software defect: High (0.265), Medium (0.339), Low (0.396).
 Expert assessment for software defect with 20% uncertainty level: Pessimistic (177.6), Optimistic (118.4).
Total number of predicted software defect

 0.265  177.6  0.339  148  0.396  118.4  144.

Expert assessment for software defect with 40% uncertainty level: Pessimistic (207.2), Optimistic (88.8).
Total number of predicted software defect

 0.265  207.2  0.339  148  0.396  88.8  140.

Expert assessment for software defect with 60% uncertainty level: Pessimistic (236.8), Optimistic (59.2).
Total number of predicted software defect

 0.265  236.8  0.339  148  0.396  59.2  136.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue IX Sep 2024- Available at www.ijraset.com

490 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Similarly, predicted value of software defect for rest 9 case studies is calculated. The complete result is shown in Table 5.

Table 5. Predicted value of software defect

Case
Study

Actual

Defect [9]

Predicted Software Defect with
Different

Uncertainty Level
20% 40% 60%

1 148 144 140 136
2 228 239 251 262
3 204 180 156 132
4 53 49 44 40
5 90 89 89 88
6 1768 1738 1708 1678
7 109 100 90 81
8 928 981 1035 1088
9 1597 1555 1513 1471
10 412 427 441 456

V. MODEL VALIDATION AND RESULT ANALYSIS

Commonly used and recommended evaluation approaches for model validation have been implemented in order to validate the
proposed model [9, 32]. Table 6 displays the comparing outcomes for various levels of uncertainty using Equations 3 through 7.
1) Root Mean Square Error (RMSE): RMSE is commonly used in measure of the differences between predicted values and actual

values.

2) Normalized Root Mean Square Error (NRMSE): NRMSE is the ratio between the RMSE and the range of the actual values.

3) Mean Magnitude of Relative Error (MMRE): MMRE is the mean of absolute percentage errors and a measure of the spread of

the variable z, where z = estimate/actual

4) Balanced mean magnitude of relative error (BMMRE): MMRE is unbalanced and penalizes overestimates more than

underestimates. For this reason, a balanced mean magnitude of relative error measure is also considered which is as follows:

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue IX Sep 2024- Available at www.ijraset.com

491 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

5) Co-efficient of determination (R)2: (R)2 gives a measure of how well actual outcomes replicated by the predicted outcome of
proposed model.

VI. CONCLUSION

This research uses a Bayesian belief network approach to evaluate the analysis of domain expert opinion in early software defect
prediction. The creation of the BBN model makes use of the top seven reliability-relevant software metrics from the early stages of
the software development life cycle model. To demonstrate the proposed model's applicability and usability, ten actual software
project data sets have been applied to it. The real software defect and the anticipated defect using various domain expert uncertainty
levels are compared. To verify the suggested methodology, RMSE, NRMSE, MMRE, BMMRE, and R2 has been employed. The
precision of the forecast using varying degrees of uncertainty (20%, 40%, and 60%) is acceptable. Consequently
the suggested method can be used to predict software defects in the early stages of software development, even in cases when the
domain expert's degree of uncertainty exceeds 50%.

