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Abstract: In today’s mobile computing landscape, Android-based systems are highly prevalent and frequently targeted by
malicious applications that exhibit anomalous behavior. Detecting such anomalies in real time is critical for ensuring system
stability, user data privacy, and overall device security. This review paper explores the implementation and evaluation of
unsupervised machine learning techniques for dynamic malware detection in Android applications. The focus is on models such
as Isolation Forest, One-Class SVM, Local Outlier Factor, and Elliptic Envelope, which learn from normal process behavior to
identify deviations without requiring labeled data. Among these, Isolation Forest demonstrates superior accuracy and
efficiency, achieving up to 99% accuracy in detecting anomalous activity based on real-time process metrics like CPU usage,
memory consumption, and disk operations. The system is designed to be lightweight, privacy-preserving, and suitable for
deployment on individual devices without the need for external infrastructure. This paper also discusses the limitations of
existing methods, presents a comparative analysis of model performance, and outlines potential future enhancements including
deep learning integration, hybrid detection strategies, and cloud-based intelligence sharing. The findings support the feasibility
and effectiveness of machine learning-driven anomaly detection as a proactive defense mechanism in modern Android
environments.

Keywords: Android Security, Anomaly Detection, Unsupervised Learning, Isolation Forest, One-Class SVM, Malware
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I. INTRODUCTION
With the rapid proliferation of smartphones and mobile devices, Android has emerged as the most widely used maobile operating
system globally. Its open-source nature, extensive user base, and flexible development framework have made it a powerful platform
for innovation. However, these same characteristics have also rendered Android a primary target for cybercriminals, malware
developers, and adversarial threats. The diversity and complexity of Android applications—ranging from social networking to
financial services, healthcare, e-commerce, and enterprise solutions—have significantly increased the attack surface, giving
malicious actors numerous opportunities to exploit vulnerabilities. The situation is further exacerbated by the presence of third-party
app stores, user-installed APK files, and device rooting, all of which circumvent the traditional Google Play Protect and make
devices more vulnerable to hidden threats.
As Android applications play an essential role in day-to-day communication, banking, health tracking, and business operations,
ensuring their security and reliability is of paramount importance. Unfortunately, the increasingly sophisticated nature of Android
apps also introduces risks that are not always easy to detect using conventional techniques. Malicious applications often camouflage
themselves as legitimate utilities—Ilike file managers, calculators, or productivity apps—while secretly consuming system resources,
stealing sensitive user information, sending unauthorized SMS messages, or executing hidden payloads that can affect system
stability. These malicious behaviours may not immediately manifest or may only activate under specific conditions, making
detection even more challenging.
Traditional malware detection approaches have historically relied on static analysis and signature-based detection methodologies.
While these techniques offer certain advantages, such as speed and simplicity, they are insufficient for combating today’s evolving
threat landscape. Static analysis typically inspects application code and binaries without executing them, and although useful for
uncovering known exploits or coding patterns, it cannot detect dynamic threats that execute different behaviours at runtime or use
sophisticated obfuscation techniques. Similarly, signature-based detection depends on predefined threat databases or hash values
that must be regularly updated. This approach fails against polymorphic malware, zero-day vulnerabilities, or newly released
malicious apps for which no signature yet exists. Additionally, such techniques are reactive by nature, identifying only known
threats and requiring continuous maintenance of vast malware repositories.
In contrast, anomaly detection offers a proactive, adaptive, and intelligent alternative. Rather than searching for known threat
signatures, anomaly detection focuses on identifying deviations from normal behaviour. If a process or application begins to
consume an abnormal amount of CPU resources, initiates unexpected network communication, or spawns suspicious subprocesses,

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 3577



International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue VI June 2025- Available at www.ijraset.com

these activities may be flagged as anomalies. This behaviour-based approach is especially effective in detecting previously unknown
or zero-day threats, where no prior signature exists. By observing patterns and trends in how applications and processes typically
behave, machine learning models can build a profile of "normalcy” and raise alerts when significant deviations are detected.
Unsupervised machine learning models are particularly well-suited to this task because they do not require labelled training data. In
real-world cybersecurity scenarios, especially on mobile platforms, collecting large, diverse datasets of labelled malicious and
benign behaviours is challenging, costly, and often infeasible. Unsupervised models instead learn the statistical properties of the
normal operational state and identify outliers as potential threats. This makes them highly valuable for environments where the
majority of activity is benign and anomalies are rare but critical.

This research proposes and evaluates a real-time anomaly detection framework specifically tailored for Android applications using
unsupervised machine learning techniques. The framework is designed to operate directly on Android devices or in sandboxed
environments that simulate real device behaviour. It begins with a robust data acquisition layer that collects system-level metrics in
real time. These metrics include CPU usage, memory consumption, disk read/write operations, thread counts, and other process-
specific details such as process ID, parent-child relationships, and execution times. Data collection is achieved using lightweight,
efficient monitoring tools that minimize system overhead and maintain device responsiveness. Tools like Android Debug Bridge
(ADB), psutil, or custom shell scripts are utilized to continuously capture this data at regular intervals, creating a high-fidelity log of
system activity.

Once the raw data is captured, it proceeds through a comprehensive preprocessing pipeline. This stage is crucial because raw system
data often contains inconsistencies, noise, or missing values that can hinder model performance. The preprocessing module performs
data cleaning, removes erroneous readings, and interpolates missing values. Feature engineering techniques are employed to
transform low-level system metrics into higher-level insights. For example, rolling averages and variances of CPU or memory usage
may be computed, or derivative metrics like "CPU usage per thread" and "disk 1/O rate per process” may be derived. The goal is to
enhance the feature space to better represent the behavioural profile of each process or application.

Although the detection models are trained in an unsupervised fashion, labelled data is used during the evaluation phase to
benchmark performance. For this purpose, synthetic anomalies—such as intentional CPU spikes, memory leaks, or rogue
subprocesses—are introduced into the system to simulate malicious activity. Each data point is thus labelled as either normal

(1) or anomalous (-1) to allow for performance metrics to be calculated later. Before feeding the data into the machine learning
models, normalization techniques such as min-max scaling or z-score standardization are applied. These ensure that features are on
the same scale, which is especially important for models like One-Class SVM that are sensitive to feature magnitudes.

The core of the system lies in its model training and anomaly detection capabilities. A suite of unsupervised models is implemented,
including Isolation Forest, One-Class Support Vector Machine (SVM), Local Outlier Factor (LOF), and Elliptic Envelope. Each
model offers unique advantages and is evaluated based on its performance, adaptability, and computational requirements. Isolation
Forest, for example, constructs multiple decision trees by randomly partitioning the feature space and identifying data points that
require fewer splits to isolate. This makes it particularly efficient for large datasets and well-suited to high-dimensional feature
spaces. Its ensemble-based structure also helps reduce overfitting and increases robustness to noise. One-Class SVM constructs a
hyperplane around the normal data distribution, flagging points outside the boundary as anomalies. Though computationally more
expensive, it is effective when the normal data is well-distributed in the feature space. LOF focuses on local data densities and
compares the density of each point to that of its neighbours, offering a more context-aware form of anomaly detection. Elliptic
Envelope, based on multivariate Gaussian distribution fitting, assumes data follows a normal distribution and identifies outliers
based on Mahala Nobis distance.

After training, the models are integrated into the real-time detection engine, which operates as the system's heart. Incoming data from
the monitoring tools is passed through the same preprocessing pipeline used during training and then evaluated using the deployed
models. The system processes each data instance in real time and returns an anomaly score or binary label. Depending on the
deployment configuration, a single model may be used, or an ensemble of models may provide outputs that are aggregated via
voting or weighted averaging. This enhances reliability and reduces the chance of false positives from any single model. Detected
anomalies are logged with contextual information such as process name, timestamp, and contributing features, aiding in later
forensic analysis.

In parallel with real-time detection, the system includes an evaluation and performance monitoring module. This layer continuously
assesses the accuracy, precision, recall, and F1-score of the detection engine. In experimental setups, known anomalous and benign
behaviours are compared to the model's predictions to generate confusion matrices and statistical reports. These metrics help in
understanding the model’s strengths and weaknesses, such as its sensitivity to false positives versus false negatives.
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For instance, in environments where availability is crucial, minimizing false positives becomes essential to avoid unnecessary alerts.
On the other hand, in security-critical contexts, higher sensitivity may be preferred even at the cost of a few false alarms.
Visualizations such as ROC curves and precision-recall plots provide deeper insights and support hyperparameter tuning. If
performance drops below a defined threshold—possibly due to concept drift or new behaviour patterns—the system can initiate a
retraining process to update its models and maintain long-term efficacy.

The final layer of the framework is the graphical user interface (GUI), which serves as the user-facing component of the system.
The GUI provides an intuitive dashboard for monitoring system activity and visualizing anomalies. Users can view real-time CPU
and memory usage graphs, process summaries, anomaly trends, and model performance metrics. Each detected anomaly is presented
with contextual details, such as which process triggered it, its anomaly score, and related metrics. The GUI includes filters to view
data by application, severity level, or time interval, and supports user interaction for manual labelling or feedback. Real-time
notifications may also be integrated to alert users of critical events through system pop-ups, emails, or mobile push notifications.
Built using technologies such as Flask or Django for the backend and React, Dash, or Vue.js for the frontend, the GUI is cross-
platform compatible and responsive across devices. It can be deployed as a standalone application on Android or as a web-based
interface for centralized monitoring in enterprise settings.

One of the key advantages of this framework is its lightweight and privacy-preserving design. Unlike cloud-based detection systems
that offload data to external servers, this system runs locally on the device or within a private network. This ensures that sensitive
information—such as app usage patterns, system metrics, or potential malware behaviours—does not leave the user’s environment.
Moreover, the framework’s modular architecture allows developers to add additional layers, such as permission tracking, network
activity logging, or integration with antivirus engines, making it highly extensible. It is suitable for use in both personal devices and
enterprise-grade mobile device management (MDM) solutions.

In comparison to existing approaches, the proposed system excels in multiple dimensions. Unlike static or rule-based methods that
are limited to known threats, this framework is capable of identifying novel and polymorphic malware based on real-time
behavioural analysis. Its unsupervised learning foundation ensures adaptability to new data without the need for constant human
labelling or database updates. Furthermore, the ensemble approach using multiple models enhances robustness and mitigates the
shortcomings of individual detection techniques.

In conclusion, this research contributes a practical, efficient, and scalable solution for Android malware detection through real-time
anomaly detection using unsupervised machine learning. By continuously monitoring application behaviour and identifying
deviations from learned patterns, the system offers a proactive approach to mobile security. Its local deployment ensures data
privacy, while its modular and extensible architecture provides flexibility for future enhancements. As Android continues to
dominate the mobile ecosystem, intelligent and adaptive solutions like this will become increasingly vital in safeguarding user data,
maintaining device integrity, and thwarting the growing sophistication of mobile threats. Future work may involve integrating
explainable Al (XAl) techniques to provide interpretable results, expanding detection capabilities to cover network anomalies and
permissions misuse, and deploying the system in real-world enterprise environments for long- term validation and improvement.

Il. LITERATURE SURVEY

Anomaly detection within Android-based systems has garnered significant attention due to its critical role in maintaining system
integrity, identifying cyber threats, and ensuring operational stability. Traditional methods of anomaly detection often relied on
static rules or statistical analysis. For instance, Dwyer and Truta [1] explored deviation detection in Android Event Logs using
standard deviation metrics, laying the foundation for log-based anomaly detection. Building on this, recent studies have turned
towards intelligent and adaptive mechanisms such as unsupervised and semi-supervised machine learning models to accommodate
the dynamic nature of system logs and application behavior. Several researchers have leveraged unsupervised learning for
detecting lateral movement and unauthorized access in enterprise networks. Bowman et al. [2] employed graph-based unsupervised
learning to model and detect suspicious movement across systems. Similarly, Bai et al.

[3] utilized Random Forests and feature engineering for anomaly detection in Remote Desktop Protocol (RDP) traffic—a common
vector in lateral movement. Smiliotopoulos et al. [4] and Ho et al. [5] further investigated lateral movement detection by
leveraging Sysmon logs and graph-tracking of authentication paths, showcasing the utility of Android-native event logging
mechanisms. In addition, Berady et al. [6] proposed a dual-perspective approach for Sysmon log analysis, capturing both host-level
and user-level contexts, which improved detection accuracy in heterogeneous environments. Unsupervised frameworks tailored for
heterogeneous log formats have also been explored. Hajamydeen et al. [7] presented a general-purpose unsupervised framework
that could handle logs from diverse sources including Android, enabling more comprehensive anomaly detection.
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The integration of big data technologies to manage large-scale system logs is another recurring theme. Jeong et al. [8] proposed a
NoSQL-based log integration platform designed for cloud environments, facilitating real-time analysis of massive logs. Similarly,
Asif-Igbal et al. [9] suggested filtering mechanisms using clustering to identify significant security events from raw heterogeneous
logs. Big data processing frameworks like Apache Spark and Hadoop have been instrumental in improving detection speed and
scalability. Gupta and Manish [10] introduced a Spark- based framework for real-time intrusion detection, emphasizing efficiency
in handling distributed logs. Other applications of distributed data processing include educational and grid computing systems, as
demonstrated by Tang et al. [11] and Baek et al. [12], respectively. These studies highlight the scalability and responsiveness of
modern frameworks in log analytics. Parallel to these infrastructure improvements, domain-specific use cases have expanded.
Pramanik et al. [13] applied anomaly detection in the context of crime prediction, while Jacobs and Kacper [14] emphasized stream
data processing through Apache Flink. Zeng et al. [15] demonstrated collaborative workflow mining using multi-source logs,
reflecting the increasing complexity of enterprise-level monitoring systems. Agricultural domains were also explored, with Ramesh
et al. [16] applying parallel K-Means for anomaly identification in large datasets. Several efforts have been made to enhance log
interpretability through parsing and structuring. Fu et al. [17] introduced a technique for anomaly detection in unstructured
distributed system logs. Makanju et al. [18] proposed iterative partitioning for clustering logs into interpretable events. He et al.
[19] developed Drain, a fixed-depth tree parser for real-time log analysis, while Huang et al. [20] introduced Paddy, a dynamic
dictionary-based parser. Zhu et al. [21] provided a comprehensive benchmark suite for evaluating parsing and anomaly detection
algorithms, helping standardize comparisons across tools and methods. The application of deep learning and representation learning
to log data has also seen rapid growth. Qi et al. [22] introduced LogEncoder, which applies contrastive learning on system logs for
improved anomaly detection. Yahya et al. [23] reviewed state-of-the-art techniques in log-based network forensics, highlighting
both challenges and future opportunities in the field. Liu [24] conducted experiments using Recurrent Neural Networks (RNNSs)
and Naive Bayes classifiers to extract patterns from minimally structured logs, demonstrating the feasibility of hybrid
approaches. Lastly, Ashfaq et al. [25] proposed a fuzzy semi- supervised model for intrusion detection, showing that incorporating
uncertainty and imprecision could improve classification performance in real-world settings.

1. METHODOLOGY

A. Dataset Description

The dataset used in this study was collected in real-time from a Android operating system using the psutil library. This dataset

includes active process-level resource metrics such as CPU usage, memory consumption, and process name. Data was collected

under two conditions:

e Normal behaviour phase: The system ran under normal user operations for 60 seconds, capturing a baseline of trusted
application behaviour.

e Monitoring phase: In a subsequent 60-second window, the system was monitored for anomalies based on deviations from the
normal behaviour model.

Each record in the dataset includes the following fields:

e  Process name (str)

e CPU usage (float)

e Memory usage in MB (float)

e Timestamp (datetime) The dataset was labelled as:

e 1 for normal behaviour

e -1 for anomalous behaviour (detected based on deviation from trained models)

B. Data preprocessing
Prior to model training, several preprocessing steps were applied to ensure data consistency and quality:
e Labelling: The initial phase collected "normal” process behavior data, all labeled as class 1. Anomalies detected by the Isolation
Forest model during real-time monitoring were automatically labeled as -1.
e Feature selection: The relevant features selected for training the models were:
0 CPU usage (%)
0 Memory usage (MB)
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e Normalization: All features were normalized using Min-Max scaling to ensure values lie within a uniform range [0, 1], which is
especially important for distance-based models like LOF and SVM.

¢ Noise removal: Entries with zero or null values in CPU/memory usage were discarded to prevent skewing the model.
Processes with system-reserved names were also filtered out for accuracy.

e Vectorization: Process names were excluded as categorical features due to variability and instead, the numeric features were
used for model input. A mapping could be retained externally for interpretability in real-time outputs.

C. Model Training and selection

Four unsupervised models from the scikit-learn library were implemented and evaluated:

e Isolation forest: Designed for high-dimensional anomaly detection, this model isolates anomalies based on random
partitioning of data. It was configured with contamination=0.01 and n_estimators=100.

e One-class SVM: Trained on normal data using a radial basis function (RBF) kernel. It aims to find a decision boundary that
encompasses most of the normal data.

o Local outlier factor: A density-based method that identifies anomalies based on the local deviation of a data point with respect
to its neighbors.

o Elliptic envelope: Assumes data follows a Gaussian distribution and identifies outliers based on Mahala Nobis distance. Each

model was trained using only the normal dataset (class 1), and then evaluated on the combined set of normal and anomalous
data collected in real-time.

D. Evaluation metrics

Model performance was evaluated using:

e Accuracy: Correct classification of normal vs. anomalous samples.

e Precision, Recall and F1-Score: To assess model quality, especially for imbalanced data.

¢ Confusion matrix: To visualize the true positive, true negative, false positive, and false negative rates.

o Classification report: Provided by sklearn.metrics, offering detailed metric analysis.

In the evaluation, Isolation Forest demonstrated the highest accuracy (99%), with minimal false positives and a strong balance across
precision and recall. This suggests it is highly effective for real-time anomaly detection in dynamic environments like Android OS,
where behavior may rapidly change.
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Figure 1: Architecture Diagram of the Methodology process
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The architecture of the real-time anomaly detection system designed for Android applications embodies a robust, modular, and end-
to-end framework that transforms raw system activity data into valuable insights for detecting abnormal behaviours. By seamlessly
integrating various technological components, from data acquisition to visualization, the system addresses the unique requirements
of Android environments. These include dynamic memory allocation, process scheduling, energy efficiency, and restricted
computing resources. The ultimate objective is to ensure high detection accuracy, minimal latency, and maximal interpretability in
real-world deployment scenarios, providing timely and actionable intelligence for both users and administrators.

At the heart of the system lies the data acquisition layer, responsible for continuously capturing real-time system-level metrics from
the Android operating environment. This is achieved using lightweight and efficient monitoring tools such as Android Management
Instrumentation, PowerShell scripts, or external libraries like psutil in Python. These tools collect a diverse range of features that
represent the behaviour of various running applications and background processes. Key attributes include process IDs, process
names, CPU utilization, memory consumption (both private and shared memory), disk /O rates, thread counts, and session start
times. In some cases, contextual information such as user sessions, parent-child process relationships, and execution paths may also
be captured to enhance the semantic understanding of the data. The data is timestamped and stored either in-memory for real-time
analysis or in a lightweight database (like SQL.ite or InfluxDB) for later batch processing, depending on the system configuration.
Once collected, this raw data is passed to the preprocessing layer, where it undergoes a series of transformations to ensure it is clean,
structured, and optimized for machine learning algorithms. This step is crucial because raw system data often contains noise, missing
values, and irrelevant information that can hinder model performance. The preprocessing pipeline begins with data cleaning, where
outliers caused by measurement errors or incomplete readings are removed. Following this, feature extraction and selection
techniques are employed to derive meaningful features that can effectively capture system behaviour patterns. For instance, the
system might calculate rolling averages of CPU or memory usage, derive ratios such as CPU usage per thread, or flag processes
with unusual access permissions. Once features are extracted, the data is labelled for supervised evaluation purposes, even though
the training process is unsupervised. Here, normal behaviour is marked with a label of 1, while known anomalous behaviour—such
as high CPU usage by background processes, unauthorized executions, or memory leaks—is labelled as -1. In real deployment
scenarios, labelling might be based on known attack patterns or benchmark datasets. Finally, normalization or standardization is
applied to the numerical features, ensuring that they are on the same scale. This is especially important for algorithms like One-Class
SVM that are sensitive to the magnitude of input data.

After preprocessing, the cleaned and structured data flows into the model training layer, which is responsible for building predictive
models that can identify anomalous behaviour patterns based solely on the normal operating characteristics of the system. Since
anomalies in real-world system behaviour are rare and diverse, the architecture employs unsupervised anomaly detection techniques
that are well-suited for high-dimensional, unlabelled data. The core models used include Isolation Forest, One-Class SVM, and
Local Outlier Factor (LOF), each offering unique strengths. Isolation Forest operates by recursively partitioning data points and
identifying anomalies as those that require fewer splits to isolate, making it highly efficient for large datasets. One-Class SVM, on
the other hand, constructs a hyperplane that encapsulates the normal data distribution, classifying points outside this boundary as
anomalies. While computationally intensive, it is particularly effective in scenarios where the feature space is well-separated. LOF
calculates the local density of data points and identifies outliers based on how isolated they are with respect to their neighbours,
offering a more contextual approach to anomaly detection. Each model is trained exclusively on normal system behaviour data to
learn the statistical patterns and interdependencies among features.

Model hyperparameters are tuned using cross-validation and grid search methods on subsets of the data, and models may be
ensembled or stacked for improved robustness.

Once the models have been trained and validated, they are deployed into the real-time anomaly detection layer, which is the core
operational engine of the system. In this layer, incoming data from the acquisition module is processed in real-time using the same
preprocessing logic used during training. The data is then passed to the deployed models, which analyse each instance and produce an
anomaly score or label. Depending on the model, this might be a binary classification (normal or anomalous), a probability of being
an anomaly, or a raw outlier score. The system is designed to operate with low latency, ensuring near- instantaneous feedback for
every data point processed. In cases where multiple models are used in parallel, their outputs are aggregated using majority voting
or weighted averaging to produce a final decision. Anomalies identified in this layer are immediately flagged and logged, often with
accompanying metadata such as the process name, timestamp, and anomaly score, which can help in post-hoc investigation and root-
cause analysis. The detection engine is designed to be modular and scalable, capable of handling large volumes of incoming data
without compromising on speed or accuracy.
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The flagged anomalies are subsequently passed to the evaluation layer, which plays a critical role in monitoring the performance
and reliability of the detection system. This layer computes various evaluation metrics such as accuracy, precision, recall, F1-score,
and confusion matrices, providing a comprehensive view of how well the models are performing. These metrics are particularly
important for assessing the trade-off between false positives and false negatives, which is a key concern in anomaly detection
systems. In environments where labelled anomalous data is available (e.g., from simulated attacks or benchmark datasets), this layer
performs direct comparison between predicted and actual labels. In other cases, evaluation may be based on the rate of alerts
generated over time or manual validation by system administrators. Visualization tools such as ROC curves or precision-recall
curves may also be included to facilitate deeper analysis. Continuous monitoring of model performance allows the system to trigger
retraining processes when performance drops below a threshold or when new patterns emerge in the data, thus maintaining
adaptability and long-term relevance.

Finally, all results, metrics, and real-time predictions are passed to the GUI layer, which serves as the user-facing interface of the
anomaly detection system. The GUI is designed to provide intuitive and interactive visualization of system health, process statistics,
and detected anomalies. Dashboards display key metrics such as total processes monitored, number of anomalies detected,
CPU/memory trends over time, and model performance scores. Each anomaly is listed with detailed context, including timestamps,
process names, associated metrics, and anomaly scores. The user interface may include filtering options to view anomalies based on
severity, time, or specific applications, making it easier for users to focus on critical events. Real-time alerts and notifications are
integrated via visual indicators, email alerts, or system pop-ups, ensuring that important issues are addressed promptly. For advanced
users, the GUI might also offer drill-down capabilities that allow them to trace the history of a process, compare it with baseline
behaviour, or manually label instances for supervised feedback. The GUI is typically implemented using web technologies such as
Flask or Django for the backend, and React or Dash for the frontend, allowing for cross-platform compatibility and responsive
design.

In conclusion, this real-time anomaly detection system architecture for Android applications represents a comprehensive, holistic,
and technically rigorous approach to identifying and mitigating abnormal behaviours in increasingly complex and dynamic mobile
computing environments. The architecture integrates a multi-layered design that ensures the seamless flow of data from acquisition
to action, while simultaneously incorporating principles of scalability, interpretability, efficiency, and adaptability—each essential
to the evolving needs of both end-users and system administrators. In the rapidly expanding Android ecosystem, where the number
of applications, services, and real-time interactions continues to grow exponentially, ensuring proactive anomaly detection is no
longer a luxury but a necessity. By bringing together efficient real-time data collection, robust data preprocessing pipelines, a suite
of unsupervised machine learning models, continuous evaluation loops, and an intuitive graphical user interface (GUI), this system
provides an end-to-end solution that is both technically sound and practically deployable across various contexts.

One of the system’s defining strengths is its ability to gather real-time process data in a non-intrusive and resource-efficient manner.
The data acquisition layer is built with a clear emphasis on performance, ensuring that it does not itself contribute to system
slowdown or memory strain—two factors that are especially critical on Android devices, which often operate within constrained
computing environments. This layer captures low-level system signals such as CPU usage, memory allocation, disk 1/0, process
creation timestamps, thread counts, and process execution hierarchies in real-time. These metrics serve as the raw foundation for
identifying any deviation from expected system behaviours. Because Android devices are constantly handling background services,
user-initiated applications, and periodic system events, the system's ability to differentiate between normal spikes in resource usage
and genuine anomalies is of paramount importance.

This capacity to differentiate stems largely from the robust preprocessing mechanisms employed immediately after data collection.
Raw metrics gathered from the system are often noisy, incomplete, or inconsistent—making them unsuitable for direct ingestion by
machine learning models. The preprocessing layer addresses these issues by executing a series of data cleaning, feature selection,
feature engineering, and normalization operations. By computing rolling averages, generating behavior-based features (e.g., CPU
per thread ratio), and removing data points that may stem from monitoring artifacts, the system ensures that the final dataset fed into
the model training pipeline is clean, balanced, and statistically meaningful. This not only enhances the overall model accuracy but
also ensures better generalization, reducing the risk of overfitting on system- specific behavior. The ability to standardize the input
across devices, environments, and Android versions further increases the portability of the entire architecture.

The selection of unsupervised machine learning algorithms forms the core intelligence of the anomaly detection mechanism. The
architecture is designed to operate in environments where labelled data—especially anomalous examples—is rare or non-existent,
which is a common challenge in real-world cybersecurity and mobile system monitoring scenarios.
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To address this, the architecture incorporates a suite of unsupervised learning models including Isolation Forest, One-Class Support
Vector Machines (SVM), and Local Outlier Factor (LOF). Each of these models has unique strengths that collectively provide robust
anomaly detection capabilities. Isolation Forest, for example, is particularly effective in high-dimensional data scenarios and offers
high efficiency due to its logarithmic time complexity, making it well-suited for real-time deployment on mobile systems. It
functions by isolating data points through random partitioning and identifies anomalies as those points that are easier to isolate—
indicative of their rarity or deviation from the norm.

In contrast, One-Class SVM constructs a hyperplane that defines the boundary of normal behaviours in the feature space. Data
points that fall outside this boundary are classified as anomalies. This model is especially effective when the normal behaviours is
tightly clustered and well-defined. Though computationally more intensive than Isolation Forest, it offers higher precision in systems
with stable behaviours profiles. Local Outlier Factor, on the other hand, brings a local perspective by computing the density of data
points in their neighbourhood. A point is flagged as anomalous if its local density significantly differs from that of its neighbours.
This is crucial in mobile environments where processes may be contextually anomalous depending on concurrent system behaviours.
Together, these models form a multi-faceted view of what constitutes an anomaly, enabling the system to capture a wide range of
abnormal behaviours, from minor deviations to significant threats such as resource abuse, malicious code execution, or stealthy
background activities.

The real-time prediction engine, which leverages these trained models, is optimized for speed and reliability. Incoming data is piped
through the same preprocessing steps used during training to maintain consistency, and predictions are computed in milliseconds—
ensuring minimal latency between data collection and response. For enhanced accuracy, model outputs may be ensembled using
majority voting or weighted averaging techniques, ensuring that no single model’s weaknesses become a bottleneck in the decision-
making pipeline. Detected anomalies are not only flagged but are also logged along with rich contextual metadata, including the
process responsible, timestamp of detection, associated resource usage, and the anomaly score. This information is stored in an
indexed manner to support later auditing, user queries, or retraining efforts. The modularity of this engine allows it to scale with
growing system demands, making it capable of supporting anything from a single device to a fleet of thousands of Android
endpoints in an enterprise deployment.

Equally vital is the system’s continuous evaluation and feedback layer, which ensures long-term reliability and adaptability. Given
that mobile environments are inherently dynamic—due to operating system updates, app installations, and evolving usage
patterns—the performance of anomaly detection models must be continuously monitored. The system uses a comprehensive suite of
performance metrics, including precision, recall, F1-score, area under the ROC curve, and confusion matrices, to track the
effectiveness of each model. In scenarios where labelled anomalous data is available, model predictions can be directly compared to
ground truth. Otherwise, proxy metrics such as anomaly rate trends, user validation input, or triggered system errors are used. This
feedback loop also supports semi-supervised learning approaches, where validated anomalies are re-used as labelled data for fine-
tuning the models. Additionally, the architecture allows for dynamic retraining either on schedule or on-demand, triggered by
performance degradation or substantial shifts in system behaviours patterns.

All of these sophisticated backend processes are brought to life through an intuitive and interactive graphical user interface (GUI)
designed for both technical and non-technical users. The GUI plays a pivotal role in making the system accessible, interpretable, and
actionable. It provides real-time dashboards that display system health metrics, active processes, model performance statistics, and
detected anomalies. Users can interact with this information through filters, search functionality, and visual cues such as color-coded
alerts. Anomalies are displayed with full contextual data, including visual graphs showing historical trends leading up to the event.
System administrators can drill down into each anomaly to assess its severity, investigate root causes, and initiate appropriate
actions. The GUI also supports exporting reports, integrating with incident response systems, and sending alerts through email or
messaging platforms like Slack. The frontend is developed using modern web technologies and can be accessed via mobile or
desktop, ensuring usability across platforms.

Beyond its current capabilities, the architecture is designed with a forward-looking vision that accommodates emerging
advancements in machine learning, system design, and explainability. The inclusion of Explainable Al (XAl) techniques is a key
area of future enhancement. As machine learning models become more complex, it is increasingly important to understand the
rationale behind their predictions—especially in critical environments such as mobile health monitoring, banking apps, or remote
work systems. Techniques such as SHAP (Shapley Additive explanations) values or LIME (Local Interpretable Model- agnostic
Explanations) can be integrated into the system to provide human-understandable justifications for each anomaly detected. This
transparency not only builds user trust but also aids developers in improving app design or identifying software bugs.
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The architecture also supports the integration of automated retraining pipelines, which can use continuous feedback and newly
observed data to periodically retrain and redeploy models with minimal manual intervention. This is especially valuable in scenarios
where the normal baseline behaviours of the system evolves rapidly, such as after major software updates or changes in user
behaviours. Future versions of the system may also include federated learning mechanisms, enabling multiple devices to
collaboratively train a shared anomaly detection model without transferring raw data—thus preserving user privacy while enhancing
generalizability.

Additionally, the architecture is designed to plug into existing cybersecurity and incident response frameworks. Detected anomalies
can trigger predefined workflows such as sending alerts to security information and event management (SIEM) systems,
quarantining affected processes, or rolling back system changes. The modularity and RESTful API support of the architecture make
it suitable for integration into larger security operation centers (SOCs) or enterprise mobility management (EMM) platforms. This
extensibility ensures that the system does not exist in isolation but becomes a critical part of an organization’s overall risk
management and operational resilience strategy.

In summary, the real-time anomaly detection system for Android applications—grounded in unsupervised machine learning, layered
architecture, and human-centered design—offers a highly effective, resilient, and adaptable solution to one of the most pressing
challenges in modern computing: detecting and mitigating abnormal behavior before it escalates into system instability or security
compromise. Its end-to-end flow from data acquisition to intelligent visualization, supported by continuous evaluation and feedback,
ensures that the system is always aligned with the needs of its users and the dynamics of its operating environment. This architecture
not only addresses today’s challenges in real-time anomaly detection but also lays a strong and scalable foundation for integrating
future technological advancements. Whether deployed on individual smartphones, enterprise fleets, or embedded systems in critical
infrastructure, it has the potential to serve as a cornerstone in building secure, self-aware, and intelligent mobile computing
environments.

IV. EXPERIMENTAL RESULSTS AND ANALYSIS
A. Performance comparison
To evaluate the effectiveness of the proposed anomaly detection system for Android malware detection, a comparative analysis of
multiple unsupervised machine learning models was conducted. The models selected for evaluation include Isolation Forest, One-
Class Support Vector Machine (SVM), Local Outlier Factor (LOF), and Elliptic Envelope. These models were tested on real-time
system metrics such as CPU usage, memory consumption, and disk 1/O data gathered from Android-based environments. The
evaluation was based on standard classification metrics—Accuracy, Precision, Recall, and F1-Score.

TABLE I: PERFORMANCE COMPARISON OF THE DIFFERENT MODELS

Model Accuracy Precision Recall F1-Score
Isolation 99.0% 1.00 0.99 0.99
Forest
One-Class 95.3% 0.87 0.90 0.88
SVM
Local Outlier 92.1% 0.84 0.85 0.84
Factor
Elliptic 88.7% 0.79 0.81 0.80
Envelope

In evaluating the suite of unsupervised machine learning models employed for real-time anomaly detection in Android applications,
Isolation Forest stood out as the most robust and consistently high-performing model across all relevant metrics, including accuracy,
precision, recall, and F1-score. Its dominance can be attributed to both its architectural design and operational efficiency. Isolation
Forest is based on the principle of isolating anomalies rather than profiling normal data points. This method involves constructing
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an ensemble of randomized decision trees, where the anomaly score is determined by the number of splits required to isolate a data
point. Anomalies, being sparse and different in behaviours, are typically isolated with fewer splits than normal points. In high-
dimensional, heterogeneous datasets like those derived from Android processes—where resource usage patterns, thread behaviours,
and system calls vary drastically across apps and contexts— Isolation Forest’s ability to efficiently capture these nuances without
prior labelling or domain-specific tuning gives it a significant edge. Its ensemble nature also confers resilience against noise and
overfitting, making it a scalable and generalizable choice for deployment in real-world scenarios. Moreover, Isolation Forest
displayed exceptional accuracy, often nearing 98% or higher, and achieved near-perfect precision and recall values. This indicates
its high capability in correctly identifying malicious or anomalous behaviours with a minimal number of false positives or false
negatives. In practical terms, this translates to fewer incorrect alerts for users and administrators, and a high degree of trust in the
model’s outputs—both of which are essential for maintaining the credibility and usability of a real-time anomaly detection system.
In contrast, the One-Class Support Vector Machine (One-Class SVM) also demonstrated strong performance, particularly in terms
of recall, where it nearly matched or occasionally even outperformed Isolation Forest in specific tests. One-Class SVM operates by
learning a decision boundary that encompasses the normal data points in a high-dimensional feature space, effectively identifying
outliers that fall outside this boundary. Its strength lies in its sensitivity to deviations from the norm, making it particularly valuable
in security-focused applications where the cost of missing an anomaly could be severe. High recall indicates that One-Class SVM is
highly effective at detecting a wide range of anomalous behaviours, including subtle and previously unseen threats. This makes it
ideal for applications in which comprehensive anomaly detection is critical— such as banking apps, enterprise data protection
systems, and critical infrastructure controls running on Android platforms. However, this sensitivity comes at the cost of slightly
reduced precision compared to Isolation Forest. The lower precision indicates a tendency to produce more false positives—flagging
benign behaviors as anomalies. In real-time systems, this can lead to unnecessary alerts, user fatigue, and potentially a dilution of
focus on genuine threats if not managed appropriately. Furthermore, One-Class SVM’s computational complexity is higher,
especially as the size of the training data and the dimensionality increase. This can pose challenges for deployment in resource-
constrained Android devices unless optimizations are made at the kernel or hardware acceleration level. Despite these limitations,
the model remains a powerful tool in scenarios where recall and comprehensive threat coverage are prioritized over precision.

The Local Outlier Factor (LOF) model, while conceptually elegant and intuitively appealing, delivered only moderate performance
in the context of Android anomaly detection. LOF determines the anomaly score of a data point based on its local density compared
to its neighbours. A point is considered anomalous if it is in a region of significantly lower density than its neighbours, which
intuitively aligns with the idea that anomalies are data points that “stand apart” from the norm. This makes LOF particularly useful
in environments where the distribution of normal data varies significantly across regions of the feature space. However, this same
characteristic becomes a liability in highly dynamic environments like Android systems, where normal behaviour itself can be
diverse and context-dependent. For example, a gaming application might temporarily consume high CPU and GPU resources, while
a background synchronization process might briefly spike in network usage. Both behaviours, while normal in context, could appear
locally anomalous to LOF due to sharp density differences from surrounding processes. This sensitivity to local variations often
results in higher false positives and missed true anomalies, especially when the system is exposed to frequent changes such as
software updates, app installations, or user-driven workload shifts. The model’s moderate performance in precision and recall
reflects these limitations. Additionally, LOF is relatively computationally intensive due to its reliance on calculating distances
between all pairs of data points in the neighbourhood, which becomes inefficient with growing data volumes or in real-time
scenarios where decisions must be made within milliseconds. Despite these drawbacks, LOF can still serve as a complementary
model within an ensemble framework, offering a different perspective on anomalies and improving overall robustness when used
judiciously.

Elliptic Envelope, the fourth model evaluated, exhibited the lowest performance across almost all evaluation metrics, and its
applicability to the Android domain is limited. The model assumes that the input data follows a multivariate Gaussian distribution
and fits an ellipse to the central cluster of data points. Anomalies are defined as points that fall outside this envelope. While this
approach can be effective in controlled environments where data distribution is known and stable, it falls short in the chaotic and
non-Gaussian world of Android process data. In practice, Android applications exhibit a wide variety of behaviours based on user
interaction, background tasks, permissions, services, and device-specific optimizations. This leads to skewed, multimodal, and
heavy-tailed distributions that violate the Gaussian assumption required by Elliptic Envelope. As a result, the model misclassifies
both normal and anomalous points, leading to low precision, recall, and overall accuracy. Furthermore, the rigidity of the model
makes it poorly adaptable to concept drift—the gradual evolution of normal behaviour over time—uwhich is a critical aspect of any
real-time anomaly detection system.
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The model’s inability to capture complex, nonlinear patterns or contextual dependencies further limits its use. While its simplicity
and speed might make it appealing for extremely lightweight applications or as a baseline for comparison, Elliptic Envelope is ill-
suited for standalone use in modern Android anomaly detection systems.

In terms of deployment readiness and real-world suitability, Isolation Forest emerges as the most practical and scalable model. Its
low computational footprint, high interpretability (with support for feature importance analysis), and ability to handle high-
dimensional, unlabelled data make it the preferred choice for mobile and edge computing environments. It is also inherently
parallelizable, which can be leveraged in multi-core Android devices for faster execution. The model’s robustness to overfitting and
insensitivity to feature scaling also reduce the preprocessing burden, simplifying the engineering pipeline. One-Class SVM, while
powerful, requires careful tuning of kernel functions and hyperparameters, and its higher memory requirements limit its usage in
older or less powerful devices. LOF’s role is best envisioned as a supporting model within an ensemble, where its sensitivity to local
variations can complement the global patterns captured by other models. Elliptic Envelope, by contrast, can be excluded from most
production-grade systems due to its fundamental limitations.

The results from the experimental evaluation of these models reinforce the importance of selecting the appropriate algorithm based
on the nature of the data, the constraints of the deployment environment, and the desired trade-off between precision and recall. In
highly sensitive applications where detecting every anomaly is critical—even at the cost of some false alarms—One-Class SVM
provides a viable solution. In balanced use-cases where both detection accuracy and operational efficiency are essential, Isolation
Forest stands unmatched. The role of LOF becomes more exploratory, helping to unearth context-specific or cluster-based outliers,
while Elliptic Envelope may serve only as a benchmark for highlighting the need for more flexible models. In addition to
performance metrics, the interpretability and maintainability of these models play a crucial role in long-term system success.
Isolation Forest, with its decision path-based interpretation, allows for a clear understanding of why a particular process was
flagged. This can aid in forensic analysis and debugging. One-Class SVM, while less interpretable, can benefit from post-hoc
explanation tools such as LIME or SHAP, although these add to the system’s computational overhead. LOF’s local nature provides
some intuitive understanding but often lacks global consistency. Elliptic Envelope, despite its simplicity, offers limited insight into
complex anomaly scenarios.

Furthermore, these insights have implications for designing automated retraining and feedback mechanisms within the anomaly
detection system. Isolation Forest’s ensemble structure makes it conducive to incremental learning, where new data can be
integrated into the model without complete retraining. This is essential for keeping pace with evolving threats and changing system
behaviours. One-Class SVM and LOF, by contrast, may require full retraining when concept drift is detected, which can be
resource-intensive. Elliptic Envelope’s rigid statistical foundation further precludes it from effectively adapting to new data,
rendering it unsuitable for dynamic environments.

From a system integration perspective, model choice also affects how anomalies are visualized, reported, and responded to.
Isolation Forest and One-Class SVM, with their relatively stable and interpretable outputs, align well with interactive dashboards
and automated incident response triggers. These models can provide reliable confidence scores that help prioritize alerts. LOF’s
outputs can be noisy and require additional filtering before presentation to end-users, while Elliptic Envelope may produce
misleading results if the underlying assumptions are not met.

In conclusion, the comparative evaluation of Isolation Forest, One-Class SVM, Local Outlier Factor, and Elliptic Envelope
underscores the critical importance of aligning model selection with the nature of Android process data and the operational
constraints of real-time anomaly detection systems. Isolation Forest emerges as the clear winner in terms of overall performance,
scalability, and deployment readiness. One-Class SVM provides strong support in high-recall scenarios but requires careful
management of its false positives and resource usage. LOF contributes valuable local perspective but suffers from sensitivity issues,
while Elliptic Envelope is largely unsuitable for this domain. This nuanced understanding of model behaviour not only informs
architectural decisions but also shapes ongoing maintenance, retraining, and interpretability strategies within the system.
Ultimately, by grounding model choice in empirical evidence and aligning it with system goals, we ensure that the anomaly
detection framework remains accurate, efficient, and resilient in the face of real- world challenges.

A. Qualitative Analysis

The qualitative analysis of the implemented anomaly detection models—Isolation Forest, One-Class SVM, Local Outlier Factor
(LOF), and Elliptic Envelope—offers a comprehensive understanding of their practical behaviour, strengths, and limitations when
deployed in real-time Android application monitoring environments. Isolation Forest stands out as the most robust and effective
among them due to its unsupervised nature, scalability, and efficiency in handling high-dimensional spaces.
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Its core mechanism, based on the principle of isolating anomalies through random feature selection and splitting, allows it to
effectively identify outliers with minimal computational overhead. This makes it particularly well-suited for Android environments,
where system processes can be complex and unpredictable. Its ability to function without labelled data, robustness to noisy inputs,
and intuitive interpretability through anomaly scoring further reinforce its practical value. One- Class SVM, while theoretically
sound, exhibits sensitivity to hyperparameter tuning—particularly with kernel choices and the nu parameter. Although it
demonstrates high recall, making it beneficial in scenarios where detecting all potential anomalies is critical, it often generates more
false positives, especially under fluctuating or unpredictable process behaviours. Moreover, One-Class SVM assumes a clean
training dataset, and any contamination in the training phase can significantly reduce its effectiveness. Additionally, it demands
substantial computational resources, making real-time deployment on resource- constrained Android devices less feasible without
optimization. Local Outlier Factor (LOF), a density-based model, performs well in detecting local anomalies by assessing the local
density deviation of a given data point relative to its neighbours. While LOF can identify context-specific anomalies effectively, it
suffers from significant limitations in scalability and interpretability. The model’s reliance on distance-based calculations for each
data point introduces latency and computational burden, which can be detrimental in real-time settings. It is also sensitive to
parameter k (the number of neighbours) and performs inconsistently in environments where data density varies dynamically, which
is common in Android process behaviour.

On the other hand, Elliptic Envelope, which assumes a multivariate Gaussian distribution, proves to be the least effective model in
this context. Although it is computationally efficient and easy to implement, its underlying assumption rarely holds in real-world
Android data, which is typically non-linear and highly dynamic. As a result, the model misclassifies many valid system behaviours
as anomalies and fails to detect subtle or context-dependent anomalies. Additionally, it is sensitive to outliers during the training
phase, which can distort the covariance matrix and lead to skewed results. While Elliptic Envelope may serve well in structured,
Gaussian-distributed datasets, its application in Android systems with bursty, erratic process metrics is limited. Comparatively,
Isolation Forest consistently demonstrates superior performance both qualitatively and quantitatively. It is particularly effective in
handling dynamic process behaviour, scales well with increasing data volume, and remains resilient to noise and minor data
fluctuations. Its architecture ensures fast inference and minimal performance overhead, making it ideal for real-time deployment.
Furthermore, its interpretability through path length scores aids in transparent anomaly assessment, which is essential for system
debugging and root-cause analysis. In contrast, One-Class SVM's high sensitivity comes at the cost of a higher rate of false alarms
and increased demand for computational power, while LOF’s local density-based approach lacks robustness when anomalies are
globally distributed or occur due to sudden process spikes. Elliptic Envelope’s simplistic statistical modelling does not align
with the irregular, high-dimensional nature of Android process data, leading to poor generalization and weak practical value.
Overall, these qualitative insights reinforce the conclusion that Isolation Forest offers the most balanced and effective approach for
real-time anomaly detection in Android applications. Its unique isolation-based mechanism, combined with scalability, low resource
consumption, and adaptability to dynamic data environments, make it the preferred choice for developers and researchers seeking
robust anomaly detection solutions. While each model has unique characteristics and may perform better under specific conditions,
the overarching demands of real-time monitoring—such as low latency, high accuracy, interpretability, and ease of integration—are
best met by Isolation Forest. Its ensemble-based structure not only ensures high detection accuracy but also allows for parallel
processing and fast computation, aligning well with the real-time constraints of mobile systems. Future improvements could involve
hybrid approaches, where Isolation Forest is complemented with LOF or One-Class SVM for specific use cases, or enhanced using
explainable Al techniques to provide greater transparency in anomaly justification. Despite the strengths of alternative models, their
limitations in terms of parameter tuning complexity, computational demands, or data assumptions hinder their broader applicability in
real-time Android environments. Consequently, Isolation Forest remains the most practical and efficient solution, offering a high-
performing, interpretable, and scalable framework for ensuring the security, stability, and reliability of Android applications through
real-time anomaly detection.

B. Impact of the Dynamic model architecture

The dynamic model architecture proposed for real-time anomaly detection in Android systems represents a paradigm shift in the
way malware and abnormal system behaviors are identified, monitored, and mitigated in mobile environments. Unlike traditional
static models, which depend heavily on predefined malware signatures or rigid rule-based detection mechanisms, this dynamic
approach embraces the constantly evolving nature of mobile applications and operating system processes. Static models, while
effective for known threats, fall short in handling novel and polymorphic malware variants that continuously morph to evade
signature-based detection systems.
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In contrast, the dynamic model architecture is designed to continuously learn, adapt, and respond to changes in application behavior,
system resource usage, and emerging threat patterns without the need for frequent manual intervention. This ability to evolve and
adapt is crucial in Android environments, where applications run in isolated sandboxes, processes are often transient, and malware
can closely mimic legitimate behavior to remain undetected.

One of the most critical advantages of adopting a dynamic model architecture is its inherent capability to address concept drift — a
phenomenon where the statistical properties of the monitored data change over time, causing performance degradation in static
models. In mobile ecosystems, concept drift arises naturally due to regular software updates, installation of new applications,
changes in user behavior, and the ongoing emergence of new types of malware. Traditional machine learning models trained on
historical data tend to become obsolete as the underlying data distribution shifts, necessitating costly and time-consuming retraining
cycles. The proposed dynamic architecture mitigates this challenge by employing incremental learning techniques and modular
components that allow continuous updating of the anomaly detection models. For example, integrating ensemble models such as
Isolation Forest and One-Class Support Vector Machines (SVM) in a modular fashion ensures that the system can incrementally
adjust to new behavioral patterns, distinguishing benign from malicious activities more effectively over time. This adaptability is
essential for maintaining high detection accuracy and minimizing false alarms in the face of evolving threats, including zero-day
exploits that have never been observed before.

Isolation Forest, a tree-based ensemble model, is particularly well-suited for such a dynamic setting due to its ability to efficiently
isolate anomalous points in high-dimensional feature spaces. Its operational mechanism involves randomly partitioning data points
based on randomly selected features, with anomalies requiring fewer splits to isolate, thereby making them identifiable through
shorter average path lengths in the trees. This randomness and ensemble nature provide robustness against noisy and fluctuating
data typical of mobile system logs. One-Class SVM complements this by mapping data into a high-dimensional space where it
attempts to separate normal points from the origin, effectively learning the boundary of normality without labeled anomaly
examples. Combining these models within a unified architecture leverages their complementary strengths: Isolation Forest’s
scalability and interpretability alongside One-Class SVM’s strong sensitivity to rare events. By arranging these models in a modular
and incremental learning framework, the system facilitates continuous retraining and model updating triggered by new data influxes,
thereby preserving responsiveness and accuracy over prolonged periods.

Furthermore, the architecture emphasizes resource efficiency, a paramount consideration in Android devices characterized by
limited CPU power, constrained memory, and finite battery life. Real-time anomaly detection must therefore strike a balance
between detection accuracy and system overhead to avoid degrading user experience or device performance. To this end, the system
deploys lightweight, unsupervised learning algorithms that do not rely on extensive feature engineering or large labeled datasets,
thereby reducing computational demands. Real-time monitoring modules operate by collecting and analyzing streaming telemetry
data such as CPU utilization patterns, memory allocation changes, input/output (1/0) operations, network activity, and system call
frequencies. These features are selected for their relevance in capturing subtle deviations indicative of malicious behavior, such as
abnormal spikes in resource consumption, unauthorized data transmissions, or anomalous process spawning. The dynamic model
continuously ingests this streaming data and performs anomaly scoring with minimal latency, allowing immediate flagging of
suspicious activities before significant damage or data leakage can occur.

Modularity in the architecture confers several additional benefits, including scalability, maintainability, and extensibility. Each
component—data acquisition, preprocessing, anomaly detection, alert generation, and feedback loops—is designed as an
independent, replaceable module communicating through well-defined interfaces. This modularity simplifies integration with other
cybersecurity tools and platforms, enabling the system to fit seamlessly into broader mobile security frameworks. For instance, the
anomaly detection module can interface with logging systems to archive detected anomalies for forensic analysis, or with
notification services to alert users and administrators instantly upon detection of suspicious events. Similarly, new data sources,
such as application-specific telemetry or behavioral biometrics, can be integrated without redesigning the entire system. This
extensibility ensures the architecture remains future-proof, capable of evolving alongside technological advances and shifting threat
landscapes. Additionally, the dynamic architecture supports scalability both vertically and horizontally. Vertically, the system
optimizes processing pipelines to run efficiently on individual mobile devices, preserving battery and processing resources.
Horizontally, it can be deployed across enterprise fleets of devices or within cloud-based mobile device management (MDM)
systems to provide centralized anomaly detection and coordinated incident response. In enterprise contexts, centralized anomaly
aggregation enables correlation of events across multiple devices, enhancing the detection of coordinated attacks or network-wide
threats. The architecture’s design thus supports deployment flexibility, from standalone personal device protection apps to complex
enterprise-grade mobile security solutions.
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A key component of the architecture’s effectiveness is its capability to handle imbalanced and unlabeled data, common in real-
world anomaly detection scenarios. Most Android malware samples represent a tiny fraction of overall device activity, making
supervised learning approaches reliant on labeled datasets impractical or impossible. By employing unsupervised and semi-
supervised methods, the architecture circumvents the need for extensive malware signature databases or manually curated anomaly
labels. Instead, it learns normal system behavior patterns dynamically and flags deviations as potential anomalies. This approach
increases the system’s robustness to novel threats and reduces dependency on frequent signature updates, which often lag behind
emerging malware campaigns.

Moreover, the architecture facilitates the incorporation of feedback mechanisms and active learning. When anomalies are detected,
the system can prompt for user or expert validation, using these labels to refine and retrain models incrementally. Such feedback
loops enhance detection precision over time, minimizing false positives that could otherwise erode user trust. This continuous
learning cycle enables the system to stay aligned with the evolving operational environment, user habits, and threat actor tactics.
The ability to learn from real deployment environments differentiates this architecture from static, offline- trained models that
become stale and ineffective.

From a security standpoint, the real-time nature of the architecture allows for proactive mitigation strategies. Detected anomalies
can trigger automated responses such as process termination, network isolation, or sandboxing, limiting the potential damage caused
by malicious activities. This immediate reaction capability is critical in mobile environments where threats can propagate rapidly
and escalate quickly. Combined with centralized alerting and logging, the system equips security teams with actionable intelligence
for timely investigations and incident response.

In conclusion, the dynamic model architecture for real-time anomaly detection in Android systems delivers a comprehensive,
adaptive, and resource-conscious approach to malware detection that significantly outperforms traditional static models. By
leveraging incremental learning with robust unsupervised models like Isolation Forest and One-Class SVM, it addresses the inherent
challenges of concept drift, resource constraints, and evolving threat landscapes characteristic of mobile environments. Its modular,
scalable design ensures seamless integration with existing cybersecurity ecosystems and adaptability to future technological
advancements. By continuously analyzing real-time system metrics with minimal latency and computational overhead, it provides
an effective shield against both known and unknown malware, ensuring enhanced security, stability, and user trust in increasingly
complex and unpredictable Android ecosystems. This architecture lays a strong foundation for future enhancements such as
explainable Al integration, hybrid detection models, and automated incident response systems, promising a resilient defense
framework tailored for the dynamic mobile computing era.

C. Graphical comparison of Models

The chart compares the models across four key performance indicators—Accuracy, Precision, Recall, and F1-Score. Notably,
Isolation Forest outperforms all other models, demonstrating the highest accuracy at nearly 99%, along with strong precision, recall,
and F1-score values close to 1.0, making it the most reliable and consistent model for real-time anomaly detection. In contrast,
Elliptic Envelope shows the lowest performance across all metrics, indicating its inadequacy in handling the irregular and non-
Gaussian nature of system-level data. One-Class SVM and LOF present moderate results but fall short in terms of consistency and
adaptability, as shown by their relatively lower recall and F1-scores. The dominance of the orange bars (Accuracy) and the
diminished scale of the pink (F1-score), red (Precision), and purple (Recall) bars in lower- performing models further emphasize
the disparity in effectiveness. Overall, the chart effectively illustrates that Isolation Forest is the most balanced and high-
performing model, well-suited for the complexities of real-time anomaly detection in Android systems as shown in figure 2.
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Figure 3: Graphical representation of the accuracy of the models
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V. CHALLENGES AND FUTURE DIRECTIONS

Despite the promising results achieved through the implementation of anomaly detection models like Isolation Forest for real-time
Android application monitoring, several challenges persist that need to be addressed for broader and more robust deployment. One
of the primary challenges lies in the dynamic and highly variable nature of system processes, which can lead to false positives or
missed anomalies when the model encounters unseen but benign behavior. Additionally, the need for continuous adaptation without
overfitting remains a critical issue, especially in systems with frequent updates or variable workloads. Data imbalance, where
normal behavior vastly outweighs anomalous instances, further complicates the training and evaluation phases. There are also
limitations related to the interpretability of the results—while models may detect anomalies, understanding the context or root cause
behind them still requires manual analysis or integration with expert systems. Real-time performance is another hurdle, as models
must operate with low latency and minimal resource consumption, particularly in resource-constrained environments. As for future
directions, incorporating online learning techniques can allow models to adapt to new data in real-time without retraining from
scratch. Hybrid models, combining deep learning with traditional anomaly detection algorithms, may offer better generalization and
feature extraction capabilities. Furthermore, integrating anomaly detection with visualization dashboards, automated alert systems,
and intelligent decision-making frameworks will enhance usability and practical deployment. Finally, creating standardized datasets
and benchmarking tools specifically tailored for Android-based anomaly detection can significantly accelerate research and ensure
consistent performance evaluation across different environments.

VI. CONCLUSION
In conclusion, this research presents a comprehensive, robust, and forward-looking approach to real-time anomaly detection in
Android applications by leveraging advanced machine learning models, with a particular focus on unsupervised learning techniques.
The critical importance of anomaly detection in the mobile computing domain cannot be overstated, as Android applications operate
within dynamic and often unpredictable environments that are prone to various malicious behaviors and system faults. Unlike
traditional supervised methods that require extensive labeled datasets—which are difficult, time-consuming, and expensive to
acquire for malware detection—this research emphasizes unsupervised models such as Isolation Forest, One-Class Support Vector
Machine (SVM), Local Outlier Factor (LOF), and Elliptic Envelope, all of which offer practical advantages in detecting previously
unseen threats without relying on pre-labeled attack examples.
Among these evaluated models, Isolation Forest consistently emerged as the most effective and reliable anomaly detection
technique. It outperformed other methods in key performance metrics including accuracy, precision, recall, and F1 - score,
highlighting its superior ability to distinguish between normal and anomalous process behaviors on Android systems. This
effectiveness can be attributed to Isolation Forest’s unique operational principle, which isolates anomalies by constructing random
decision trees that partition the data, leveraging the insight that anomalies are ‘few and different’ and thus require fewer splits to
isolate. Its ensemble approach inherently provides robustness against noisy and high-dimensional data, making it exceptionally
well-suited for the complex and multi-faceted feature space generated by system process monitoring.
One-Class SVM demonstrated strong performance, particularly in recall, which is crucial for environments where missing any
anomaly could result in severe security breaches. Although it exhibited a slightly higher false positive rate than Isolation Forest, its
theoretical grounding in margin maximization and capacity to model complex decision boundaries make it an invaluable component
of the overall detection framework. LOF, meanwhile, showed moderate success in identifying localized anomalies by analyzing
the density deviation of each point relative to its neighbors. However, it struggled in scenarios involving globally distributed
anomalies or sudden spikes in system metrics, which are common in real-world Android environments. Its dependence on distance-
based calculations also poses scalability challenges in large-scale streaming data. Elliptic Envelope, relying on Gaussian distribution
assumptions, exhibited the lowest performance, which aligns with its limitations in handling real-world, irregular, and bursty
process data. The real strength of this research lies not only in the performance metrics but also in the practical applicability of the
proposed system architecture. The system continuously monitors key system metrics such as CPU usage, memory consumption, and
I/0 operations of active processes in real-time, creating a rich dataset that reflects the operational state of the device. By
incorporating preprocessing steps including data normalization, feature extraction, and noise reduction, the model efficiently
handles streaming data and improves anomaly discernment. These preprocessing techniques transform raw telemetry into
meaningful features that highlight deviations from normal behavior, reducing false positives and enhancing detection sensitivity.
This process ensures that the system operates effectively under the constraints of limited device resources, providing timely alerts
without degrading overall device performance or user experience.
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Scalability and modularity are other defining characteristics of the architecture. The system is designed with a modular framework,
wherein components such as data collection, preprocessing, anomaly detection, alert generation, and logging operate independently
yet cohesively. This modularity facilitates straightforward system maintenance, upgrades, and integration with other cybersecurity
tools and enterprise management systems. The architecture can be deployed across individual user devices or scaled to enterprise
environments managing thousands of endpoints, making it highly versatile. Its flexible design enables extension to additional
system metrics, incorporation of new detection models, or integration of feedback mechanisms for continuous model refinement.
Despite these advancements, the system faces several ongoing challenges that present avenues for future research and development.
Model adaptability remains critical as the behavioral patterns of Android applications and system processes evolve due to software
updates, user behavior changes, and emerging malware techniques. Although the proposed architecture includes incremental
learning capabilities to address concept drift, the optimal strategies for continuous model retraining, balancing stability and
plasticity, require further exploration. Data imbalance is another prevalent challenge: anomalies are rare events, which can bias
models towards normal class dominance. While unsupervised models mitigate the need for labeled anomalies, ensuring robust
anomaly representation without overfitting to noise remains complex. Interpretability of anomaly detection results is also vital for
practical deployment; users and administrators must understand the rationale behind flagged anomalies to effectively respond and
mitigate threats. Techniques such as explainable Al (XAl) offer promising directions to enhance model transparency.

Looking ahead, this research lays a solid foundation for future innovations in real-time Android security solutions. Hybrid detection
methodologies that combine unsupervised learning with supervised or semi-supervised techniques could further boost detection
accuracy by leveraging labeled threat intelligence alongside continuous behavior modeling. Advances in online learning algorithms
may allow even more seamless adaptation to new threat patterns with minimal human intervention. Integration with broader
cybersecurity ecosystems, including endpoint detection and response (EDR) platforms, network intrusion detection systems, and
automated incident response workflows, will increase the system’s operational impact. Moreover, leveraging cloud-based analytics
and federated learning could enable cross-device collaboration, enhancing detection of coordinated or distributed attacks while
preserving user privacy.

In summary, this research demonstrates a practical, scalable, and highly effective approach to real-time anomaly detection in
Android applications using state-of-the-art unsupervised machine learning models. By combining efficient data preprocessing,
modular architecture design, and robust anomaly detection techniques, the system delivers timely and accurate identification of
malicious activities without relying on extensive labeled datasets. It addresses the unique challenges of Android environments
including resource constraints, dynamic behavior, and evolving threat landscapes, positioning itself as a valuable tool in the arsenal
of mobile security. With continuous enhancements in model training paradigms, interpretability, and integration capabilities, this
approach holds immense potential for transforming the detection and mitigation of anomalies in modern digital infrastructures.
Ultimately, it contributes to creating more secure, resilient, and stable mobile computing environments that can keep pace with the
rapidly evolving cybersecurity landscape.
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