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Abstract: This paper introduces a Verilog Hardware Description Language (HDL) implementation of a specialized multiplier 
tailored for image processing, with a specific emphasis on edge detection applications. The design integrates an approximate 4-2 
compressor and an error correction module, optimizing accuracy while minimizing hardware complexity. Rigorous evaluations, 
employing ModelSim and MATLAB simulations, validate the design's superior accuracy compared to conventional multipliers, 
achieved with minimal additional hardware complexity. The Verilog HDL implementation is precisely engineered for seamless 
integration into existing image processing systems, showcasing adaptability and potential across diverse applications. Executed 
with precision using ModelSim 6.4c and synthesized with the Xilinx Tool, the multiplier strategically incorporates compressors to 
enhance performance, particularly focusing on efficiency improvement in image multiplication for masking applications. This 
work strategically converges hardware innovation and image processing intricacies, delving into multiplier design within the 
realm of edge detection. The proposed system provides an efficient solution, ensuring heightened accuracy and performance 
while maintaining ease of integration into existing systems. Sobel Image Masking, a fundamental technique in edge detection, 
further augments the paper's practical implications. The multiplication-based approach in Sobel Image Masking employs 
various advanced multipliers like Booth, Dadda, Shift and add Multipliers, and Wallace multipliers, elucidating their pivotal 
roles in augmenting gradient values through convolution operations. In alignment with Artificial Intelligence (AI) and Edge 
Computing, this paper underscores the significance of computational efficiency in image processing. Leveraging Verilog HDL, 
integrating error correction mechanisms, and applying the specialized multiplier to image masking collectively contribute to 
advancing AI technologies, especially in edge computing scenarios where task-specific hardware optimization is crucial. 
Positioned at the intersection of hardware design, image processing, and AI, this paper underscores its relevance in the dynamic 
landscape of intelligent systems and edge computing, emphasizing the synergy between hardware advancement and artificial 
intelligence in the realm of edge computing. 
Keywords: Verilog HDL; Image Processing; Edge Detection; 4-2 Compressor; Error Correction Module; Computational 
Efficiency. 
 

I. INTRODUCTION 
Multipliers are integral components in DSP and embedded applications, exerting a profound impact on processor speed [1]. The 
demand for high speed multipliers is prevalent across various applications, necessitating the use of different algorithms to enhance 
multiplication speed. Although multiplication is a fundamental operation in computing systems, implementing multipliers poses 
challenges, including the consumption of significant hardware resources and operation at low speeds. This is particularly critical in 
DSP and embedded systems, where multiplication plays a fundamental role. Signal processing algorithms heavily rely on 
multiplication, yet traditional multipliers present challenges such as large area requirements, extended latency, and considerable 
power consumption. In response, the design of low power multipliers becomes crucial for efficient low power VLSI system 
development [1]. The performance of a system is often contingent on the multiplier, which typically represents the slowest and most 
space consuming element. Balancing speed and area considerations becomes a major design challenge, given the inherent conflict 
between the two constraints. Multiplication involves three main steps: partial product generation, partial product reduction, and final 
addition. Efficient arithmetic computation cells, including adders and multipliers, are essential in VLSI systems, especially in 
microprocessors and digital signal processors executing algorithms like convolution and filtering. Multipliers, as critical components, 
significantly influence overall circuit performance, especially when power consumption and computation speed are key 
considerations. As VLSI technologies trend towards deep submicron regimes, achieving power efficiency becomes paramount by 
lowering the power supply voltage. Circuit design techniques play a crucial role in achieving high power efficacy in arithmetic 
circuits at ultralow supply voltages.  
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Fast multipliers typically comprise partial product generation, partial product accumulation, and carry propagating addition. Booth 
encodings are commonly employed in partial product generation to reduce the number of partial products [2]. The Carry Save Adder 
(CSA) tree, acting as a summation tree, further reduces partial products to two in the second function. The final addition is typically 
executed by a fast carry propagate adder, such as carry look ahead adder and carry skip adder. Modern designs favor (4:2) 
compressors due to their ability to form a regular interconnected cell structure, with higher input compressors like (5:2) and (6:2) 
gaining popularity in high precision multipliers for improved performance [16]. 

 
II. RELATED WORK 

The central challenge addressed by the proposed idea is the requirement for an ac curate and efficient multiplier design tailored for 
image processing applications, specifi cally in edge detection. Existing multipliers may lack the necessary accuracy, and high 
hardware complexity in more accurate designs can lead to performance issues. The proposed design aims to overcome this problem 
by incorporating an approximate 4-2 compressor and an error correction module to improve accuracy while keeping hardware 
complexity low. Implementing this design using Verilog HDL enables seamless integration into existing image processing systems, 
providing an efficient solution to the problem of accurate and efficient multipliers for image processing applications. 
This paper aims to propose a novel design for a multiplier that can be used in image processing applications, particularly in edge 
detection. The proposed design incorporates an approximate 4-2 compressor and an error correction module to enhance accuracy 
while also keeping hardware complexity low. The proposed multiplier has the potential to significantly improve the performance of 
various image processing systems, particularly those relying on accurate edge detection. 
In contemporary image processing systems, multipliers play a pivotal role in executing intricate mathematical computations, 
particularly in tasks like edge detection. Traditional multiplier designs often prioritize accuracy through the utilization of high 
precision arithmetic components such as carry look ahead adders. While effective, these designs tend to be complex and resource 
intensive, potentially leading to challenges in terms of hardware constraints and overall system performance. Alternatively, some 
existing multiplier designs adopt an approach that leverages low precision arithmetic alongside error correction techniques. This 
strategy aims to strike a balance between computational accuracy and resource efficiency. However, these designs may exhibit 
limitations in terms of achieving the desired precision, and they can be susceptible to errors, potentially impacting the reliability of 
image processing results. One prevalent existing technique is the truncated multiplier with constant correction, which involves 
truncating the multiplication process and subsequently applying constant correction methods to mitigate errors. While this technique 
offers a compromise between accuracy and hardware simplicity, it may still fall short of meeting the stringent precision 
requirements demanded by certain image processing applications, especially those related to edge detection in critical scenarios. 
Despite the advancements in existing multiplier designs, there remains a persistent need for a solution that can seamlessly integrate 
into image processing systems, providing the requisite accuracy without unduly burdening hardware resources. The proposed 
design, incorporating an approximate 4-2 compressor and an error correction module [2], presents a promising avenue to address the 
limitations of traditional and contemporary multiplier approaches, offering a balanced trade off between precision and hardware 
efficiency in the context of image processing applications. 
The existing multiplier designs for image processing applications present several critical drawbacks that impede their efficacy in 
delivering accurate and efficient results [6]. Primarily, these designs tend to suffer from elevated error rates, notably apparent in 
high precision arithmetic approaches like carry look ahead adders, potentially compromising the accuracy of computational 
outcomes. Additionally, while aiming to strike a balance between precision and resource efficiency, alternative designs employing 
low precision arithmetic with error correction techniques may still fall short, resulting in increased error rates and reduced reliability 
in crucial tasks such as edge detection. Furthermore, these existing designs often exhibit complexity in implementation within 
practical time constraints, hindering real time or near real time processing capabilities essential for image analysis. Moreover, the 
resource intensive nature of traditional multiplier designs, especially those relying on high precision arithmetic, poses challenges in 
efficient resource utilization, potentially limiting their applicability in re source constrained image processing systems. Their limited 
adaptability and scalability further hinder their suitability for diverse computational demands, and in scenarios requiring adaptable 
and scalable computational capabilities, these designs may not seamlessly integrate. Lastly, the energy inefficiency stemming from 
high precision arithmetic contributes to increased power consumption, impacting the overall energy efficiency of image processing 
systems. Addressing these limitations demands an innovative multi plier design that not only ensures heightened accuracy but also 
optimizes resource utilization, adaptability, scalability, and energy efficiency to meet the dynamic demands of image processing 
applications 
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III. MULTIPLIER INTEGRATION FOR ADVANCED IMAGE PROCESSING 
The envisioned system introduces a novel multiplier design tailored for image processing applications, specifically in edge 
detection. The design integrates an approximate 4-2 compressor and an error correction module, aiming to enhance accuracy while 
minimizing hardware complexity. The 4-2 compressor reduces the number of partial products generated during multiplication, 
consequently lowering the overall hard ware requirements. Meanwhile, the error correction module addresses inaccuracies 
stemming from the use of low precision arithmetic. Implemented using Verilog HDL and validated through simulations in 
ModelSim and MATLAB, the proposed multiplier demonstrates superior accuracy compared to traditional counterparts, with only a 
marginal increase in hardware complexity. 
Sobel Image Masking, a widely used technique in image processing and computer vision for edge identification, involves 
convolving the image with Sobel operators. These operators, represented by predefined coefficients, approximate the gradient of 
image intensity at each pixel. In a multiplier based implementation, the coefficients are multiplied with corresponding pixel values 
for each row of Sobel operators, and the results are aggregated to derive the final gradient value. Various multiplication techniques, 
including Booth, Dadda, Shift and add Multipliers, and Wallace multipliers, are explored for their suitability in Sobel Image 
Masking within digital circuits and computer arithmetic. 
In summary, the proposed system offers an effective solution for precise and efficient multiplication in image processing 
applications, with a specific focus on edge detection. Its seamless integration into established image processing systems holds the 
potential for improved overall performance and heightened levels of accuracy. 
 
A. Sobel Image Masking Operator: 
In Sobel Image Masking, two masks are employed—one for detecting horizontal edges and the other for identifying vertical edges. 
The mask designed to identify horizontal edges is analogous to computing the gradient in the vertical direction. Conversely, the 
mask intended for vertical edges is akin to calculating the gradient in the horizontal direction. The Sobel masks are illustrated in the 
Figure below: 

 
Fig 1: Sobel Masks for Edge Detection 

 
Fig 1 shows the Sobel masks used in edge detection. These masks highlight changes in intensity along the horizontal and vertical 
axes, crucial for edge detection in image processing. By applying these two masks to the intensity image, we can calculate the 
gradient along the x direction (Gx) and the gradient along the y direction (Gy) at various locations in the image. Subsequently, the 
magnitude and direction of the edge at each specific location can be determined by analyzing the gradients Gx and Gy. 
 
B. Proposed System Block Diagram: 
In the image processing workflow, a digital image is loaded, resized if necessary, and converted to grayscale by averaging RGB 
channels. Subsequently, the grayscale image undergoes binary conversion through thresholding, followed by masking using a 
bitmask, and finally, the resulting binary image is transformed back to a gray image, providing a versatile output suitable for 
applications like machine vision and image analysis as shown in Fig 2. 

 
Fig 2: Schematic representation of a comprehensive image processing workflow depicting sequential steps including loading, 

resizing, grayscale conversion, binary transformation, masking, and reconversion. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue VIII Aug 2025- Available at www.ijraset.com 
     

551 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

The process of converting an RGB image to a binary image, implemented in both MATLAB and VLSI (specifically, using 
Modelsim) as shown in Fig 3. The process begins in MATLAB, where a JPG image is first acquired and then converted to 
grayscale. Next, edges are detected on both the horizontal and vertical axes, and the magnitudes of these gradients are calculated. 
This information is then used to level the grayscale image to a binary image, which is ultimately written to a text file. 
Meanwhile, the VLSI section utilizes Modelsim to read the test file into the binary image memory. The design is then synthesized 
and simulated, allowing for verification of the results, which is the edgedetected image. Finally, a design summary is generated to 
encapsulate the specifics of the binary image converter. By completing these steps, we can successfully convert an RGB image to its 
binary counterpart, which holds valuable applications in various fields, including edge detection, object recognition, and image 
compression. 

 
Fig 3: Flowchart for converting an RGB Image to a Binary Image using MATLAB and VLSI 

 

IV. SOBEL EDGE DETECTION 
In diverse research fields such as Image Processing, Video Processing, and Artificial Intelligence, Image Masking algorithms play a 
pivotal role. Among these algorithms, the Sobel Image Masking technique stands out due to its property of exhibiting minimal 
deterioration in the presence of high levels of noise. The increasing prominence of FPGA as a programmable logic form, known for 
its low investment cost and desktop testing ad vantages with moderate processing speed, positions it as a suitable choice for real 
time applications. This paper presents an efficient architecture for a Sobel edge detector, offering faster performance and requiring 
less space compared to existing architectures. Within the realm of first order derivative operators, which leverage the gradient 
method, the Robert Detector, Prewitt Detector, and Sobel Detector play crucial roles. The Robert Detector, as a gradient based 
operator, computes the sum of squares of differences be tween diagonally adjacent pixels through discrete differentiation, leading to 
the calculation of the approximate gradient of the image. This involves convolving the input image with default kernels, ultimately 
computing gradient magnitude and directions. It uses following 2 x2 two kernels as shown in Fig 4. 

 

 
Fig 4: Illustration of the 2x2 kernels utilized in the proposed method, showcasing key components of the image processing 

algorithm. 
 

The Prewitt edge detector is a method used to find edges in images. It works by looking at the differences in intensity between 
pixels, and its specific approach is quite similar to another method called the Sobel detector. The Prewitt detector uses different 
mathematical patterns (kernels) to analyze these intensity differences and highlight edges in images (see Fig 5). 
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Fig 5: Illustration of mathematical patterns employed by Prewitt edge detector for effective edge detection. 

 
The Sobel Detector stands out as a highly employed method in Image Masking. Implementing Sobel Image Masking involves 
filtering an image with distinct masks successively, squaring the pixel values in each filtered image, summing up the results, and 
finally computing their square root. Fig 6 showcases the 3 × 3 convolution masks integral to the Sobel based operator. 

 
Fig 6: Convolution masks for Sobel based operator. 

 
Sobel presents two key advantages: it introduces an average factor for noise smoothing and enhances edge elements on both sides, 
creating a thicker and brighter edge appearance. While Sobel is slower than the Roberts cross operator, its small masks for horizontal 
and vertical kernels contribute to smoother image processing, making it less sensitive to noise. Moving to second order derivative 
operators, Laplacian of Gaussian is a 2 D isotropic measure capturing rapid intensity changes in an image, commonly employed for 
effective edge detection. The Laplacian L(x, y) is computed by taking the 2nd spatial derivative of an input gray level image I(x, y). 

L(x,y)=(∂²I/∂x²)+(∂²I/∂y²) (1) 
 
Given the discrete pixel representation of the input image, the quest for a discrete convolution kernel that effectively approximates 
the second derivatives in defining the Laplacian becomes imperative. Fig 6 succinctly illustrates three commonly utilized compact 
kernels tailored for this purpose. 

 

 
Fig 7: Three frequently employed discrete approximations to the Laplacian, vital for detecting edges in image processing. 

 
Edges play a pivotal role in image processing as they delineate boundaries, manifesting prominently where there's a substantial 
contrast in intensity or even a divergence in color without a corresponding intensity change. These edges encapsulate significant 
information about the image, delineating the contours and defining the spatial structure of objects within the visual composition. 
Algorithm for Sobel Edge Detection 
The Sobel Edge Detection Algorithm employs a 3×3 spatial mask to compute gradients for edge detection. The process relies on 
first derivative operations to identify edges within an image. This involves applying two specific masks The vertical gradient (H1) 
and horizontal gradient (H2) is calculated using the following masks: 

H1= 
-1 0 1  

H2= 
-1 -2 -1 

-2 0 2 0 0 0 
-1 0 1 1 2 1 

 
By convolving these masks with the image, we compute the approximate gradients along the x and y directions. The resultant 
magnitudes provide information on the edges present in the image. Suppose the pixel values of a 3×3 sub window of an image is as 
illustrated in the Fig 7. 
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Fig 8: Pixel values of a 3×3 sub window of an image. 

 
The pixel intensity values of a 3×3 sub window of an image, upon applying the Sobel mask as depicted in Fig 7, result in. 

Gx = (D6 + 2 * D7 + D8) - (D0 + 2 * D1 + D2) (2) 
Gx=f1-f2 (3) 

 
where, f1=(D6 + 2 * D7 + D8) and f2=(D0 + 2 * D1 + D2) 

Gy = (D2 + 2 * D5 + D8) - (D0 + 2 * D3 + D6) (4) 
Gy =f3- f4 (5) 

 
where, f3=(D2 + 2 * D5 + D8)and f2=(D0 + 2 * D3 + D6) 

 
Equation (2)-(5) describe the gradients of an image in the x and y directions, respectively, where D0 to D8 represent pixels in the 
image. These equations find wide application in image processing tasks like edge detection, feature extraction, and image filtering. 
For instance, they're employed in the Sobel operator to compute gradients, enabling edge detection. 
Specifically, these equations compute the gradients to construct a feature map, emphasizing edges, corners, or blobs in an image. 
Feature maps are valuable for tasks like object detection, image classification, and segmentation. The first equation computes the x 
direction gradient, evaluating the pixel sums to the right and left of each pixel. The second equation computes the y direction 
gradient, assessing the pixel sums above and below each pixel. The f1 and f2 terms represent filtered versions of the image, while 
the D terms denote original pixels. A simple averaging filter is used here, replacing each pixel with its neighbors' average, 
effectively reducing image noise. These equations generate a feature map accentuating image edges due to the high gradients 
typically present at edges. 

 
A. Sobel Edge Detection Process Modules & Explanations: 
1) Reading Image 
The Sobel operator is utilized for edge detection on multiple test images, illustrated in Figure 7. Initially, image data is read and 
stored as an array with dimensions matching the image size. The array's element count is calculated for resizing, typically set to 
(256×256) in MATLAB. 
 

 
Fig 7: Performance Analysis of the Sobel Edge Detection Algorithm on Test Image 

 
2) Comparing the Gradient Magnitude with Threshold Value to Identify True Edges 
This step involves evaluating the gradient magnitudes obtained and comparing them with a predetermined threshold. True edges are 
identified based on whether the gradient magnitude surpasses the specified threshold. 

 
3) Applying Convolution Masks (i and j) on the Input Image 
Convolution masks (i and j) are applied to the input image. These masks, representing the horizontal and vertical gradients, are crucial 
in computing the image gradients along these directions. 
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Fig 8: Visualization of Sobel Edge Detection Gradients (Gx and Gy) on Original Image. 

 
4) Determining Gradient Magnitude by Computation: 
The gradient magnitude is determined by squaring the pixel values of each filtered image. The subsequent addition of these squared 
values is followed by computing their square root to obtain the total gradient value. In Sobel Edge Detection, two masks come into 
play one for identifying horizontal edges and the other for vertical edges. Both masks calculate gradients in both vertical (i) and 
horizontal (j) directions. Convolution with these Sobel masks on the smoothed image yields gradients, as expressed by  
 

Gi=Gx*F(i,j) (6) 
Gj=Gy*F(i,j) (7) 

  
5) Comparing Gradient Magnitude with Threshold Value to Identify True Edges: 
This stage involves a secondary comparison of the computed gradient magnitude with a threshold value. True edges are identified 
based on this comparison, contributing to the final edge detection logic. Ultimately, edge detection is accomplished by applying a 
threshold to the total gradient (Gr) using equation (6) and (7).  
If the total gradient surpasses the defined threshold, the pixel is identified as an edge, as depicted in the ac companying Fig 9. 
Conversely, if the total gradient falls below the threshold, the pixel is not identified as an edge. This image masking logic is 
implemented through a Schostic Logic Circuit. 

 
Fig 9: Identification of True Edges Based on Gradient Magnitude Comparison with Threshold Visualization 

 
V. APPROXIMATE MULTIPLIER DESIGN FOR ENHANCED EFFICIENCY 

In Fig 9, a groundbreaking approximate multiplier fortified with our proposed technique is presented. While the nominal input width 
is tailored for 8 bit precision, the versatility of our approach extends seamlessly to larger multipliers. Comprising three distinctive 
stages, our novel design leverages advanced methodologies to strike a delicate balance between accuracy, hardware costs, and 
power efficiency. The approximate multiplier design consists of 3 stages. 
Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. 
Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads 
unless they are unavoidable. 
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Fig 10: Schematic Representation of an Adaptive Approximate Multiplier with Dynamic Truncation Configuration 

 
A. Partial Product Generation 
In the initial stage, each partial product emerges through the synergy of two 2 input AND gates, employing the gate sharing 
technique depicted in Fig 5. Building upon this, Fig 6 introduces a gate sharing strategy, further optimizing hardware costs. A 
pivotal innovation lies in the introduction of a 4 bit Trunc signal, enhancing control efficiency. This signal orchestrates the accuracy 
of multiple partial product columns, delin eated by the innovative '3-4-4-4 partition.' This strategic partitioning empowers users with 
flexibility, allowing them to tailor the multiplier to meet specific requirements. Our experiments showcase the efficacy of the 3-4-4-
4 partition, balancing power conservation, accuracy, and area overhead. 
 
B. Partial Product Compression 
The second stage orchestrates the compression of partial products, strategically dividing them into accurate and approximate 
regions. Columns 14th∼8th, deemed the accurate region, undergo compression with precise 4-2 compressors, while columns 
7th∼0th, representing the approximate region, benefit from our innovative approximate 4-2 compressors and an error compensation 
circuit. The demarcation between accurate and approximate regions ensures a judicious distribution of computational load, 
optimizing accuracy while mitigating power consumption. 
 
C. Result Generation and Error Handling: 
In the final stage, OR gates in columns 3rd ∼0th culminate in result generation, strategically minimizing carry propagation 
considerations. Acknowledging the diminished impact of errors close to the Least Significant Bit (LSB), we use OR gates for 
efficiency. Error detection in the second stage employs an Error Detection Circuit (EDC), precisely a single AND gate, determining 
the need for compensation bit production. The amalgamation of our proposed approximate 4-2 compressors, accurate 4-2 
compressors, full adders, and half adders optimally compresses partial products in remaining columns. Concluding this stage yields 
the final two partial product rows, culminating in accurate summation through precise adders to produce the definitive results. In 
essence, our innovative approximate multiplier unfolds a new chapter in computational efficiency, strategically blending accuracy 
and power conservation to herald a transformative era in multiplier design. 
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VI. RESULT DISCUSSION 
In the integrated system of Sobel Edge Detection and the Innovative Approximate Multiplier, the results showcase a significant 
advancement in both precision and computational efficiency. The collaborative approach seamlessly leverages the strengths of each 
component, leading to notable improvements in edge detection accuracy and overall system performance. The Sobel Edge Detection 
Algorithm, with its well established reputation in image processing, provides a robust foundation. The precise computation of 
gradients, facilitated by the convolution masks for horizontal and vertical gradients, ensures the delineation of authentic edges. The 
meticulous comparison of computed gradient magnitudes against predefined thresholds enhances the algorithm's capability to 
identify true edges accurately. The introduction of the Innovative Approximate Multiplier brings a transformative element to the 
system. The multiplier's role in computing gradient magnitudes introduces a delicate balance between precision and computational 
efficiency. The dynamic input truncation feature, alongside other innovative aspects, proves instrumental in finetuning accuracy 
while optimizing power consumption. This synergy is particularly crucial for applications where computational constraints are a 
significant consideration.  
The secondary thresholding step, involving the comparison of computed gradient magnitudes, further refines the edge identification 
process. This two-tiered thresholding approach contributes to the conclusive identification of edges, marking a notable improvement 
in the final edge detection results. The amalgamation of Sobel Edge Detection and the Innovative Approximate Multiplier 
culminates in an advanced system that harmonizes precision and computational efficiency. This symbiotic relationship unlocks 
immense potential for applications demanding accurate edge detection within constrained computational environments. 

 

 
Fig 11: 3x3 convolutional Sobel filter 

 
Moreover, the accompanying Fig 10 depicting the process diagram of a 3x3 convolutional Sobel filter visually reinforces the impact 
of Sobel filters in detecting edges. The convolution process, integral to image processing, effectively highlights horizontal and 
vertical changes, resulting in a gradient magnitude image that vividly showcases the edges within the image. This visualization 
serves as a testament to the efficacy of the in tegrated system in enhancing edge detection capabilities. 

 
Fig 12: RTL Technology Schematic 
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The provided Fig11 showcase the RTL Viewer and Technology Map Viewer of the proposed multiplier, offering an insightful 
exploration of the internal design schematic. These viewers serve as powerful tools for visualizing the intricate details of the net list, 
each presenting a distinct perspective on the internal structures within the design. The RTL Viewer and Technology Map Viewer 
provide valuable insights into the underlying architecture, allowing for a comprehensive examination of the proposed multiplier's 
composition and intricacies. 
 

Table 1:  
PERFORMANCE METRICS OF NORMAL AND APPROXIMATE MULTIPLIERS 

Method Name Area In Number Of LUT  Delay  Power 
 

Spartan 3 XC 3S 200 
PQ208 - 4 

LUT Gate 
Coun T 

Slices Delay Gate Or 
Logic 
Delay 

Path Or 
Route 
Delay 

Mw 

Normal Multiplier 176 1056 97 45.844ns 19.138ns 
41.7% 
logic 

26.706ns 
58.3% 
route 

256 

Approximate Multiplier 137 822 77 30.528ns 14.179ns 
46.4% 
logic, 

16.349ns 
53.6% 
route 

129 

 
The provided Table 1 offers a thorough examination of the performance character istics between a conventional multiplier and an 
innovative approximate multiplier deployed on the Spartan 3 XC 3S 200 PQ208-4 FPGA. The comparison involves critical 
parameters, including the count of Look Up Tables (LUTs), slices, total delay, gate or logic delay, and power consumption. Each 
numerical value is meticulously presented, providing insights into the distinct utilization patterns and effectiveness of both 
multiplier types on the specified FPGA platform. This comprehensive assessment delivers valuable perspectives on the efficiency 
and viability of approximate multipliers when juxtaposed with their traditional counterparts. 
 

VII. CONCLUSION AND FUTURE WORKS 
In conclusion, this study introduces an innovative multiplier design tailored for image processing, specifically in the realm of edge 
detection. The proposed design integrates a novel approximate 4-2 compressor and an error correction module to elevate accuracy 
while maintaining minimal hardware complexity. Implementation in Verilog HDL and validation through ModelSim and MATLAB 
simulations underscore the superior accuracy of the proposed multiplier compared to conventional counterparts, with a marginal 
increase in hardware complexity. The design presents a valuable solution to the challenge of achieving precision and efficiency in 
multipliers for image processing, particularly in the context of edge detection. Its seamless integration into existing image 
processing systems holds the promise of improved performance and accuracy. This work signifies a noteworthy advancement in the 
field of image processing, offering potential enhancements for various applications. To validate our contributions, image masking 
experiments were conducted utilizing the proposed multiplier. 
As for future work, there is a scope for further exploration and refinement of the proposed multiplier design. Investigating its 
performance across diverse datasets and benchmarking against alternative multiplier architectures could provide a comprehensive 
understanding of its applicability. Additionally, exploring adaptive mechanisms to dynamically adjust precision based on specific 
image characteristics could enhance the versatility of the multiplier in different image processing scenarios. Furthermore, integrating 
the multiplier into real world applications and assessing its performance in practical settings would contribute valuable insights. 
These avenues of exploration could contribute to the ongoing evolution of accurate and efficient multipliers in image processing 
applications. 
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