



# iJRASET

International Journal For Research in  
Applied Science and Engineering Technology



---

# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

---

**Volume: 13      Issue: XII      Month of publication: December 2025**

**DOI:** <https://doi.org/10.22214/ijraset.2025.75964>

**www.ijraset.com**

**Call:**  08813907089

**E-mail ID:** [ijraset@gmail.com](mailto:ijraset@gmail.com)

# ArthaYukti: An Integrated Deep Learning Framework for Financial Sentiment Analysis and Stock Price Forecasting

Ganesh Bhutkar<sup>1</sup>, Aditya Deore<sup>2</sup>, Shreyas Done<sup>3</sup>, Pormima Dokhale<sup>4</sup>, Esha Manhas<sup>5</sup>

Department of Computer Engineering Vishwakarma Institute of Technology Pune, india

**Abstract:** This paper presents ArthaYukti, a unified deep learning framework that integrates financial sentiment analysis with stock price forecasting to generate actionable market intelligence. The system employs FinBERT for domain-specific sentiment classification and Long Short-Term Memory (LSTM) networks for time-series forecasting. A dynamic weighting mechanism adaptively fuses sentiment-driven signals with technical indicators, thereby improving predictive accuracy over standalone models. Experimental results demonstrate notable reductions in forecasting error, improved sentiment detection, and efficient real-time processing. The proposed platform facilitates enhanced decision making for investors and financial institutions.

**Keywords:** Sentiment Analysis, Stock Price Prediction, FinBERT, LSTM Networks, Deep Learning, Financial Analytics, Time-Series Forecasting, Hybrid Prediction Models.

## I. INTRODUCTION

Financial markets are highly dynamic, influenced by economic indicators, corporate announcements, geopolitical conditions, and public sentiment. Traditional analysis techniques—such as technical and fundamental analysis—often fail to capture the complex, nonlinear interactions between these diverse factors. With the advancements in deep learning and natural language processing (NLP), machine-driven analysis has demonstrated substantial improvements in extracting hidden patterns from both structured and unstructured market data. LSTM networks have shown strong capabilities in modeling long-term dependencies in financial time series [1], while transformer-based architectures such as BERT have revolutionized contextual understanding in textual data [2]. FinBERT—an adaptation of BERT for financial corpora—has achieved state-of-the-art performance in financial sentiment classification [3]. However, existing approaches typically treat sentiment analysis and price forecasting as independent tasks, resulting in fragmented predictions that overlook cross-modal interactions.

ArthaYukti bridges this gap through a hybrid deep learning system that jointly incorporates sentiment signals and historical stock data. The key challenges addressed include:

- High-frequency data processing for real-time forecasting.
- Accurate sentiment extraction from financial news using domain-specific language models.
- Dynamic integration of sentiment and technical indicators through adaptive weighting.

The major contributions of this work are:

- A real-time ETL pipeline for financial market data and news streams.
- A FinBERT-based sentiment analysis module optimized for financial text.
- An LSTM-driven stock forecasting mechanism.
- A dynamic weighting algorithm that fuses multimodal insights.
- A scalable front-end-back-end architecture supporting real-time analytics.

## II. SYSTEM ARCHITECTURE

The ArthaYukti platform is designed as a modular, multi-layered architecture comprising three major components: (a) data acquisition pipeline, (b) analysis and prediction engine, and (c) user interface.

### A. Data Acquisition and Processing

Historical and real-time stock data are acquired using the *yfinance* API. The dataset comprises over 129,000 rows of NIFTY50 stock information spanning 2014–2025. A PostgreSQL database stores structured data, while Redis and Redis caching to reduce response latency. News articles are aggregated from financial feeds and preprocessed for NLP.

### B. Sentiment Analysis Module

FinBERT is employed for sentiment classification. The model categorizes financial news into bullish, bearish, or neutral sentiments. Tokenization, embedding, contextual encoding, and softmax classification generate probability-weighted outputs, which serve as sentiment indicators.

### C. Price Forecasting Module

The forecasting subsystem leverages LSTM networks to model sequential dependencies. Multiple stacked LSTM layers are used to predict closing prices using normalized features such as open, high, low, close, volume, moving averages, and RSI.

### D. Dynamic Weighting Mechanism

Unlike fixed-weight models, ArthaYukti dynamically adjusts weights between sentiment analysis and technical forecasting. A sigmoid-based function assigns adaptive blending factors based on confidence scores, capturing real-time market fluctuations.

## III. METHODOLOGY

### A. Market Data Pipeline

Market data undergoes transformation involving cleaning, missing-value handling, normalization, and technical feature extraction. Indicators such as MA and RSI supplement core price data to enhance predictive performance.

Let the historical market dataset be represented as:

$$D_{\text{raw}} = \{(o_t, h_t, l_t, c_t, v_t)\}^T \quad t=1$$

Where

$o_t$  = Open price at time  $t$

$h_t$  = High price at time  $t$

$l_t$  = Low price at time  $t$

$c_t$  = Close price at time  $t$

$v_t$  = Volume at time  $t$

### B. News Data Processing Pipeline

Preprocessing includes tokenization, stop-word removal, financial term normalization, metadata tagging, timestamp alignment, and NER-based entity extraction. Articles are stored with source credibility factors.

#### 1) Data Cleaning & Transformation

Missing values are imputed using linear interpolation:

$$x_t = x_{t-1} + \frac{x_{t+1} - x_{t-1}}{2}, \quad x \in \{o, h, l, c, v\}$$

Log returns are recomputed as:

$$r_t = \ln\left(\frac{c_t}{c_{t-1}}\right)$$

## 2) Feature Engineering

### MovingAverage(MA):

$$MA_n(t) = \frac{1}{n} \sum_{i=0}^{n-1} c_{t-i}$$

### ExponentialMovingAverage(EMA):

$$EMA_n(t) = \alpha c_t + (1-\alpha) EMA_n(t-1)$$

$$\text{Where, } \alpha = \frac{n+1}{2}$$

### RelativeStrengthIndex(RSI):

$$RSI(t) = 100 - \frac{100}{1 + \frac{G(t)}{L(t)}}$$

where

$$G(t) = \frac{1}{n} \sum_{i=1}^n \max(r_{t-i}, 0),$$

$$L(t) = \frac{1}{n} \sum_{i=1}^n \max(-r_{t-i}, 0)$$

The final normalized feature matrix becomes:

$$X_{norm} = \text{MinMaxScaler}(X)$$

## C. FinBERT Sentiment Analysis

FinBERT processes tokenized news through transformer layers, resulting in contextual embeddings. A classification head outputs categorical probabilities. Thresholding ensures noise reduction and removes unrelated text.

Let a financial news article be tokenized into:

$$X = \{w_1, w_2, \dots, w_n\}$$

Each token is embedded using BERT's contextual embedding:

$$E = \text{BERT}(X) \in \mathbb{R}^{n \times d}$$

### CLS token embedding:

$$h_{cls} = E_1 \in \mathbb{R}^d$$

### Classification head:

$$z = Wh_{cls} + b$$

### Softmax probability distribution:

$$P(y=k|X) = \frac{e^{z_k}}{\sum_{i=1}^3 e^{z_i}}, k \in \{\text{bullish, bearish, neutral}\}$$

### Sentiment confidence score:

$$S = \max_k P(y=k|X)$$

### Polarity index (used later in weighting):

$$\pi = P(\text{bullish}) - P(\text{bearish})$$

#### D. LSTM Price Forecasting

The LSTM model uses hidden and cell states to capture sequential patterns. The system predicts  $t+1$  closing prices using optimized learning rates, dropout regularization, and batch normalization to avoid overfitting.

Given the normalized sequence:

$$X = \{x_1, x_2, \dots, x_T\}, x_t \in \mathbb{R}^m$$

The LSTM cell computes:

$$\begin{aligned} f_t &= \sigma(W_f[x_t, h_{t-1}] + b_f) \\ i_t &= \sigma(W_i[x_t, h_{t-1}] + b_i) \\ \tilde{c}_t &= \tanh(W_c[x_t, h_{t-1}] + b_c) \\ c_t &= f_t \odot c_{t-1} + i_t \odot \tilde{c}_t \\ o_t &= \sigma(W_o[x_t, h_{t-1}] + b_o) \\ h_t &= o_t \odot \tanh(c_t) \end{aligned}$$

Prediction:

$$\hat{y}_{t+1} = W_y h_t + b_y$$

Forecasting error metrics:

$$MAE = \frac{1}{N} \sum_{t=1}^N |y_t - \hat{y}_t|$$

$$RMSE = \sqrt{\frac{1}{N} \sum_{t=1}^N (y_t - \hat{y}_t)^2}$$

#### E. Hybrid Dynamic Weight Assignment

The adaptive mechanism computes:

$$W_{final} = \alpha(t) W_{sentiment} + (1 - \alpha(t)) W_{technical}$$

where  $\alpha(t)$  is determined using:

$$\alpha(t) = 1 + e^{-k(t-t_0)}$$

This enables hybrid decision-making, particularly during volatility spikes.

Sentiment and technical predictions are combined using:

$$P_{sent} = f(\pi, S), P_{tech} = \hat{y}_{t+1}$$

The adaptive fusion weight:

$$\alpha(t) = \frac{1}{1 + e^{-k(\pi(t) - \tau)}}$$

where:

- $\pi(t)$  = sentiment polarity
- $\tau$  = sentiment stability threshold

- $k$ =steepnesscontrolparameter

The final hybrid prediction:

$$P_{final} = \alpha(t) \cdot P_{sent} + (1 - \alpha(t)) \cdot P_{tech}$$

Weightedconfidence:

$$C_{final} = \alpha(t) \cdot S + (1 - \alpha(t)) \cdot C_{tech}$$

This ensures:

- If sentiment is strong then the model shifts toward FinBERT.
- If market is stable then LSTM dominates.
- During volatility the weights adapt rapidly.

#### F. Implementation Architecture

The system employs:

- Backend: Flask API, Celery workers, PostgreSQL, Redis.
- Monitoring: Prometheus+Grafana.
- Frontend: React JS, WebSockets, Highcharts- based visualization.
- Deployment: Docker-based microservices, Kubernetes orchestration, CI/CD pipelines.

## IV. RESULTS

Experiments were conducted using five years of NIFTY50 stock and news data. The FinBERT sentiment module achieved:

- Accuracy: 89.7%
- F1-Score: 89.3%

The LSTM forecasting model obtained:

- MAE: 1.34
- RMSE: 1.62

The hybrid model improved prediction accuracy by 6.4% over LSTM-only models through adaptive weighting, especially during sudden market sentiment shifts.

System performance tests showed:

- Average API latency: 320 ms
- Latency reduction with Redis: 37%
- Concurrent users supported: Up to 500 User surveys reported:
- 83% positive feedback on interface
- 77% appreciation for sentiment-driven insights

## V. FUTURE SCOPE

The integration of sentiment and technical forecasting demonstrates that market predictions benefit significantly from multimodal fusion. FinBERT captures subtle financial cues often missed by generic models, while LSTM models long-term dependencies. The dynamic weighting mechanism provides resilience to sudden market shocks by adjusting reliance on sentiment or technical indicators depending on confidence scores.

However, challenges persist:

- Real-time news streams may contain noise or misinformation.
- Market anomalies such as black swan events remain difficult to model.
- Hybrid models require frequent retraining to avoid drift.

Nonetheless, results indicate that Artha Yukti offers a practical improvement over traditional single-source models.

## VI. CONCLUSION

Artha Yukti introduces a novel hybrid approach integrating financial sentiment analysis with LSTM-based stock forecasting. The system's adaptive weighting algorithm, real-time ETL pipeline, and scalable architecture position it as a valuable tool for modern financial analytics. The results confirm that combining sentiment and technical factors yields more accurate and reliable market predictions.

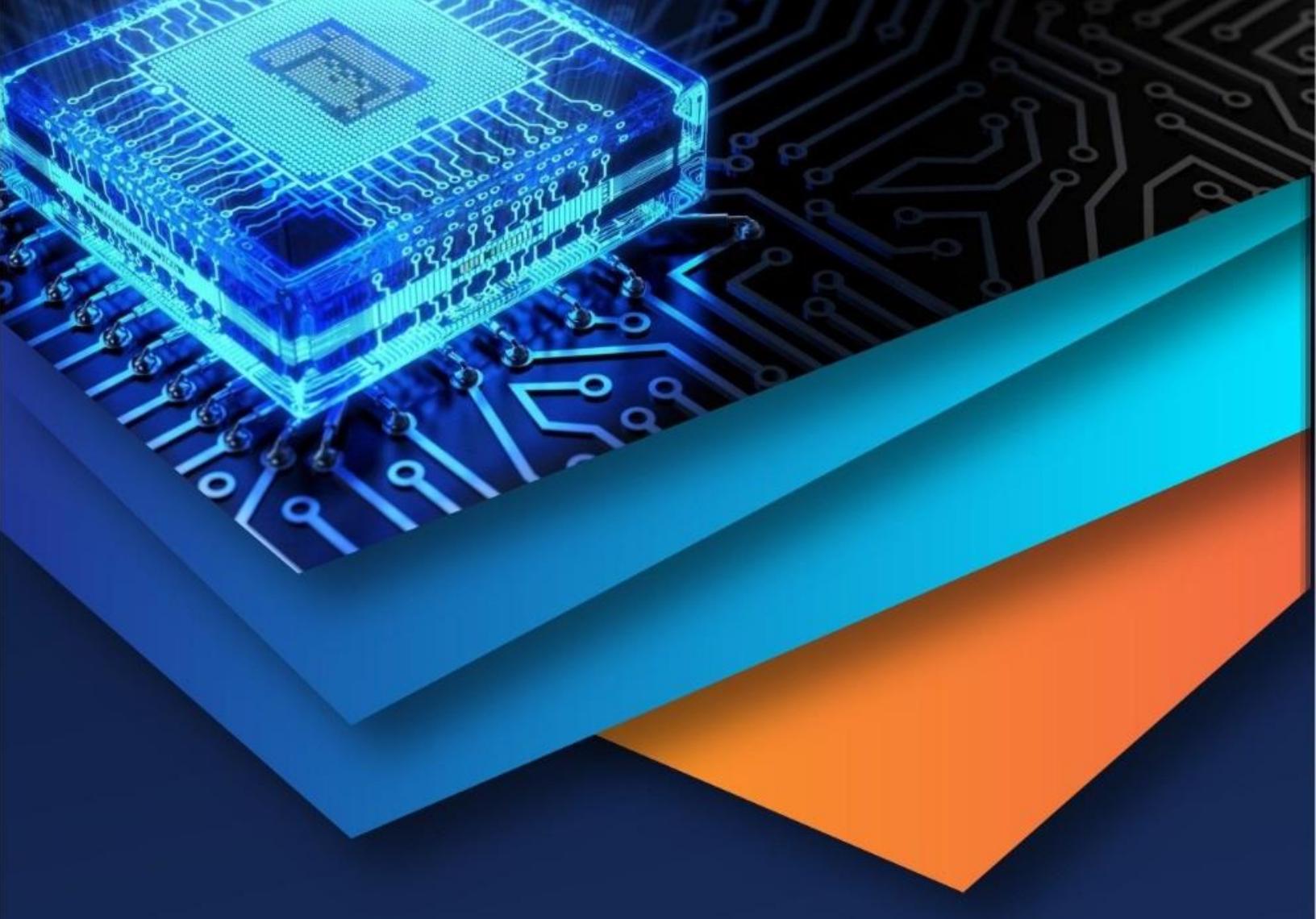
## VII. FUTURE SCOPE

Future extensions include:

- 1) Reinforcement learning agents for autonomous trading decisions.
- 2) Multilingual sentiment analysis for global financial markets.
- 3) Transformer-based forecasting models (e.g., Informer, Temporal Fusion Transformers).
- 4) Graph neural networks to model inter-stock relationships.
- 5) Market anomaly detection using unsupervised deep learning.
- 6) Explainable AI (XAI) to interpret hybrid model predictions.
- 7) Integration with live brokerage APIs for automated execution.

## REFERENCES

- [1] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," *Neural Computation*, vol. 9, no. 8, pp. 1735–1780, 1997.
- [2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding," *Proc. NAACL-HLT*, 2019.
- [3] Y. Yang, M. H. Chen, and A. Hagen, "FinBERT: A Pretrained Language Model for Financial Communications," *arXiv:2006.08097*, 2020.
- [4] M. Schumaker and H. Chen, "Textual Analysis of Stock Market Prediction Using Financial News Articles," *Decision Support Systems*, vol. 50, no. 2, pp. 164–174, 2011.
- [5] X. Ding, Y. Zhang, T. Liu, and J. Duan, "Deep Learning for Event-Driven Stock Prediction," *Proc. IJCAI*, pp. 2327–2333, 2015.
- [6] E. F. Fama, "Efficient Capital Markets: A Review of Theory and Empirical Work," *The Journal of Finance*, vol. 25, no. 2, pp. 383–417, 1970.
- [7] Z. Zhang, S. Wang, and B. Liu, "Deep Learning-Based Stock Price Prediction: A Survey," *IEEE Access*, vol. 8, pp. 216139–216152, 2020.
- [8] A. Graves, "Supervised Sequence Labelling," *Studies in Computational Intelligence*, Springer, 2012.
- [9] X. Liang et al., "Integrating Sentiment with Technical Indicators for Stock Prediction," *IEEE Access*, vol. 8, pp. 175307–175322, 2020.
- [10] Y. Qin et al., "ADual-Stage Attention-Based Recurrent Neural Network for Time Series Prediction," *Proc. IJCAI*, 2017.
- [11] H. Liu, L. Wang, and J. Zhang, "An Improved Deep Learning Model for Stock Index Prediction," *IEEE Access*, vol. 7, pp. 73110–73118, 2019.
- [12] H. G. Kim and C. H. Kim, "Financial News Analysis for Stock Market Prediction Using Machine Learning," *Expert Systems with Applications*, vol. 130, pp. 157–168, 2019.
- [13] S. Liao, "Deep Learning for Stock Prediction Using Fundamental Analysis," *International Journal of Data Science*, vol. 5, no. 2, pp. 113–129, 2020.
- [14] A. Vaswani et al., "Attention is All You Need," *Proc. NeurIPS*, 2017.
- [15] K. He et al., "Deep Residual Learning for Image Recognition," *Proc. CVPR*, 2016.
- [16] Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," *Nature*, vol. 521, pp. 436–444, 2015.
- [17] R. P. Schumaker, Y. Zhang, C.-N. Huang, and H. Chen, "Evaluating Sentiment in Financial News Articles," *Proc. HICSS*, 2012.
- [18] P. C. Tetlock, "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," *The Journal of Finance*, vol. 62, no. 3, pp. 1139–1168, 2007.
- [19] L. Bing, "Sentiment Analysis and Opinion Mining," *Synthesis Lectures on Human Language Technologies*, Morgan & Claypool, 2012.
- [20] J. Patel, S. Shah, P. Thakkar, and K. Kotecha, "Predicting Stock Market Index Using LSTM," *Expert Systems with Applications*, vol. 42, pp. 10680–10690, 2015.
- [21] J. Hu et al., "Stock Movement Prediction Using Hybrid Attention-Based LSTM," *IEEE Access*, vol. 7, pp. 178128–178139, 2019.
- [22] T. Fischer and C. Krauss, "Deep Learning with Long Short-Term Memory Networks for Financial Market Predictions," *European Journal of Operational Research*, vol. 270, no. 2, pp. 654–669, 2018.
- [23] M. Z. Islam, S. Kang, and K. J. Lee, "Sentiment-Based Stock Price Prediction Using Neural Networks," *International Journal of Forecasting*, vol. 37, pp. 1520–1532, 2021.
- [24] Z. Li, X. Wang, and D. Zhou, "Multi-Modal Stock Forecasting with Sentiment and Technical Indicators," *IEEE Transactions on Knowledge and Data Engineering*, 2022.
- [25] J. Bollen, H. Mao, and X. Zeng, "Twitter Mood Predicts the Stock Market," *Journal of Computational Science*, vol. 2, no. 1, pp. 1–8, 2011.



10.22214/IJRASET



45.98



IMPACT FACTOR:  
7.129



IMPACT FACTOR:  
7.429



# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24\*7 Support on Whatsapp)