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Abstract: This paper presents ArthaYukti, a unified deep learning framework that integrates financial sentiment analysis with 
stock price forecasting to generate actionable market intelligence. The system employs FinBERT for domain-specific sentiment 
classificationandLongShort-Term Memory(LSTM) networks for time-series forecasting. A dynamic weighting mechanism 
adaptively fuses sentiment- driven signals with technical indicators, thereby improving predictive accuracy over standalone 
models. Experimental results demonstrate notable reductions in forecasting error, improved sentiment detection, and efficient 
real-time processing. The proposed platform facilitates enhanced decision making for investors and financial institutions. 
Keywords: Sentiment Analysis, Stock Price Prediction, Fin BERT, LSTM Networks, Deep Learning, Financial Analytics, Time-
Series Forecasting, Hybrid Prediction Models. 
 

I.   INTRODUCTION 
Financial markets are highly dynamic, influenced by economicindicators,corporateannouncements,geopolitical conditions, and 
public sentiment. Traditional analysis techniques—such as technical and fundamental analysis— often fail to capture the complex, 
nonlinear interactions between these diverse factors. With the advancements in deep learning and natural language processing 
(NLP), machine-driven analysis has demonstrated substantial improvements in extracting hidden patterns from both structured and 
unstructured market data.LSTMnetworkshaveshownstrongcapabilitiesinmodeling long-term dependencies in financial time series 
[1], while transformer-based architectures such as BERT have revolutionized contextual understanding in textual data [2]. 
FinBERT—an adaptation of BERT for financial corpora— has achieved state-of-the-art performance in financial sentiment 
classification [3]. However, existing approaches typically treat sentiment analysis and price forecasting as independent tasks, 
resulting in fragmented predictions that overlook cross-modal interactions. 
ArthaYuktibridgesthisgap through ahybriddeep learning system that jointly incorporates sentiment signals and 
historicalstockdata.Thekeychallengesaddressedinclude: 
 High-frequencydataprocessingforreal-time forecasting. 
 Accuratesentimentextractionfromfinancialnews using domain-specific language models. 
 Dynamicintegrationofsentimentandtechnical indicators through adaptive weighting. 
Themajorcontributionsofthisworkare: 
 Areal-timeETLpipelineforfinancialmarketdata and news streams. 
 AFinBERT-basedsentimentanalysismodule optimized for financial text. 
 AnLSTM-drivenstockforecastingmechanism. 
 Adynamicweightingalgorithmthatfuses multimodal insights. 
 Ascalablefrontend-backendarchitecture supporting real-time analytics. 
 

II.   SYSTEM ARCHITECTURE 
The ArthaYukti platform is designed as a modular, multi-layered architecture comprising three major components: (a) data 
acquisition pipeline, (b) analysis and prediction engine, and (c) user interface. 
A. Data Acquisition and Processing 
Historical and real-time stock data are acquired using the yfinance API. The dataset comprises over 129,000 rows of NIFTY50 stock 
information spanning 2014– 2025. A PostgreSQL database stores structured data, while Redishand lescachingto reduce response 
latency.  News articles are aggregated from financial feeds and preprocessed for NLP. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue XII Dec 2025- Available at www.ijraset.com 
     

 
2858 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

B. Sentiment Analysis Module 
FinBERTisemployedforsentimentclassification.The model categorizes financial news into bullish, bearish, orneutralsentiments. 
Tokenization,embedding,contextual encoding,andsoftmaxclassification generate probability-weighted outputs, which serveas 
sentiment indicators. 
 
C. Price Forecasting Module 
TheforecastingsubsystemleveragesLSTMnetworksto model sequential dependencies. Multiple stacked LSTM layers are used to 
predict closing prices using normalized features such as open, high, low, close, volume, moving averages, and RSI. 
 
D. Dynamic Weighting Mechanism 
Unlike fixed-weight models, ArthaYukti dynamically adjusts weights between sentiment analysis and 
technicalforecasting.Asigmoid-basedfunctionassigns adaptive blending factors based on confidence scores, capturing real-time 
market fluctuations. 
 

III.   METHODOLOGY 
A. Market Data Pipeline 
Market data undergoes transformation involving cleaning, missing-value handling, normalization, and technical 
feature extraction.Indicators such asMAand RSI supplement core price data to enhance predictive performance. 
Letthehistoricalmarketdatasetberepresented as: 

 
 

B. News Data Processing Pipeline 
Preprocessing includes tokenization, stop-word removal, financial term normalization, metadata tagging, timestamp alignment, and 
NER-based entity extraction. Articles are stored with source credibility factors. 
 
1) DataCleaning&Transformation 
Missingvaluesareimputedusinglinearinterpolation: 
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2) Feature Engineering 

 
 
C. FinBERTSentiment Analysis 
FinBERT processes tokenized news through transformer layers, resulting in contextual embeddings. A classification head outputs 
categorical probabilities. Thresholding ensures noise reduction and removes unrelated text. 
Letafinancialnewsarticlebetokenizedinto: 

 {݊ݓ,...,2ݓ,1ݓ}=ܺ
 
EachtokenisembeddedusingBERT’scontextual embedding: 
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D. LSTM Price Forecasting 
TheLSTMmodeluseshiddenandcellstatestocapture sequential patterns. The system predicts t+1 closing prices using optimized 
learning rates, dropout regularization, and batch normalization to avoid overfitting. 
Giventhenormalizedsequence: 
ℝ∋ݐݔ,{ܶݔ,...,2ݔ,1ݔ}=ܺ  ݉

 
E. HybridDynamicWeightAssignment  
The adaptive mechanism computes: 
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This ensures: 
 Ifsentimentisstrongthenthemodelshifts toward FinBERT. 
 IfmarketisstablethenLSTMdominates. 
 Duringvolatilitytheweightsadapt rapidly. 
 
F. Implementation Architecture  
The system employs: 
 Backend:FlaskAPI,Celeryworkers, PostgreSQL, Redis. 
 Monitoring:Prometheus+Grafana. 
 Frontend:ReactJS,WebSockets,Highcharts- based visualization. 
 Deployment: Docker-based microservices, Kubernetesorchestration,CI/CDpipelines. 
 

IV.   RESULTS 
Experimentswereconductedusingfiveyearsof NIFTY50 stock and news data. The FinBERT sentiment module achieved: 
 Accuracy:89.7% 
 F1-Score:89.3% 
 
TheLSTMforecastingmodel obtained: 
 MAE:1.34 
 RMSE:1.62 
 
The hybrid model improved prediction accuracy by 6.4% over LSTM-only models through adaptive 
weighting,especiallyduringsuddenmarketsentiment shifts. 
Systemperformancetestsshowed: 
 AverageAPIlatency:320 ms 
 LatencyreductionwithRedis:37% 
 Concurrentuserssupported:Upto500 User surveys reported: 
 83%positivefeedbackoninterface 
 77%appreciationforsentiment-driveninsights 
 

V.   FUTURE SCOPE 
The integration of sentiment and technical forecasting demonstrates that market predictions benefit significantly from multimodal 
fusion. FinBERT captures subtle financial cues often missed by generic models, while LSTM models long-term dependencies. 
Thedynamicweightingmechanismprovidesresilience to sudden market shocks by adjusting reliance on sentiment or technical 
indicators depending on confidence scores. 
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However,challengespersist: 
 Real-timenewsstreamsmaycontainnoiseor misinformation. 
 Marketanomaliessuchasblackswanevents remain difficult to model. 
 Hybridmodelsrequirefrequentretrainingto avoid drift. 
Nonetheless,resultsindicatethatArthaYuktioffersa practical improvement over traditional single-source models. 
 

VI.   CONCLUSION 
ArthaYukti introduces a novel hybrid approach integrating financial sentiment analysis with LSTM- based stock forecasting. The 
system’s adaptive weighting algorithm, real-time ETL pipeline, and scalable architecture position it as a valuable tool for modern 
financial analytics. The results confirm that combiningsentimentandtechnicalfactorsyieldsmore accurate and reliable market 
predictions. 
 

VII.   FUTURE SCOPE 
Futureextensionsinclude: 
1) Reinforcementlearningagentsforautonomous trading decisions. 
2) Multilingualsentimentanalysisforglobal financial markets. 
3) Transformer-basedforecastingmodels(e.g., Informer, Temporal Fusion Transformers). 
4) Graphneuralnetworkstomodelinter-stock relationships. 
5) Marketanomalydetectionusingunsupervised deep learning. 
6) ExplainableAI(XAI)tointerprethybrid model predictions. 
7) IntegrationwithlivebrokerageAPIsfor automated execution. 
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