



# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74553

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com



Volume 13 Issue X Oct 2025- Available at www.ijraset.com

### Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine

Yash Anil Chaudhari<sup>1</sup>, Yash Bhatu Joshi<sup>2</sup>, Karan Sanjay Patil<sup>3</sup>, Devyani Ajay kumar Rathod<sup>4</sup>, Mr. Shaikh Habiburrahman<sup>5</sup>, Mr. Mohammed Awais<sup>6</sup>, Mr. Saeed Ahmad<sup>7</sup>, Mr. Sanaurrehman Momin<sup>8</sup>

1, 2, 3, 5, 6, 7, 8Dr. Uttamaro Mahajan College of B Pharmacy, Chalisgaon, Dist. Jalgaon, 424101

4AarogyaSampada College Of Pharmacy Gayran, Bhoras Chalisgaon, Dist. Jalgaon, 424101

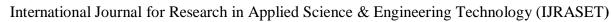
Abstract: Artificial intelligence (AI) encompasses a wide range of methodologies that have been utilized by pharmaceutical corporations over decades, including machine learning, deep learning, and other forms of computational advancements. The development of such advances has opened up unprecedented capabilities of accelerating drug discovery and delivery, increasing treatment regimen optimization, as well as optimizing patient outcomes. AI is revolutionizing the pharmaceutical sector in earnest, altering every aspect ranging from drug discovery and development to precision medicines as target identification and validation, excipient selection, prediction of synthetic route, supply chain optimization, monitoring of continuous manufacturing processes, or predictive maintenance, among others. Although the incorporation of AI has the potential to maximize efficiency, minimize costs, and enhance both medicine and patient health, it nevertheless poses critical issues from a regulatory perspective. In this review article, we will give a holistic overview of AI's applications in the pharma industry, including fields like drug discovery, target optimization, personalized medicine, drug safety, and others. By examining ongoing research patterns and case studies, we seek to enlighten on AI's revolutionary influence on the pharma industry and its broader implications for healthcare.

Keywords: Lead optimization, target identification, drug delivery, drug development, artificial intelligence, and customized medications

#### I. INTRODUCTION

In the last two decades, the application of AI in the pharmaceutical industry has taken a complete turn. AI-based applications in drug discovery were initially limited to basic computational models during the 1980s and 1990s, which were primarily used for molecular modeling and chemical structure prediction. With improving algorithms and processing power, these initial attempts laid the groundwork for more sophisticated strategies. When machine learning algorithms began to emerge, which were able to process big, complex sets of data and predict chemical reactions and optimize drug formulations, artificial intelligence (AI) began becoming popular in the early 2000s. But due to advances in Big Data, deep learning, and the existence of vast biological and chemical datasets, such as from proteomics, genomics, and high-throughput screening, the general deployment of AI within pharmaceuticals flew off the radar in the 2010s. Pharmaceutical companies have employed AI in numerous steps of drug research, ranging from designing clinical trials to target discovery. AI has become a key tool over the past few years for accelerating drug discovery, optimizing clinical trials, and tailoring therapies, marking a shift toward more efficient, data-led pharmaceutical R&D. A new age of innovation has been brought about by the combination of artificial intelligence (AI) with the creation of innovative medications, which has profoundly changed many aspects of drug distribution and discovery. AI includes several different methods. Pharmaceutical corporations have used, in recent decades, such techniques as deep learning, machine learning, and other cutting-edge computational methods. This has led to previously unheard-of possibilities for the advancement of the medication delivery and discovery processes, which will ultimately optimize treatment plans and enhance patient outcomes.

Due to long turnaround times and high failure rates, the drug discovery pipeline has historically been associated with high prices. Pharmaceutical businesses may more successfully and economically traverse this complicated terrain by using an AI-driven strategy. Machine learning algorithms, for instance, are able to examine enormous information and find complex patterns. Compared to conventional trial-and-error methods, this enables the faster and more accurate prediction of possible drug candidates as well as the identification of novel therapeutic targets. This has accelerated the process of developing drugs for a wide range of illnesses.





ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

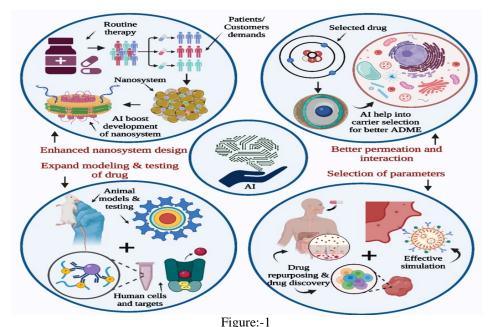
In a similar vein, AI systems are able to examine vast amounts of biological data and reveal previously undiscovered connections between medications and illnesses. This has made it possible for AI to support drug repurposing, speeding up the clinical translation of current medications from lab to bedside and making it easier to find new therapeutic uses for them. This is particularly crucial for some illnesses, such orphan diseases and parasite diseases that impact impoverished nations.

AI algorithms can now evaluate a variety of patient information, including genomes, proteomics, and clinical records, and provide individualized therapies to patients based on their genetic composition, lifestyle choices, and illness features. This is the age of customized medicines. This can enhance patient outcomes and reduce negative consequences.

A sustained partnership between researchers, clinicians, industry stakeholders, and regulatory bodies is essential to driving AI innovation in the pharmaceutical sector, despite the impressive progress made thus far. However, the integration of AI into drug discovery and drug delivery is not without difficulties, with ethical issues, regulatory obstacles, and data privacy concerns continuing to pose significant barriers to widespread adoption.

Before applying AI machine learning workflows to pharmaceutical industrial processes, it is essential to comprehend the fundamental elements involved in creating precise and accurate AI machine learning workflows (Figure 1). Since a model's quality is closely correlated with the quality of the data it is trained on, gathering and cleaning data is the first and most important stage. Examining and fixing any noise, whether it be in image data (such as artifacts or uneven lighting) or non-image data (such as incorrect entries or missing values), is crucial to preserving data integrity. Furthermore, the data should be examined for any biases that might result in underfitting or excessive variance, which could result in overfitting. There is overfitting. Poor generalization to unknown datasets with varying biases occurs when the model learns patterns from noise or artifacts in the data instead of the actual signal. Overfitting may be reduced with the use of strategies including cross-validation, training set expansion, predictive feature curation, and ensemble approaches.

Choosing and optimizing the best model based on performance is a crucial stage in machine learning operations. The Area under the Receiver Operator Curve (AUROC), which gauges the harmony between sensitivity and specificity, is frequently used to assess model performance. A good model should ideally have high sensitivity and specificity, however, the relative importance of each may change depending on the external datasets to guarantee its generalizability and stability. In artificial intelligence, developing a model is a continuous process that requires testing as new datasets become available. Regular maintenance is also necessary to guarantee that performance stays stable, particularly in the face of concept drift, which is the gradual alteration of the link between input and output variables.



Artificial intelligence working in drug development

Source:https://www.researchgate.net/publication/372275300/figure/fig4/AS:11431281173890412@1689082143899/AI-contribution-to-drug-development-and-research-AI-can-be-used-to-enhance-nanosystem.png





Volume 13 Issue X Oct 2025- Available at www.ijraset.com

To guarantee the model's stability and generalizability, it is equally crucial to verify it on separate external datasets after training and testing it on a dataset, which is usually divided into training and test sets. In artificial intelligence, developing a model is a continuous process that requires testing as new datasets become available. To guarantee that performance stays strong, regular maintenance is also necessary, particularly in the face of concept drift, which occurs when the link between input and output variables varies over time in unexpected ways.

We will give a thorough summary of AI's uses in the pharmaceutical sector in this review article, including topics such as drug safety, tailored medications, and discovery. We want to clarify the revolutionary effects of AI on the pharmaceutical sector and its consequences for healthcare delivery by examining recent research trends and case examples.

#### II. AI IN DRUG DISCOVERY

The process of finding and creating novel pharmaceutical substances for the market is known as drug discovery. It usually takes 15 years to finish this multi-stage procedure. Choosing a disease to target and locating a target that might alter the condition constitute the first stage of drug discovery. The next step is exploratory research, where HIT molecules—chemical entities with a potential affinity for the target—are found with the use of extensive screening assays. A chemical that selectively and precisely binds to the target and can alter its typical mode of action is selected following more research. We refer to this molecule as the LEAD compound.

After that, the lead molecule is refined to improve its ADME (absorption, distribution, metabolism, and excretion) characteristics and biological activity. The medicine advances to the preclinical (formulation research and animal testing) and clinical stages if a promising chemical is found during screening. Before a medicine can be put on the market, regulatory agencies such as the Food and Drug Administration (FDA) or the European Medicines Agency (EMA) must approve it once clinical studies are completed. Pharmacovigilance will continue to be used to monitor the safety of the drug throughout its distribution once it is marketed.

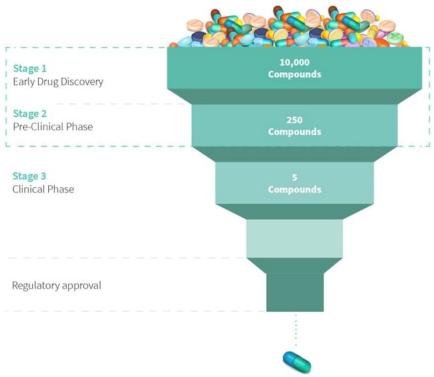


Figure:-2

A schematic depicting The key phases of the drug development and discovery process Source:https://www.google.com/url?sa=i&url=https%3A%2F%2Fblog.biobide.com%2Fthe-drug-discovery-process&psig=AOvVaw3EXvDDs6b3WKT4Ljgn61d&ust=1743965109108000&source=images&cd=vfe&opi=89978449&ved=0C BcQjhxqFwoTCNib8L7GwYwDFQAAAAAAAAAAAAAA



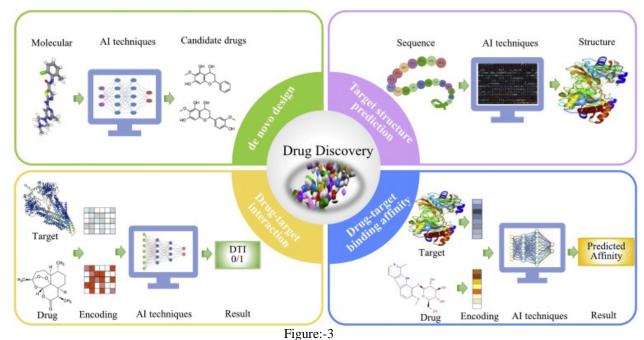
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

The enormous chemical space that has to be investigated to find viable drug candidates is one of the main obstacles in drug development. Conventional techniques for screening huge chemical libraries are time-consuming, labor-intensive, and frequently provide

a restricted

quantity of hits. However, machine learning algorithms used in AI-driven virtual screening techniques are capable of quickly sorting through enormous chemical compound databases and predicting their biological activity against particular drug targets. These algorithms are capable of prioritizing molecules with the best chance of therapeutic success by analyzing molecular interactions, physicochemical characteristics, and structural factors. This can greatly speed up the optimization of the hit-to-lead process.

Furthermore, the novo design of pharmacological compounds with improved potency and selectivity has been greatly aided by AI algorithms. By utilizing deep learning models and generative adversarial networks (GANs), artificial intelligence (AI) may produce optimal chemical structures that target a particular biological activity while matching precise pharmacological and safety characteristics. Because GANs may produce new compounds that target certain biological functions while adhering to pharmacological and safety characteristics, they can be very helpful for improving chemical structures and speeding up the drug development process. GANs are a kind of deep learning model that uses two neural networks—the discriminator and the generator—to create new data samples that are similar to a given dataset. By learning the distribution of the training data, the first network (the generator) generates fresh data samples with the goal of generating outputs that are identical to actual data. The generator can produce novel chemical structures that closely resemble already-existing compounds with desired characteristics in the context of drug development. The discriminator, the second network, assesses the samples produced by the generator and makes a distinction between



The phases in pharmaceutical processes where AI is crucial are symbolized by the star. Source:https://www.cell.com/cms/10.1016/j.omtn.2023.02.019/asset/cf60ea7c-a530-4a36-a70d-d17dcc15f4b1/main.assets/gr4 lrg.jpg

AI technologies are changing the way that new leads are optimized and drug design is thought about, in addition to speeding up the identification of lead compounds. Trial-and-error methods have historically been used in the chemical synthesis of new compounds in order to iteratively alter lead molecules and improve their pharmacokinetic, toxicokinetic, potency, and selectivity characteristics. However, artificial intelligence (AI)-driven prediction methods, such as molecular docking simulations and quantitative structure–activity relationship (QSAR) modeling, have offered fresh perspectives on how to accurately forecast the biological activity of novel drugs. The primary cause of this is the extensive use of chemical and biological information to produce AI algorithms aimed at clarifying structure–activity correlations while reducing the expense and duration of drawn-out experimental validation. The foundation of QSAR models is the idea that biological activities are analogous to chemical structures.





Volume 13 Issue X Oct 2025- Available at www.ijraset.com

The key characteristics of the chemical structure that may affect its biological activity are captured by QSAR models using molecular descriptors like molecular weight, electronegativity, or hydrophobicity (e.g., binding affinity to a target receptor or toxicity).

For instance, a number of AI-powered drug discovery platforms, like Atom-wise and BenevolentAI, are transforming the way that new leads are currently found by giving priority to particular drug targets that have the best chance of being therapeutically successful. This speeds up the drug discovery process and lowers the possibility that clinical trials will fail. In order to find new therapeutic targets and forecast their druggability, these platforms use machine learning algorithms to evaluate a variety of datasets, such as genomic, proteomic, and clinical data.

Over the past ten years, AI-driven drug development has produced encouraging findings in a variety of therapeutic domains, including rare illnesses, neurology, infectious diseases, and cancer. For instance, the AlphaFold algorithm from DeepMind use deep learning principles to predict protein structures with amazing precision, providing important information about interactions between proteins and ligands. Over 200 million proteins have been identified to date, and many more are found every year. Every protein has a distinct three-dimensional structure that determines its purpose and function. But figuring out a protein's exact structure may be a laborious and expensive procedure that sometimes takes years of effort and a substantial financial outlay. Because of this, researchers have only been able to examine a small portion of these proteins, which has seriously hampered attempts to find new drugs and treat illnesses. Anticipating the forces of attraction and repulsion that eventually determine a protein's three-dimensional structure is necessary to unravel its structure. Protein structure may be ascertained experimentally using a variety of methods, including nuclear magnetic resonance and X-ray crystallography, although both need years of painstaking labor, costly specialist equipment, and a great deal of trial and error. This problem has been resolved by the AlphaFold algorithm, which speeds up protein discovery and predicts how proteins will fold.

Another example is Recursion, which screens hundreds of chemicals in parallel for the treatment of uncommon genetic illnesses using machine learning techniques. By doing this, it seeks to promote the clinical translation of possible therapeutic candidates and expedite their identification [41]. Large biological, chemical, and patient-centric databases (>50 petabytes) with over 6 trillion gene and compound connections analyzed are owned by Recursion. The Recursion Operating System, a platform driven by one of the biggest private biological and chemical databases in the world, serves as the foundation for Recursion's primary goal. The Recursion Operating System creates Maps of Biology and Chemistry that expand the search to investigate uncharted regions of illness biology, combining genomes, rather than focusing just on a small number of diseases with known treatment options.

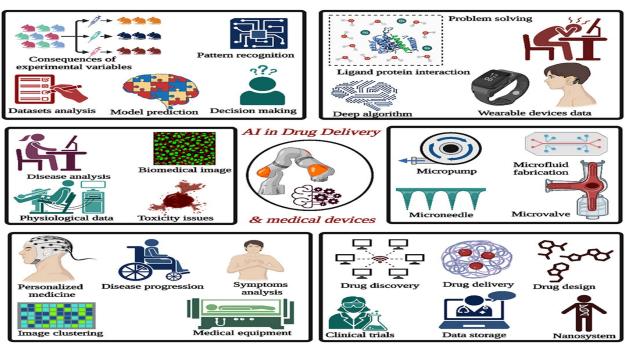


Figure:-4



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

ADME (absorption, distribution, metabolism, and excretion) pharmacological datasets, transcriptomics, metabolomics, phenomics, invivomics, and real-world patient data (Figure 5).

Recursion has a number of upcoming compounds, such as a CNS-penetrant, orally bioavailable, small molecule pan-Histone deacetylase inhibitor for the treatment of Neurofibromatosis type 2-mutated meningiomas; a novel small molecule intended to selectively inhibit the toxin produced by Clostridium difficile in the gastrointestinal tract to prevent recurrent infections, which is a major cause of antibiotic-induced diarrhea; and an oral bioavailable, small molecule superoxide scavenger for the treatment of central cavernous malformation.

AI-driven drug development has made great strides, but there are still a number of issues that need to be addressed. AI models, particularly deep learning models, are complicated and challenging to comprehend due to their interpretability. This limits their use in directing the logical selection of innovative medications by making it challenging to extract the underlying processes underlying their predictions. Furthermore, integrating AI technology into the drug discovery pipeline requires specific knowledge and a strong data infrastructure. Furthermore, to guarantee a responsible and fair application of AI in drug research, ethical factors like algorithmic bias and data privacy should be taken into account.

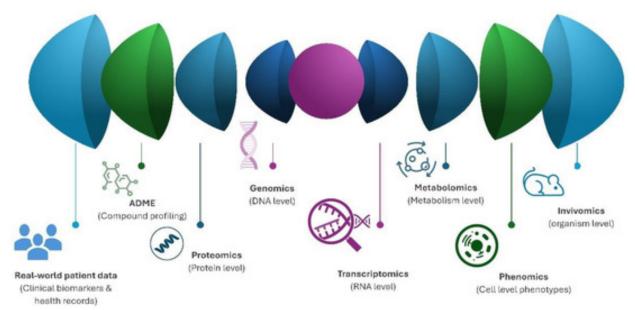


Figure:-5

Schematic representation of the Recursion Operating System algorithm

Source:-https://www.mdpi.com/pharmaceutics/pharmaceutics-16-01328/article\_deploy/html/images/pharmaceutics-16-01328-g003-550.jpg

#### III. MACHINE LEARNING IN DRUG DISCOVERY

With their creative approaches to virtual screening, target identification, and lead optimization, machine learning algorithms have become extremely effective tools in the drug development process. Machine learning algorithms can quickly examine intricate correlations and more accurately and efficiently predict viable drug candidates by utilizing large databases of chemical compounds, biological targets, and molecular interactions.

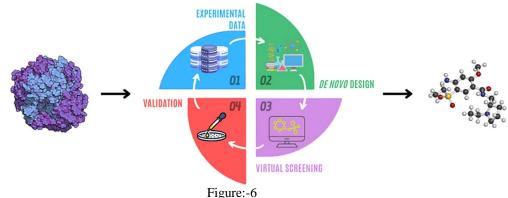
#### A. VIRTUAL SCREENING

The practice of computationally screening enormous chemical libraries to find possible therapeutic candidates is known as virtual screening. In the early phases of drug discovery, it is an essential step. Molecular docking and pharmacophore modeling were the mainstays of virtual screening techniques in the past. These techniques relied heavily on inflexible structures and oversimplified depictions of ligand-target interactions, which had poor prediction accuracy. These days, machine learning techniques provide a more reliable and adaptable virtual screening technology that enables more accurate ligand-target binding prediction and the investigation of a broad variety of chemical characteristics.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

The ability of machine learning-based virtual screening to extract intricate patterns and connections from enormous databases of chemical compounds and biological targets is its primary benefit. The training of annotated datasets on known ligand-target interactions is the foundation for a machine learning model's performance. The goal of machine learning It is possible to accurately anticipate ligand-target interactions from new compounds by using an algorithm that can detect tiny structural motifs and physicochemical characteristics linked to binding affinity. Additionally, to enhance the prediction capabilities of virtual screening models, machine learning algorithms may integrate a variety of variables, including gene expression patterns, protein structural information, drug physicochemical characteristics, and drug-induced phenotypic changes.



VIRTUAL SCREENING

 $Source:-https://images-provider.frontiersin.org/api/ipx/w=1200\&f=png/https://www.frontiersin.org/files/Articles/1305741/frhem-03-1305741-HTML-r2/image\_m/frhem-03-1305741-g001.jpg$ 

Random forests, support vector machines (SVMs), and deep learning models are some of the most widely used machine-learning techniques that have been effectively used to virtual screening.

#### B. IDENTIFICATION OF THE TARGET

Finding appropriate pharmacological targets is a crucial stage in the drug development process because it identifies the molecular processes and biological pathways that may be altered to provide therapeutic effects. In order to identify targets, machine learning techniques are essential. These algorithms rank possible disease-associated targets for additional research by examining several genomic, proteomic, and clinical data sources.

The abundance of biological information accessible, such as gene expression patterns, networks of protein-protein interactions, and illness phenotypes, presents a significant obstacle to target discovery. In order to find patterns and relationships that conventional statistical methods might miss, machine learning algorithms provide a scalable and effective method of evaluating complicated datasets. Machine learning algorithms can find hidden relationships between biological entities and identify possible drug targets based on their expression patterns, functional annotations, and disease associations by utilizing dimensionality reduction techniques like principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE).

Additionally, machine learning algorithms have the capacity to combine data from several sources in order to rank potential drug targets according to their therapeutic relevance, safety profiles, and druggability. In this regard, the Drug Gene Interaction Database (DGIdb) curates and annotates known drug–gene interactions from various sources using machine learning techniques. This makes it possible to identify drug targets from known interactions from investigational compounds and approved medications. Additionally, the connection map (CMAp) analyzes gene expression profiles from drug-treated cells using machine learning techniques, identifying possible targets based on their functional annotations and transcriptional fingerprints.

In order to address the dearth of techniques for methodically identifying a compound's cellular effects and any unexpected off-target activities that might only be identified late in the drug development process and restrict the compound's clinical use, the connectivity map was created. The connection map created a thorough collection of cellular characteristics that show systematic perturbations using pharmacologic and genetic perturbagens in response to this demand. High-similarity signatures may indicate previously identified and practical relationships between two proteins involved in the same pathway, between a small molecule and its protein target, or between two small molecules with structural differences but similar functions. A list of these linkages might act as a useful genome lookup database.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

#### C. LEAD OPTIMIZATION

Lead optimization uses iterative chemical changes to enhance the potency, selectivity, and pharmacokinetic characteristics of possible therapeutic candidates once they have been discovered. Lead optimization has historically depended on time-consuming and labor-intensive experimental techniques, such as high-throughput screening, which frequently produced less-than-ideal compounds and expensive failures. A more methodical and data-driven approach to lead optimization is provided by machine learning techniques, which enable more accurate and efficient predictions of the biological activity and drug-like characteristics of new chemical analogs.

The use of machine learning-based lead optimization enables the prediction of the structure–activity relationships (SARs) that underlie drug-target interactions by learning from sizable databases of chemical structures and biological activities. Through instruction. Machine learning algorithms can find molecular features and substructures that contribute to the intended biological effects by using predictive models on annotated datasets of known compound activities. This allows for more informed design choices and reduces the need for expensive and time-consuming experimental validation. GANs and QSAR modeling are two machine learning techniques that have grown in prominence. In this regard, the DeepChem framework employs deep learning algorithms to accurately predict the biological activities of novel compound analogs and to learn molecular representations straight from chemical structures.

Using molecular docking simulations, Schrödinger's Maestro platform prioritizes lead candidates for additional optimization and forecasts the binding affinities of novel compounds to target proteins.

Machine learning algorithms have demonstrated significant promise in quickly assessing intricate correlations and forecasting prospective drug ideas with improved accuracy and efficiency by utilizing enormous databases of chemical compounds, biological targets, and molecular interactions. A list of software platforms is shown in Table 1.

| Software Platform                                                                                                                         | Description                                                | Key Features                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|
| DeepMind AlphaFold<br>(Google, Mountain View, CA, USA)<br>https://deepmind.google/technologies/alphafold/, accessed on<br>10 October 2024 | Deep learning model<br>for protein structure<br>prediction | Predicts protein<br>structures with high<br>accuracy               |
| Atomwise (Atomwise Inc., San Francisco, CA, USA) https://www.atomwise.com/, accessed on 10 October 2024                                   | AI-driven drug<br>discovery platform                       | Virtual screening,<br>lead optimization                            |
| Recursion Pharmaceuticals (Recursion, Salt Lake City, UT, USA) https://www.recursion.com/, accessed on 10 October 2024                    | High-throughput screening platform                         | Cellular phenotypic<br>analysis, rare<br>diseases                  |
| BenevolentAI (Benevolent AI, London, UK) https://www.benevolent.com/, accessed on 10 October 2024                                         | Drug discovery and<br>development<br>platform              | Predictive modeling,<br>target identification                      |
| Schrödinger Maestro (Schrödinger, New York, NY, USA) https://www.schrodinger.com/, accessed on 10 October 2024                            | Molecular modeling and simulations                         | Molecular docking,<br>QSAR modeling                                |
| Insilico Medicine (Insilico Medicine, Hong Kong) https://insilico.com/, accessed on 10 October 2024                                       | Drug discovery and<br>biomarker<br>development             | Generative<br>modeling, drug<br>repurposing, and<br>aging research |
| XtalPi<br>(QuantumPharm Inc., Boston, MA, USA)<br>https://www.xtalpi.com, accessed on 10 October 2024                                     | AI-driven drug<br>crystal prediction                       | Predicts drug crystal<br>forms, stability                          |
| Cyclica (Cyclica, Toronto, ON, Canada) https://cyclicarx.com/science/, accessed on 10 October 2024                                        | AI-driven drug<br>discovery platform                       | Polypharmacology<br>prediction, target<br>deconvolution            |

Table 1 lists software systems that use artificial intelligence (AI) methods to speed up several phases of the drug research and discovery process, including virtual screening, deep learning, and predictive modeling. Source:-

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.discoverymedicine.com%2FBenjamin-Yang%2F2009%2F05%2F16%2Fa-proteomics-overview-what-why-and-how%2F&psig=AOvVaw1VFvQF-OgM0UMqVF-gGeLo&ust=1743971304016000&source=images&cd=vfe&opi=89978449&ved=0CBEQjhxqFwoTCPjh3s7dwYwDFQAAAAAddda-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-baranta-b

**AAAAABAJ** 



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

#### IV. ARTIFICIAL INTELLIGENCE IN PREDICTIVE MODELING, CUSTOMIZED MEDICINE, AND FORMULATION

#### A. AI AND MEDICAL PERSONALIZATION

1) Drug response prediction and treatment regimen optimization: -

Predicting drug reactions now requires the use of machine learning and deep learning, including support vector machines, random forests, and neural networks. More precisely, because of their distinct biological traits, they have developed into indispensable instruments for forecasting how various patients would react to particular medications. The abundance of biological data, such as proteomics, metabolomics, and genomes, makes it possible to combine this and find possible biomarkers linked to medication safety and efficacy.

These models can help clinicians choose the best drugs for patients, lowering the possibility of side effects and enhancing treatment results overall.

Additionally, machine learning methods can incorporate treatment regimen optimization. AI systems may modify dosage schedules in real-time, guaranteeing optimal effectiveness while reducing adverse effects, by continually learning from patient reactions. Chemotherapy dose schedule optimization has been used in cancer therapies. AI may create individualized treatment plans by combining data from several sources, including clinical trials, electronic health records, and empirical data. These plans provide a more adaptable and responsive approach to patient care since they are dynamic and modified in response to new information.

Finding individuals who are most likely to benefit from a certain medication can help save treatment costs and considerably lessen the likelihood of unfavorable clinical outcomes. This is especially important for checkpoint inhibitor immunotherapies, as some patients have remarkable, long-term benefits despite the generally poor response rates (~20%) of these treatments. Due to a lack of data, the use of AI in this field has been restricted, although it is steadily growing. In order to predict PD-1 inhibitor resistance in patients with advanced melanoma, Liu et al. created a logistic regression-based classifier that was trained using genomic, transcriptomic, and clinical data from patients who had not received therapy. Johannet et al. presented a more sophisticated AI technique that predicts checkpoint immunotherapy responses in patients with advanced melanoma by employing convolutional neural networks trained on histology slides and patient clinical data.

In order for doctors to make necessary adjustments or switch therapies promptly, it is also essential to ascertain whether a patient is not responding well to the present therapy. In clinical practice, pathology or radiology pictures are usually manually reviewed to evaluate tumor shrinkage and identify new lesions in order to track the course of cancer and the response to therapy. But with checkpoint inhibitor immunotherapies, where disease progression patterns are frequently unusual, this manual evaluation can be more difficult. In order to overcome this, Dercle et al. showed how machine learning might be used to train models on characteristics unique to a certain treatment in order to forecast how well various cancer treatments will work. By examining quantitative characteristics from longitudinal CT scans of patients with nonsmall cell lung cancer, they employed a group of six machine learning algorithms to forecast patient sensitivity (defined as progression-free survival above the population median) to chemotherapy, targeted therapy, and immunotherapy.

In addition to tracking treatment outcomes, machine learning models such as CURATE.AI provide dynamic choices for modifying medication doses for individual or combination therapy, enabling the customization of care for each patient based on time-specific data points. Cell lines give AI models a wealth of data for learning, despite the fact that they may be unreliable models because of genetic drift or cross-contamination. Pre-processing is frequently required to reduce noise in these datasets, such as cell line verification or validation with in vivo data. In one study, Iorio et al. evaluated how 1001 cancer cell lines responded to 265 anticancer drugs in order to create Elastic Net models that accurately predicted medication efficacy by converting genomic data like mutations and gene expression.

The inability to comprehend the biological processes underlying predictions is a significant drawback of AI learning algorithms. In order to get around this, Kuenzi et al. created Drug Cell, an interpretable deep learning model that mimics well-known biological processes using a visible neural network. This was combined with an artificial neural network that was created to simulate the chemical structure of drugs. The model was able to predict drug reactions with accuracy and offer insights into the mechanisms underlying the responses. Furthermore, this method was employed to forecast synergistic medication combinations, and patient-derived xenograft models allowed for the validation of these predictions.

2) Customizing Care for Each Patient Depending on Their Genetic Composition, Lifestyle, and Other Elements:Customizing medical care to each patient's unique traits is known as personalized medicine. Pharmacogenomics, the study of how a person's genes impact how they react to medications, is one of the main uses of AI in personalized medicine.





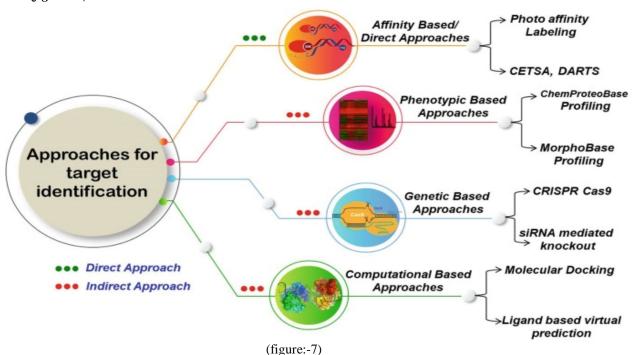
Volume 13 Issue X Oct 2025- Available at www.ijraset.com

The best suitable medication and dose may be chosen by using AI algorithms to anticipate a patient's genetic composition and how they will react to various medications. For example, using genetic variation, AI models have been used to forecast how patients would react to antidepressants, assisting doctors in prescribing specialized mental health drugs. It can be difficult and usually requires a trial-and-error process to determine which antidepressant is best for a patient with severe depressive illness. One intriguing approach to customizing antidepressant medications is machine learning. Though encouraging, this still has little practical utility, and models must be improved to take into account variables other than efficacy alone.

When customizing medicines, AI considers not just genetic data but also patient preferences, lifestyle, and environmental factors. Real-time information on a patient's food, sleep habits, physical activity, and other lifestyle variables can be gathered using wearable technology and mobile health applications. Understanding how these variables affect medication efficacy and illness development may be gained by analyzing all of this data. Similarly, to give a more complete picture of a patient's health, AI algorithms may take into account social determinants of health, including socioeconomic position, education, and access to healthcare. With all of these considerations, AI makes it possible to approach personalized medicine holistically, focusing on therapies that are tailored not just to a patient's genetic makeup but also to their whole life circumstances. We can also recognize trends in patient preferences thanks to machine learning algorithms. A multivariate analysis, for instance, found a correlation between the pharmacological properties of ibuprofen tablets and patient preferences for those that dissolve more quickly, resulting in a quicker onset of action.

#### B. AI IN DRUG DELIVERY AND FORMULATION

The difficulties of medication formulation and distribution have long plagued the pharmaceutical industry. In order to improve formulations and delivery systems, traditional approaches can include expensive and time-consuming trial-and-error procedures. Algenerated predictive models are used to improve medicine formulations, guaranteeing that active components are delivered to the target spot in the body as efficiently as possible. All algorithms, for example, can forecast a medication's release profile from a certain formulation, enabling the creation of controlled-release pharmacological formulations that have a consistent therapeutic impact over time(figure:-7).



Artificial intelligence predictive modeling in nanomedicines, microfluidics, drug formulation, drug–excipient compatibility, drug solubility, bioavailability, and tailored medications.

Source:- https://www.google.com/url?sa=i&url=https%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-3-030-95895-4\_3&psig=AOvVaw3Nqml-

9XTTYqqjrHGBUUyo&ust=1744018416411000&source=images&cd=vfe&opi=89978449&ved=0CBEQjhxqFwoTCOjX7IqNw4wDFQAAAAAAAAAABAE



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

AI may also be used to create drug delivery systems, such as liposomes and nanoparticles, which can transport medications straight to particular tissues or cells. It is possible to build more precise and efficient medication delivery methods by forecasting how these systems will interact with the body.

#### 1) Optimizing Drug Combinations and Compatibility with Excipients:-

The stability, bioavailability, and general effectiveness of pharmaceutical formulations are all significantly influenced by excipients. Selecting the ideal excipient mix has always required a great deal of trial and error. Large datasets may be analyzed by AI-driven models, especially machine learning algorithms, to forecast the best excipient combinations that improve therapeutic effectiveness. AI algorithms can accurately forecast the ideal excipient concentration needed to get the requisite disintegration and dissolution time by creating the right dataset.

Pharmaceutical production has changed as a result of the incorporation of AI into 3D-printed dosage forms, which has improved drug delivery methods and allowed for individualized therapy. Although 3D printing offers a high degree of adaptability that traditional methods cannot match, the intricacy of creation and guaranteeing precise dosage control without medication degradation make its application in clinical practice extremely difficult. Customized pharmacological therapy can be produced by using AI algorithms to modify the design and composition of 3D-printed dosage forms based on patient characteristics like age, weight, and medical history. Rapid development and the optimization of drug release patterns, dose strengths, and geometries are made possible by AI's ability to evaluate large datasets and simulate the behavior of various dosage forms. AI also aids in anticipating and resolving any production issues by guaranteeing quality control and improving printing conditions. By learning from real-time data, AI-driven feedback systems further improve the 3D printing process by increasing scalability, accuracy, and repeatability.

In order to guarantee stability and effectiveness as well as to avert probable incompatibilities, AI models may also be used to comprehend and forecast interactions between medications and excipients. In addition to real-time stability investigations, possible drug-excipient interactions are frequently found using traditional analytical techniques, including chromatography, FTIR, NMR, and DSC. The chemistry of both medications and excipients may be fully represented using the PubChem Fingerprint collection. A prediction method for analyzing drug-excipient interactions during product development, DE-INTERACT, is based on machine learning. Using vanillin and paracetamol as a case study, the tool's validity has been proven. Training and validation accuracies for the trained DE-Interact model were 0.9930 and 0.9161, respectively. Using standard analytical techniques, the model's performance was confirmed by verifying three anticipated incompatibilities: brinzolamide with polyethyleneglycol, paracetamol with methylparaben, and paracetamol with vanillin. These predictions were validated by DSC, FTIR, HPTLC, and HPLC investigations. Additionally, machine learning models may be used to forecast the important qualitative characteristics of solid dosage forms and how they affect the formulation's physicochemical performance based on the production method.

#### 2) Improving Bioavailability and Solubility:-

The therapeutic benefits of medications are largely determined by their solubility and bioavailability. Because they may not dissolve well in the gastrointestinal system, drugs with poor water solubility frequently struggle to achieve appropriate bioavailability, which reduces oral absorption and, ultimately, therapeutic efficacy.

This problem is common in around 40% of recently created chemical entities, which makes it a major obstacle in the creation of novel drugs.

A crucial component of the early stages of the development process, the prediction of drug solubility in aqueous media can help direct the appropriate solubilization approach.

Here, a sizable dataset of chemical characteristics and solubility data is used to train machine learning models in order to find trends that might not be seen using more traditional methods. AI models are used to help devise formulation techniques to improve a drug candidate's solubility once it has been recognized as having a poor solubility profile. These tactics include solid dispersions, complexation, nanonization, and the addition of surfactants or co-solvents. In the end, a number of parameters, including permeability, dissolution rate, first-pass metabolism, and water solubility, affect bioavailability, which is the crucial metric. To forecast a drug's potential behavior in the human body, including its absorption rate, pharmacokinetic profile, and bioavailability profile, machine learning models can combine data from in vitro, in vivo, and in silico investigations.

#### 3) AI in Designing Nanocarriers and Targeted Delivery Systems:-

Nanocarriers, such as liposomes, nanoparticles, dendrimers, polypeptides, transferosomes, and nano self-emulsifying systems, are necessary for the usage of nanomedicines.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Drugs can be delivered to a particular location of the body at higher quantities using nanocarriers, increasing their effectiveness and reducing their negative effects in other places. This is especially crucial when administering medications that target infectious illnesses or cancer cells, as well as when administering medications with a poor physicochemical profile via various physiological barriers like the intestinal epithelium, stratum corneum, or blood—brain barrier.

A number of factors, including nanoparticle size, shape, surface change, and material composition, must be carefully taken into account when developing efficient nanomedicine-based drug delivery systems because they are crucial for circulation time, cellular uptake, and biodistribution. For instance, smaller particles have a longer circulation time and stronger penetration in deeper tissues, but longer or rod-shaped particles may have better cellular absorption than spherical ones.

A number of factors, including nanoparticle size, shape, surface change, and material composition, must be carefully taken into account when developing efficient nanomedicine-based drug delivery systems because they are crucial for circulation time, cellular uptake, and biodistribution. For instance, smaller particles have a longer circulation time and stronger penetration in deeper tissues, but longer or rod-shaped particles may have better cellular absorption than spherical ones. Traditional methods of creating and refining nanomedicines are sometimes time-consuming and need a great deal of testing. AI models are a game-changing technology that simplifies the development, distribution, and optimization of nanomedicines. AI algorithms can find nanoparticle designs that optimize tumor targeting and reduce off-target effects by training the model on experimental data. Additionally, by examining information on receptor expression patterns and concentrating on ligands with the highest binding affinities, AI models may forecast the most efficient ligand combinations, increasing accuracy and efficacy.

#### 4) AI in the Design of Microfluidic Chips for the Fabrication of Advanced Nanomedicine:-

Small fluidic circuits called microfluidic devices are made to work with liquids at the nanoliter scale. Microfluidics' accurate process parameter control allows for remarkable nanomedicine quality and encapsulation efficiency enhancement. Al's incorporation into microfluidic chip design and optimization has further sped up developments, enabling improved performance, shorter development times, and more affordable manufacturing. The results can be predicted using machine learning methods of microfluidic processes according to input factors such as reagent concentrations, channel sizes, and flow rates. Because AI can forecast flow patterns and mixing efficiency in microfluidic channels, it can speed up computational fluid dynamics simulations. By approximating intricate simulations, surrogate models may significantly cut down on calculation time. AI models may learn the fundamental physics of microfluidic processes from experimental data, making precise predictions without the need for explicit physical modeling. AI is capable of producing novel microfluidic structures that are tailored for certain methods of fabricating nanomedicine. In the end, combining artificial intelligence (AI) with sensors on microfluidic chips enables real-time monitoring of the production of nanomedicine, identifying irregularities, anticipating failures, and instantly modifying settings to guarantee constant product quality.

#### 5) Obstacles and Prospects:-

(i)data quality and availability, given that comprehensive datasets and high-quality data are necessary for training effective AI models; (ii) model interpretability, given that AI models are complex and frequently operate as "black boxes," making it difficult to interpret their decision-making process, which is crucial for improving model transparency for regulatory acceptance and clinical trust; and (iii) regulatory considerations, given that the integration of AI into pharmaceutical development has questioned the need for standards and criteria to be established for AI-driven techniques in order to guarantee their efficacy and safety.

#### 6) AI Applications in the Pharmaceutical Sector, for Example:-

From the choice of excipients and the prediction of synthesis routes to process optimization, drug design, supply chain, and preventive maintenance, among other areas, artificial intelligence is significantly changing the pharmaceutical production process. Across all phases of drug research and development, pharmaceutical companies might save a substantial amount of money and time by implementing AI.

AI speeds up preclinical testing, hit discovery, and lead optimization by more rapidly finding drugs and precisely forecasting their effects. The drug development process, which typically takes three to six years, can be accelerated by AI-driven technologies. AI can shorten this period by 1-2 years by more accurately forecasting therapeutic effectiveness, toxicity, and ideal molecular architectures.



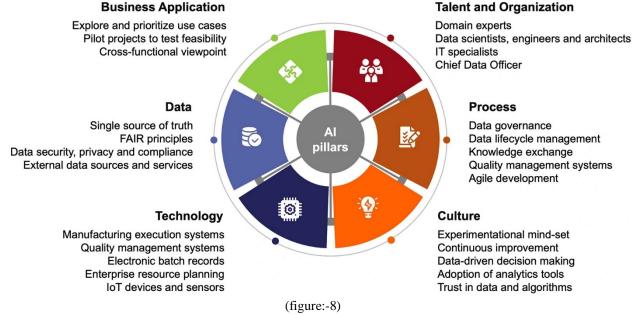
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

The average cost of producing a new medicine is \$2.8 billion, of which 35% may be attributed to drug discovery expenses. By lowering the number of compounds tried and increasing the success rates of early-phase trials, AI can assist in lowering the expenses associated with drug discovery.

AI can also help optimize clinical trial designs, which includes lowering the cost and duration of clinical studies as well as patient monitoring and enrollment. By automating data gathering and processing, AI can also shorten the time required to carry out clinical studies, enabling more effective patient outcome monitoring. This has resulted in a 15-30% reduction in trial duration. AI can help shorten the time it takes for medications to progress from Phase I to Phase III by anticipating side effects early and improving dosage techniques. In early-stage clinical trials, molecules found using AI have shown greater success rates than those found using conventional techniques. The success rates of phase 1 trials for medications developed by AI have ranged from 80 to 90%, which is far higher than the 40-65% industry statistics of the past. AI-discovered compounds have a success rate of about 40% for Phase 2 trials, which is similar to historical norms.

It is anticipated that the pharmaceutical industry may witness a rise in the likelihood of a molecule successfully traversing all clinical phases from 5-10% to 9-18% if these trends persist into phase 3 and beyond. According to estimates, integrating AI may speed up procedures and save costs in a number of ways, demonstrating its potential to increase productivity, lower expenses, and hasten the discovery of new drugs (Table 2 & Figure 8). It is anticipated that the integration of AI technologies into pharmaceutical manufacturing will become increasingly more commonplace as these technologies develop further, spurring innovation and enhancing patient outcomes.



Applications of AI in the pharmaceutical sector, for instance. Applications of AI in the pharmaceutical sector, for instance. Source:- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.datascience.ch%2Farticles%2Fpromise-aipharmaceutical-

manufacturing&psig=AOvVaw2Km4SSNdPmgynP3yCzKZA8&ust=1744020669874000&source=images&cd=vfe&opi=89978449 &ved=0CBcQjhxqFwoTCMiHzrmVw4wDFQAAAAAAAAAAAAAAAT Identification of the Target:-

Finding a precise target is the first stage in the pharmaceutical company's pipeline. AI technologies can be used to speed up this process. By 2026, AstraZeneca's Centre for Genomics Research will have examined up to two million genomic sequences. AstraZeneca intends to utilize this enormous information to forecast the course of the disease and how it will react to therapy by identifying genes, pathways, variations, or other aspects of the genome that are likely to cause it. AI algorithms may be used to find novel therapeutic targets and create better medications. This is crucial to the CRISPR gene-editing technique.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Given the roles that genes play in biology, CRISPR technology may be used to determine which genes, if removed, cause cancer medication resistance or sensitization. In order to maximize each experiment, the image-based outputs of CRISPR screens have been analyzed using machine learning and deep learning models.

#### 7) Drug Design:-

By forecasting the molecular structures and characteristics of possible therapeutic candidates, artificial intelligence (AI) algorithms can be used in drug discovery after a viable target has been found. Machine learning algorithms may find druggable targets and create compounds with the appropriate pharmacological characteristics that can interact with the targets by evaluating a large biological dataset. After screening billions of molecules, a biotechnological firm called Insilico Medicine created a new treatment candidate for idiopathic pulmonary fibrosis in just 18 months using an internal AI algorithm. The promising candidate then proceeded to preclinical studies.

#### 8) Compound Selection:-

Large chemical libraries may then be analyzed using AI algorithms to find the molecules with the best potential as medication candidates, taking into account characteristics like toxicity, permeability, and solubility. The optimal candidate can be identified when the drug structure has been predicted, taking into account the medication's physicochemical characteristics for intracellular delivery. Exscientia specializes in drug discovery powered by AI. They created the protein kinase C-theta inhibitor EXS4318, which Bristo Myers Squibb licensed in 2023. PKC-theta is essential for regulating T-cell activity, a key factor in autoimmune disorders. PKC-theta inhibitors are reported to offer promise in immunologic and inflammatory disorders. Nevertheless, a number of big pharmaceutical firms have been unable to create a small chemical that is sufficiently potent and selective against other kinases that are closely similar. In under 11 months, Exscientia was able to create a highly effective and highly selective next-generation immunomodulatory therapeutic candidate (the 150th compound synthesized) thanks to their AI algorithms.

#### 9) Synthesis Route Forecasting:-

In pharmaceutical businesses, predicting the synthetic pathway may be a time-consuming and laborious procedure prior to optimization. IBM has created "RXN for Chemistry," an AI-based retrosynthesis tool that predicts chemical reaction paths using deep learning. Pharmaceutical firms have employed this technique to expedite the synthesis of complex chemicals, cutting down on the time needed to produce them. Using molecular transformer models that have been trained on 2.5 million chemical reactions, RXN for Chemistry use AI to forecast the results of chemical reactions, retrosynthesis paths, and experimental techniques. By determining the relationships between the existence and lack of chemical motifs in the reactant, reagent, and product included in the dataset, Molecular Transformer generates predictions. This category of models is scalable, adaptable, and non-rule-based.

Single-step retrosynthesis has two main challenges: (i) locating the product's reaction center and (ii) producing the right reactants and reagents when the reaction center is identified. Replicating a chemist's decision-making process when identifying the disconnections in a target molecule is the first problem. This work is challenging since there are frequently several alternative breakdown paths, and the optimal synthetic route relies on the route's overall structure. Bond breaking is intuitively prioritized by chemists using fundamental principles, however these guidelines are intricate and not very generalizable to other compounds. A target molecule for a machine may have several reaction centers, enabling a range of possible reactions. This poses serious difficulties for model fitting and assessment. Finding the components required for the reaction is the second problem. The target molecule can be disassembled into synths when the reaction center has been established. Three levels of validity must be met in order for these synths to be converted into valid reactants and reagents: (i) the generated reactants must form valid molecules according to correct chemical rules; (ii) the reaction from reactants to the product must be chemically feasible, taking into account molecular orbital theory, electronic effects, steric hindrance, and the selectivity of the reaction center; and (iii) all atoms in the target product must map to those in the reactants, adhering to the law of conservation of atoms.

Furthermore, the strategy for producing reactants differs according to molecular representations; sequence-based approaches work well with SMILES representations, but graph-based methods are given preference for graph representations.

However, creating a comprehensive multi-step approach is the ultimate aim of retrosynthesis planning. There haven't been many innovative algorithmic attempts to address the extremely difficult multi-step retrosynthesis prediction process that results in commercially accessible building-block materials. Effective retrosynthesis planning model creation and evaluation provide a number of significant obstacles.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

First, since hundreds of alternative reactants can be used to synthesize each step toward the target molecule, the search space for plausible retrosynthesis schemes is exponentially huge. Second, the standards for what makes an effective synthetic route are frequently vague and subject to change depending on the situation. For example, stability and affordability are given priority in commercial contexts, whereas innovation and the capacity to handle complicated chemical structures are given more weight in academic settings. Furthermore, researchers frequently use manually created routes to assess retrosynthesis methods because there aren't many publicly accessible datasets for these routes. Consequently, AI-driven retrosynthesis planning is crucial for automating the review process and speeding up route finding in many circumstances.

#### 10) Robotic Synthesis:-

High-throughput testing and quicker drug discovery are made possible by AI-driven robotics in pharmaceutical synthesis, which can automate the synthesis of chemical compounds after the synthetic pathway has been anticipated and improved. When combined with AI, robotic systems can perform intricate chemical reactions, track operations in real time, and modify settings for best outcomes. A helpful tool for the synthesis of tiny molecules, Chemputer is a robot scientist created by the University of Glasgow that is led by AI algorithms to automate the synthesis of medicinal molecules. This speeds up the drug development process.

#### 11) Optimization of Processes:-

AI technologies may be used to improve the manufacturing process once the medicine is created, saving money and time. By collecting data from production lines, artificial intelligence (AI) algorithms may be used to optimize manufacturing processes. These algorithms can then discover inefficiencies and suggest changes, such as the best reaction conditions, mixing procedures, and scaling up from laboratory to industrial processing. When producing its COVID-19 vaccine, Pfizer used an AI-driven process improvement. Pfizer was able to increase productivity and shorten production times by employing AI to evaluate manufacturing process data, guaranteeing a consistent supply of vaccinations throughout the epidemic. Using sensors to detect and monitor vaccine delivery and temperatures with almost perfect accuracy, Pfizer also employed machine learning algorithms to forecast product temperatures and allow preventative maintenance for the more than 3000 freezers that hold the vaccine doses. Furthermore, molecular dynamics simulations were performed using supercomputing to determine the optimal combination of lipid nanoparticle characteristics for reducing allergic reactions, producing a vaccine that was both safe and efficient.

#### 12) PAT Technology and Continuous Manufacturing:-

Continuous operations, as opposed to batch production, include a steady flow of raw materials into the machinery and a continuous output of the final product. The materials flow through the system continuously, removing any downtime in between the different technical stages. From procuring raw materials to packing the finished product, artificial intelligence (AI) algorithms can improve several aspects of pharmaceutical production. This can guarantee effectiveness, economy, and superior results. AI has been used by pharmaceutical companies in their ongoing small-molecule production operations. AI systems are able to collect in situ data using probes that are linked in line, such as Raman or NIR, which enables Real-time monitoring of production parameters and subsequent modifications to maintain ideal circumstances, leading to a notable boost in manufacturing efficiency.

#### 13) Technology for Digital Twins:-

AI technologies make it simple to duplicate the production process at many manufacturing locations. AI-powered digital twin technology entails building a virtual model of the production process. The physical process is replicated in real time by this digital model. Enabling manufacturers to monitor, optimize, and simulate without interfering with real-world operations. Digital twins are being used by Johnson & Johnson to accelerate its time to market.

The business may assess how the two production processes interact by using a digital twin in one factory and evaluating items in another.

#### 14) Predictive Upkeep:-

In order to anticipate when maintenance is necessary, AI-driven predictive maintenance analyzes data from equipment sensors. By proactively scheduling maintenance tasks, this method helps avoid unplanned malfunctions. This application's ability to precisely anticipate equipment problems before they arise has decreased downtime and maintenance expenses. Numerous pharmaceutical corporations, including Pfizer, have already adopted this strategy.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

#### 15) Optimization of the Supply Chain:-

AI streamlines logistics, controls inventory levels, and forecasts demand to improve the pharmaceutical supply chain. To guarantee effective supply chain operations, machine learning algorithms examine performance data and market trends. Novartis improved the logistics of its supply chain by utilizing AI. Novartis improved inventory control and decreased operating expenses by utilizing AI, guaranteeing a more dependable supply of goods and supplies.

The Buying Engine was created to improve procurement efficiency by centralizing and streamlining purchasing decisions within Novartis. Initially concentrating on lab supplies, personal protective equipment, and spare parts (indirect material), this algorithm-based platform functions as a "one-stop shop."

By utilizing cutting-edge methods, including knowledge representation, recommender systems, optimization, and machine learning algorithms, the system seeks to offer transparency and suggest the best solutions for purchases almost instantly.

#### 16) Imaging in Medicine:-

| AI Application                | Overview                                                                                                                                                         | Case Example                                                                                                |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Synthesis Route<br>Prediction | AI predicts optimal synthetic routes for APIs,<br>analyzing chemical databases and literature to<br>propose efficient pathways                                   | IBM's "Rxn for Chemistry" tool<br>predicts chemical reaction pathways,<br>used to streamline synthesis.     |  |
| Robotic Synthesis             | AI-driven robotics automate chemical synthesis,<br>enabling high-throughput experimentation and<br>faster drug discovery.                                        | The "Chemputer" from the University of Glasgow automates drug molecule synthesis.                           |  |
| Drug Design                   | AI predicts molecular structures and properties of potential drug candidates, identifying druggable targets.                                                     | Insilico Medicine designed a novel<br>drug for idiopathic pulmonary fibrosis<br>using AI in just 18 months. |  |
| Drug Discovery                | AI algorithms along with CRSIP technology<br>enable the identification of which genes when<br>deleted lead to resistance or sensitization to<br>cancer medicines | AstraZeneca used AI to CRISPR gene-editing technology to identify new targets and make better medicines.    |  |
| Compound Selection            | AI analyzes chemical libraries to identify<br>promising drug candidates based on properties<br>like solubility, permeability, and toxicity.                      | Exscientia used AI to identify a novel compound for treating inflammatory and immunomodulatory diseases.    |  |
| Process<br>Optimization       | AI optimizes manufacturing processes by analyzing data from production lines to identify inefficiencies and recommend improvements.                              | Pfizer used AI to improve yield and reduce production time for its COVID-19 vaccine manufacturing.          |  |
| Toble 2                       |                                                                                                                                                                  |                                                                                                             |  |

#### Table 2

Synthesis route prediction, robotic synthesis, drug design, formulation optimization, compound selection, process optimization, data analysis, manufacturing optimization, process development, and excipient screening are a few examples that demonstrate the various uses of AI in the industrial manufacturing process of pharmaceuticals and excipient selection.

Natural language processing, the technology underlying massive language models like GPT, has been used by Bayer for a number of years. This language is essential for medical coding, which involves converting the data gathered by doctors in case reports into standardized terminology and classifications that can be examined and evaluated. This takes a lot of time to complete by hand. Since 2017, Bayer, the owner of a sizable language model, has processed millions of phrases and is capable of processing enormous volumes of medical data with 96% accuracy. Bayer is using AI-powered technologies in the radiography industry. Calantic Digital Solutions, developed by Bayer in collaboration with Blackford Analysis, a recently acquired imaging AI platform, is intended to assist radiologists by automating tedious operations, streamlining processes, and facilitating better detection. Patients can receive choices more quickly and with less effort when AI algorithms are used.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

#### V. FUTURE PERSPECTIVES AND CONCLUSIONS

AI is quickly changing the pharmaceutical sector, bringing about revolutionary changes in a number of areas, including tailored medications, drug development, and discovery. The use of AI technology promises to improve patient health and medications overall, increase efficiency, and lower costs, but at what cost?

It is anticipated that AI-driven methods will continue to dominate drug discovery in the future, allowing for more precise predictions of drug-target interactions and a deeper comprehension of disease physiopathology. Larger biomedical datasets, such as genomes, proteomics, metabolomics, and patient clinical trial data, will be used to train AI models in order to find new drug candidates and improve medication design, lowering the possibility of clinical trial failure. Furthermore, since sophisticated algorithms will make it possible to identify qualified candidates based on genetic and phenotypic profiles, ensuring that trials are carried out with the most suitable cohort of participants, AI has the potential to completely transform clinical trials by enhancing patient recruitment, monitoring, and data analysis.

AI will keep propelling the development of tailored medications by using Big Data to customize care for each patient. Because genetic, environmental, and lifestyle data can be analyzed, highly customized treatment programs that cater to each patient's unique needs will continue to be widely used.

Pharmaceutical manufacturing processes will be impacted by AI-driven technology, which will greatly improve quality control, predictive maintenance, and process optimization, among other areas. This implementation will save costs and improve product consistency by enabling more scalable and efficient production processes. Predictive maintenance algorithms will stop equipment failures and reduce downtime, enabling more responsive and agile manufacturing operations, while AI-driven digital twins will model and optimize manufacturing processes in real-time. Aboutpharmacovigilance powered by AI. By more effectively evaluating post-market monitoring data and detecting adverse medication reactions, artificial intelligence (AI) will be crucial in enhancing drug safety by facilitating quicker responses to safety issues and more informed choices about label modifications or drug withdrawals. The diagnosis and prediction of safety hazards will be made possible by the extraction of insightful information from social media and electronic health records using sophisticated machine learning and natural language processing algorithms.

Lastly, when AI technologies are incorporated into pharmaceutical procedures, ethical and regulatory issues will become increasingly crucial in order to preserve industry trust and compliance and guarantee the accountability, transparency, and fairness of AI systems. This necessitates the adoption of legal frameworks that address issues related to AI, such as algorithm bias, data privacy, and the verification of outcomes produced by AI.

For instance, the United States' HIPAA Privacy Rule establishes national guidelines aimed at protecting patient medical records and other personally identifiable health data, which are generally known as "protected health information." Health plans, health care clearinghouses, and healthcare providers that participate in specific electronic health care transactions are all subject to this law. This is in line with programs like the FDA's Digital Health Innovation Action Plan, which will keep influencing the regulatory environment for AI-driven pharmaceutical innovations in the US and ensuring their responsible and verified usage.

A coordinated strategy outlining a number of cooperative initiatives for the Commission and member states was also released by the European Commission in April 2021, along with a proposed rule (AI rule) aiming at harmonizing norms for AI. With an emphasis on the many social and economic advantages across several industries as well as the need to preserve privacy while maintaining security and protection, this regulation package sought to increase public confidence in AI and encourage the growth and development of AI technology.

In support of a safe, legal, and trustworthy AI that upholds basic rights, the European Council announced its stance on the new AI legislation. The European Council formally enacted the AI rule on May 21, 2024, and it became operative on August 1, 2024.

In summary, the use of AI in the pharmaceutical sector represents a paradigm change that has the potential to completely reshape global healthcare, not only a technical breakthrough. Significant effects on patient outcomes, healthcare accessibility, and cost-effectiveness are anticipated from the further development of AI-driven drug discovery, clinical trials, and customized medicine. AI will keep speeding up drug discovery by making it possible to quickly identify promising drug candidates, a process that now takes a lot of time and money. AI's speedy analysis of enormous information makes it possible to discover new biochemical pathways and create innovative chemicals with specific medicinal effects. Furthermore, by forecasting patient reactions and reducing dropout rates, AI's ability to analyze data in real-time during clinical trials holds potential for enhancing patient recruitment and retention. In addition to increasing the financial feasibility of medication research, these efficiencies open the door for a more responsive healthcare system that can quickly adjust to patients' demands.

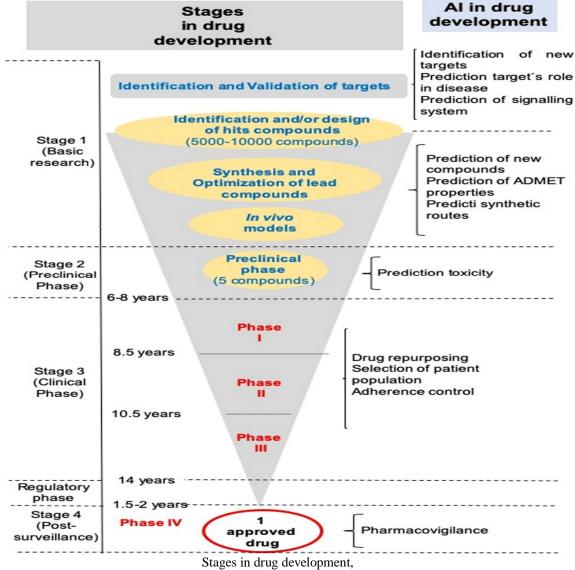




Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Looking ahead, several developments are expected to influence how AI is used in pharmaceuticals: (i) the combination of AI with genomics, given the growing availability of genomic data and the critical role AI will play in customizing medicines to each profile, improving effectiveness of customized medicine; patient's genetic the (ii) AI-driven In order to improve drug safety and efficacy, predictive analytics is anticipated to use AI to forecast market trends, patient behaviors, and potential side effects; (iii) regulatory adoption to accommodate AI technologies, guaranteeing safety and efficacy without stifling innovation.

AI in pharmaceuticals has the potential to revolutionize world healthcare in the long run. Improved drug development procedures will probably result in the quicker release of innovative treatments, better meeting unmet medical needs. AI may help reduce medicine prices, improving accessibility for patients globally, since it maximizes resource allocation and boosts operational efficiencies. Additionally, it is anticipated that treatment efficacy would increase dramatically with the rise of customized medicine, leading to improved health outcomes and possibly lower total



source:https://lens.usercontent.google.com/image?vsrid=CI6PrfXl3863RhACGAEiJDU1MDA1YWE5LWQ1ZGYtNGJjMy1iZWY 0LWQ2ODM1YTYxYzA5MA&gsessionid=CC-OxIrrKvFbPHJoTPMLsXW8KDdEMssK3lnLMe4uoSCH7eg9Gmkq

Healthcare expenditures. This would lessen some of the financial strain on healthcare systems, especially in underdeveloped nations with constrained funding.



ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

In conclusion, the development of AI in the pharmaceutical sector has the potential to revolutionize global healthcare by providing cutting-edge solutions that boost drug discovery, streamline clinical trials, and increase patient care. To efficiently and ethically utilize AI's promise, stakeholders in this changing environment must work together.

#### Utilizing AI Tools:-

To gather data to enhance English readability, Chat GPT (OpenAI, San Francisco, CA, USA) was utilized. The writers meticulously revised the entire article. OpenAI (Open AI, San Francisco, CA, USA) helped develop Image F5. Figures 1–8 were created with the aid of SlideModel (Montevideo, Uruguay).

#### REFERENCES

- [1] Recursion. AI Algorithm. Available online: https://www.recursion.com (accessed on 12 August 2024).
- [2] Efficacy and Safety of REC-2282 in Patients with Progressive Neurofibromatosis Type 2 (NF2) Mutated Meningiomas (POPLARNF2). Available online: https://clinicaltrials.gov/study/NCT05130866?term=POPLAR&rank=2 (accessed on 12 August 2024).
- [3] Parvatikar, P.P.; Patil, S.; Khaparkhuntikar, K.; Patil, S.; Singh, P.K.; Sahana, R.; Kulkarni, R.V.; Raghu, A.V. Artificial intelligence: Machine learning approach for screening large database and drug discovery. Antivir. Res. 2023, 220, 105740. [CrossRef]
- [4] Siddiqui, G.A.; Stebani, J.A.; Wragg, D.; Koutsourelakis, P.S.; Casini, A.; Gagliardi, A. Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: A Case Study. Chemistry 2023, 29, e202302375. [CrossRef]
- [5] Brinkhaus, H.O.; Rajan, K.; Schaub, J.; Zielesny, A.; Steinbeck, C. Open data and algorithms for open science in AI-driven molecular informatics. Curr. Opin. Struct. Biol. 2023, 79, 102542. [CrossRef]
- [6] DGIdb. Available online: https://www.dgidb.org (accessed on 12 August 2024).
- [7] The Connectivity Map. Available online: https://www.broadinstitute.org/connectivity-map-cmap (accessed on 12 August 2024).
- [8] DeepChem. Available online: https://deepchem.io (accessed on 13 August 2024).
- [9] Schrödinger's Maestro Platform. Available online: https://www.schrodinger.com/platform/products/maestro (accessed on 13 August 2024)
- [10] Insilico Medicine. Available online: https://insilico.com (accessed on 13 August 2024).
- [11] XtalPi. Available online: https://www.xtalpi.com/en (accessed on 13 August 2024).
- [12] Cyclica. Available online: https://cyclicarx.com/science (accessed on 13 August 2024).
- [13] Le, N.Q.K.; Tran, T.X.; Nguyen, P.A.; Ho, T.T.; Nguyen, V.N. Recent progress in machine learning approaches for predicting carcinogenicity in drug development. Expert Opin. Drug Metab. Toxicol. 2024, 20, 621–628. [CrossRef]
- [14] Chang, W.T.; Liu, C.F.; Feng, Y.H.; Liao, C.T.; Wang, J.J.; Chen, Z.C.; Lee, H.C.; Shih, J.Y. An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline. Arch. Toxicol. 2022, 96, 2731–2737. [CrossRef] [PubMed]
- [15] Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhaes, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [CrossRef]
- [16] Mukherjee, D.; Roy, D.; Thakur, S. Transforming Cancer Care: The Impact of AI-Driven Strategies. Curr. Cancer Drug Targets 2024, 24, 1-4. [CrossRef]
- [17] Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [CrossRef] [PubMed]
- [18] Liu, D.; Schilling, B.; Liu, D.; Sucker, A.; Livingstone, E.; Jerby-Arnon, L.; Zimmer, L.; Gutzmer, R.; Satzger, I.; Loquai, C.; et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 2019, 25, 1916–1927. [CrossRef] [PubMed]
- [19] Johannet, P.; Coudray, N.; Donnelly, D.M.; Jour, G.; Illa-Bochaca, I.; Xia, Y.; Johnson, D.B.; Wheless, L.; Patrinely, J.R.; Nomikou, S.; et al. Using Machine Learning Algorithms to Predict Immunotherapy Response in Patients with Advanced Melanoma. Clin. Cancer Res. 2021, 27, 131–140. [CrossRef] [PubMed]
- [20] Dercle, L.; Fronheiser, M.; Lu, L.; Du, S.; Hayes, W.; Leung, D.K.; Roy, A.; Wilkerson, J.; Guo, P.; Fojo, A.T.; et al. Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clin. Cancer Res. 2020, 26, 2151–2162. [CrossRef]
- [21] Blasiak, A.; Khong, J.; Kee, T. CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence. Transl. Life Sci. Innov. 2020, 25, 95–105. [CrossRef]
- [22] Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Goncalves, E.; Barthorpe, S.; Lightfoot, H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166, 740–754. [CrossRef]
- [23] Kuenzi, B.M.; Park, J.; Fong, S.H.; Sanchez, K.S.; Lee, J.; Kreisberg, J.F.; Ma, J.; Ideker, T. Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells. Cancer Cell 2020, 38, 672–684.e676. [CrossRef]
- [24] Sheu, Y.H.; Magdamo, C.; Miller, M.; Das, S.; Blacker, D.; Smoller, J.W. AI-assisted prediction of differential response to antidepressant classes using electronic health records. NPJ Digit. Med. 2023, 6, 73. [CrossRef]
- [25] Arnold, P.I.M.; Janzing, J.G.E.; Hommersom, A. Machine learning for antidepressant treatment selection in depression. Drug Discov. Today 2024, 29, 104068. [CrossRef] [PubMed]
- [26] Liu, X.; Read, S.J. Development of a multivariate prediction model for antidepressant resistant depression using reward-related predictors. Front. Psychiatry 2024, 15, 1349576. [CrossRef]
- [27] Stankoski, S.; Jordan, M.; Gjoreski, H.; Lustrek, M. Smartwatch-Based Eating Detection: Data Selection for Machine Learning from Imbalanced Data with Imperfect Labels. Sensors 2021, 21, 1902. [CrossRef]
- [28] Lam, B.; Catt, M.; Cassidy, S.; Bacardit, J.; Darke, P.; Butterfield, S.; Alshabrawy, O.; Trenell, M.; Missier, P. Using Wearable Activity Trackers to Predict Type 2 Diabetes: Machine Learning-Based Cross-sectional Study of the UK Biobank Accelerometer Cohort. JMIR Diabetes 2021, 6, e23364. [CrossRef]
- [29] Kargarandehkordi, A.; Slade, C.; Washington, P. Personalized AI-Driven Real-Time Models to Predict Stress-Induced Blood Pressure Spikes Using Wearable Devices: Proposal for a Prospective Cohort Study. JMIR Res. Protoc. 2024, 13, e55615. [CrossRef]



- [30] Garbarino, S.; Bragazzi, N.L. Revolutionizing Sleep Health: The Emergence and Impact of Personalized Sleep Medicine. J. Pers. Med. 2024, 14, 598.
  [CrossRef]
- [31] Schalkamp, A.K.; Peall, K.J.; Harrison, N.A.; Sandor, C. Wearable movement-tracking data identify Parkinson's disease years before clinical diagnosis. Nat. Med. 2023, 29, 2048–2056. [CrossRef]
- [32] Alonso, T.R.; Gagol, A.; Scherer, M.; Matji, A.; Torrado-Santiago, S.; Serrano, D.R.; Garcia-Arieta, A.; Torrado, J.J. A multivariate investigation into the relationship between pharmaceutical characteristics and patient preferences of bioequivalent ibuprofen tablets. Patient Prefer. Adherence 2018, 12, 1927–1935. [CrossRef]
- [33] Walsh, D.; Serrano, D.R.; Worku, Z.A.; Madi, A.M.; O'Connell, P.; Twamley, B.; Healy, A.M. Engineering of pharmaceutical cocrystals in an excipient matrix: Spray drying versus hot melt extrusion. Int. J. Pharm. 2018, 551, 241–256. [CrossRef]
- [34] Serrano, D.R.; Walsh, D.; O'Connell, P.; Mugheirbi, N.A.; Worku, Z.A.; Bolas-Fernandez, F.; Galiana, C.; Dea-Ayuela, M.A.; Healy, A.M. Optimising the in vitro and in vivo performance of oral cocrystal formulations via spray coating. Eur. J. Pharm. Biopharm. 2018, 124, 13–27. [CrossRef]
- [35] Lamy, B.; Tewes, F.; Serrano, D.R.; Lamarche, I.; Gobin, P.; Couet, W.; Healy, A.M.; Marchand, S. New aerosol formulation to control ciprofloxacin pulmonary concentration. J. Control. Release 2018, 271, 118–126. [CrossRef]
- [36] Gholap, A.D.; Uddin, M.J.; Faiyazuddin, M.; Omri, A.; Gowri, S.; Khalid, M. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Comput. Biol. Med. 2024, 178, 108702. [CrossRef]
- [37] Aundhia, C.; Parmar, G.; Talele, C.; Shah, N.; Talele, D. Impact of Artificial Intelligence on Drug Development and Delivery. Curr. Top. Med. Chem. 2024; in press. [CrossRef]
- [38] Lou, H.; Lian, B.; Hageman, M.J. Applications of Machine Learning in Solid Oral Dosage Form Development. J. Pharm. Sci. 2021, 110, 3150–3165. [CrossRef]
- [39] Momeni, M.; Afkanpour, M.; Rakhshani, S.; Mehrabian, A.; Tabesh, H. A prediction model based on artificial intelligence techniques for disintegration time and hardness of fast disintegrating tablets in pre-formulation tests. BMC Med. Inform. Decis. Mak. 2024, 24, 88. [CrossRef]
- [40] Serrano, D.R.; Kara, A.; Yuste, I.; Luciano, F.C.; Ongoren, B.; Anaya, B.J.; Molina, G.; Diez, L.; Ramirez, B.I.; Ramirez, I.O.; et al. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics 2023, 15, 313. [CrossRef]
- [41] Konta, A.A.; Garcia-Pina, M.; Serrano, D.R. Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful? Bioengineering 2017, 4, 79. [CrossRef]
- [42] Yuste, I.; Luciano, F.C.; Anaya, B.J.; Sanz-Ruiz, P.; Ribed-Sanchez, A.; Gonzalez-Burgos, E.; Serrano, D.R. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics 2023, 12, 1229. [CrossRef]
- [43] Anaya, B.J.; Cerda, J.R.; D'Atri, R.M.; Yuste, I.; Luciano, F.C.; Kara, A.; Ruiz, H.K.; Ballesteros, M.P.; Serrano, D.R. Engineering of 3D printed personalized polypills for the treatment of the metabolic syndrome. Int. J. Pharm. 2023, 642, 123194. [CrossRef]
- [44] Malebari, A.M.; Kara, A.; Khayyat, A.N.; Mohammad, K.A.; Serrano, D.R. Development of Advanced 3D-Printed Solid Dosage Pediatric Formulations for HIV Treatment. Pharmaceuticals 2022, 15, 435. [CrossRef] [PubMed]
- [45] Ayyoubi, S.; Cerda, J.R.; Fernandez-Garcia, R.; Knief, P.; Lalatsa, A.; Healy, A.M.; Serrano, D.R. 3D printed spherical mini-tablets: Geometry versus composition effects in controlling dissolution from personalised solid dosage forms. Int. J. Pharm. 2021, 597, 120336. [CrossRef] [PubMed]
- [46] Cerda, J.R.; Arifi, T.; Ayyoubi, S.; Knief, P.; Ballesteros, M.P.; Keeble, W.; Barbu, E.; Healy, A.M.; Lalatsa, A.; Serrano, D.R. Personalised 3D Printed Medicines: Optimising Material Properties for Successful Passive Diffusion Loading of Filaments for Fused Deposition Modelling of Solid Dosage Forms. Pharmaceutics 2020, 12, 345. [CrossRef]
- [47] Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023, 15, 1916. [CrossRef] [PubMed]
- [48] Obeid, S.; Madzarevic, M.; Krkobabic, M.; Ibric, S. Predicting drug release from diazepam FDM printed tablets using deep learning approach: Influence of process parameters and tablet surface/volume ratio. Int. J. Pharm. 2021, 601, 120507. [CrossRef] [PubMed]
- [49] Alhijjaj, M.; Nasereddin, J.; Belton, P.; Qi, S. Impact of Processing Parameters on the Quality of Pharmaceutical Solid Dosage Forms Produced by Fused Deposition Modeling (FDM). Pharmaceutics 2019, 11, 633. [CrossRef]
- [50] Elbadawi, M.; McCoubrey, L.E.; Gavins, F.K.H.; Ong, J.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv. Drug Deliv. Rev. 2021, 175, 113805. [CrossRef]
- [51] Chen, S.; Li, T.; Yang, L.; Zhai, F.; Jiang, X.; Xiang, R.; Ling, G. Artificial intelligence-driven prediction of multiple drug interactions. Brief. Bioinform. 2022, 23, bbac427. [CrossRef]
- [52] Patel, S.; Patel, M.; Kulkarni, M.; Patel, M.S. DE-INTERACT: A machine-learning-based predictive tool for the drug-excipient interaction study during product development-Validation through paracetamol and vanillin as a case study. Int. J. Pharm. 2023, 637, 122839. [CrossRef]
- [53] Matji, A.; Donato, N.; Gagol, A.; Morales, E.; Carvajal, L.; Serrano, D.R.; Worku, Z.A.; Healy, A.M.; Torrado, J.J. Predicting the critical quality attributes of ibuprofen tablets via modelling of process parameters for roller compaction and tabletting. Int. J. Pharm. 2019, 565, 209–218. [CrossRef]
- [54] Mansuri, A.; Volkel, M.; Mihiranga, D.; Feuerbach, T.; Winck, J.; Vermeer, A.W.P.; Hoheisel, W.; Thommes, M. Predicting self-diffusion coefficients in semi-crystalline and amorphous solid dispersions using free volume theory. Eur. J. Pharm. Biopharm. 2023, 190, 107–120. [CrossRef] [PubMed]
- [55] Bolger, M.B. Perspective on a chemistry classification system for AI-assisted formulation development. J. Control. Release 2022, 352, 833–839. [CrossRef] [PubMed]
- [56] Alqarni, M.; Namazi, N.I.; Alshehri, S.; Naguib, I.A.; Alsubaiyel, A.M.; Venkatesan, K.; Elmokadem, E.M.; Pishnamazi, M.; Abourehab, M.A.S. Solubility Optimization of Loxoprofen as a Nonsteroidal Anti-Inflammatory Drug: Statistical Modeling and Optimization. Molecules 2022, 27, 4357. [CrossRef]
- [57] Obrezanova, O. Artificial intelligence for compound pharmacokinetics prediction. Curr. Opin. Struct. Biol. 2023, 79, 102546. [CrossRef] [PubMed]
- [58] Ghayoor, A.; Kohan, H.G. Revolutionizing pharmacokinetics: The dawn of AI-powered analysis. J. Pharm. Sci. 2024, 27, 12671. [CrossRef] [PubMed]
- [59] Fernandez-Garcia, R.; Lalatsa, A.; Statts, L.; Bolas-Fernandez, F.; Ballesteros, M.P.; Serrano, D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020, 573, 118817. [CrossRef]
- [60] Smith, L.; Serrano, D.R.; Mauger, M.; Bolas-Fernandez, F.; Dea-Ayuela, M.A.; Lalatsa, A. Orally Bioavailable and Effective Buparvaquone Lipid-Based Nanomedicines for Visceral Leishmaniasis. Mol. Pharm. 2018, 15, 2570–2583. [CrossRef]



- [61] Pineros, I.; Slowing, K.; Serrano, D.R.; de Pablo, E.; Ballesteros, M.P. Analgesic and anti-inflammatory controlled-released injectable microemulsion: Pseudo-ternary phase diagrams, in vitro, ex vivo and in vivo evaluation. Eur. J. Pharm. Sci. 2017, 101, 220–227. [CrossRef]
- [62] Serrano, D.R.; Lalatsa, A.; Dea-Ayuela, M.A.; Bilbao-Ramos, P.E.; Garrett, N.L.; Moger, J.; Guarro, J.; Capilla, J.; Ballesteros, M.P.; Schatzlein, A.G.; et al. Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol. Pharm. 2015, 12, 420–431. [CrossRef]
- [63] Serrano, D.R.; Gallagher, K.H.; Healy, A.M. Emerging Nanonisation Technologies: Tailoring Crystalline Versus Amorphous Nanomaterials. Curr. Top. Med. Chem. 2015, 15, 2327–2340. [CrossRef]
- [64] Torrado, J.J.; Serrano, D.R.; Uchegbu, I.F. The oral delivery of amphotericin B. Ther. Deliv. 2013, 4, 9–12. [CrossRef] [PubMed]
- [65] Lalatsa, A.; Statts, L.; Adriana de Jesus, J.; Adewusi, O.; AuxiliadoraDea-Ayuela, M.; Bolas-Fernandez, F.; DalastraLaurenti, M.; Felipe DominguesPassero, L.; Serrano, D.R. Topical buparvaquonenano-enabled hydrogels for cutaneous leishmaniasis. Int. J. Pharm. 2020, 588, 119734. [CrossRef] [PubMed]
- [66] Fernandez-Garcia, R.; Prada, M.; Bolas-Fernandez, F.; Ballesteros, M.P.; Serrano, D.R. Oral Fixed-Dose Combination Pharmaceutical Products: Industrial Manufacturing Versus Personalized 3D Printing. Pharm. Res. 2020, 37, 132. [CrossRef]
- [67] Bezerra-Souza, A.; Fernandez-Garcia, R.; Rodrigues, G.F.; Bolas-Fernandez, F.; DalastraLaurenti, M.; Passero, L.F.; Lalatsa, A.; Serrano, D.R. Repurposing Butenafine as An Oral Nanomedicine for Visceral Leishmaniasis. Pharmaceutics 2019, 11, 353. [CrossRef] [PubMed]
- [68] Serrano, D.R.; Hernandez, L.; Fleire, L.; Gonzalez-Alvarez, I.; Montoya, A.; Ballesteros, M.P.; Dea-Ayuela, M.A.; Miro, G.; BolasFernandez, F.; Torrado, J.J. Hemolytic and pharmacokinetic studies of liposomal and particulate amphotericin B formulations. Int. J. Pharm. 2013, 447, 38–46. [CrossRef
- [69] JFernandez-Garcia, R.; Munoz-Garcia, J.C.; Wallace, M.; Fabian, L.; Gonzalez-Burgos, E.; Gomez-Serranillos, M.P.; Raposo, R.; Bolas-Fernandez, F.; Ballesteros, M.P.; Healy, A.M.; et al. Self-assembling, supramolecular chemistry and pharmacology of amphotericin B: Poly-aggregates, oligomers and monomers. J. Control. Release 2022, 341, 716–732. [CrossRef
- [70] Serrano, D.R.; Ruiz-Saldana, H.K.; Molero, G.; Ballesteros, M.P.; Torrado, J.J. A novel formulation of solubilised amphotericin B designed for ophthalmic use. Int. J. Pharm. 2012, 437, 80–82. [CrossRef]
- [71] . Das, K.P.; J, C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Front. Med. Technol. 2022, 4, 1067144. [CrossRef]
- [72] Adir, O.; Poley, M.; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; Lammers, T.; Schroeder, A. Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Adv. Mater. 2020, 32, e1901989. [CrossRef]
- [73] Kara, A.; Vassiliadou, A.; Ongoren, B.; Keeble, W.; Hing, R.; Lalatsa, A.; Serrano, D.R. Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines. Pharmaceutics 2021, 13, 2134. [CrossRef] [PubMed]
- [74] Ongoren, B.; Kara, A.; Casettari, L.; Tiboni, M.; Lalatsa, A.; Sanz-Perez, A.; Gonzalez-Burgos, E.; Romero, A.; Juberias, A.; Torrado, J.J.; et al. Leveraging 3D-printed microfluidic micromixers for the continuous manufacture of melatonin loaded SNEDDS with enhanced antioxidant activity and skin permeability. Int. J. Pharm. 2024. 663, 124536. [CrossRef] [PubMed]
- [75] Liu, L.; Bi, M.; Wang, Y.; Liu, J.; Jiang, X.; Xu, Z.; Zhang, X. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 2021, 13, 19352–19366. [CrossRef] [PubMed]
- [76] Goda, K.; Lu, H.; Fei, P.; Guck, J. Revolutionizing microfluidics with artificial intelligence: A new dawn for lab-on-a-chip technologies. Lab Chip 2023, 23, 3737–3740. [CrossRef] [PubMed]
- [77] Fang, W.Z.; Xiong, T.; Pak, O.S.; Zhu, L. Data-Driven Intelligent Manipulation of Particles in Microfluidics. Adv. Sci. 2023, 10, e2205382. [CrossRef] [PubMed]
- [78] Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [CrossRef] [PubMed]
- [79] McKinsey. How Artificial Intelligence Can Power Clinical Development. Available online: https://www.mckinsey.com/ industries/life-sciences/our-insights/how-artificial-intelligence-can-power-clinical-development (accessed on 6 October 2024).
- [80] Buntz, B. 6 Signs AI Momentum in Drug Discovery Is Building. Available online: https://www.drugdiscoverytrends.com/sixsigns-ai-driven-drug-discoverytrends-pharma-industry (accessed on 6 October 2024).
- [81] AstraZeneca AI Models. Available online: https://www.astrazeneca.com/what-science-can-do/topics/data-science-ai/howdata-and-ai-are-helping-unlock-the-secrets-of-disease.html# (accessed on 14 August 2024).
- [82] Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [CrossRef] [PubMed]
- [83] Exscientia. Available online: https://www.exscientia.com/pipeline (accessed on 14 August 2024).
- [84] RXn for Chemistry. Available online: https://rxn.app.accelerate.science/rxn/home (accessed on 14 August 2024).
- [85] Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C.A.; Bekas, C.; Lee, A.A. Molecular Transformer: A Model for UncertaintyCalibrated Chemical Reaction Prediction. ACS Central Sci. 2019, 5, 1572–1583. [CrossRef] [PubMed]
- [86] Zheng, S.; Rao, J.; Zhang, Z.; Xu, J.; Yang, Y. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks. J. Chem. Inf. Model. 2020, 60, 47–55. [CrossRef] [PubMed]
- [87] Jiang, Y.; Yu, V.; Kong, M.; Mei, Y.; Yuan, L.; Huang, Z.; Kuang, K.; Wang, K.; Yao, H.; Zou, J.; et al. Artificial Intelligence for Retrosynthesis Prediction. Engineering 2023, 25, 32–50. [CrossRef]
- [88] Back, S.; Aspuru-Guzik, A.; Ceriotti, M.; Gryn'ova, G.; Grzybowski, B.; Gu, G.H.; Hein, J.; Hippalgaonkar, K.; Hormazabal, R.; Jung, Y.; et al. Accelerated chemical science with AI. Digit. Discov. 2024, 3, 23–33. [CrossRef]
- [89] 129. Segler, M.H.S.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018, 555, 604–610. [CrossRef] [PubMed]
- [90] Gromski, P.S.; Grnada, J.M.; Cronin, L. Universal Chemical Synthesis and Discovery with 'The Chemputer'. Trends Chem. 2020, 2, 4-12. [CrossRef]
- [91] Leonov, A.I.; Hammer, A.J.S.; Lach, S.; Mehr, S.H.M.; Caramelli, D.; Angelone, D.; Khan, A.; O'Sullivan, S.; Craven, M.; Wilbraham, L.; et al. An integrated self-
- [92] optimizing programmable chemical synthesis and reaction engine. Nat. Commun. 2024, 15, 1240. [CrossRef] [PubMed]



- [93] Sharma, A.; Virmani, T.; Pathak, V.; Sharma, A.; Pathak, K.; Kumar, G.; Pathak, D. Artificial Intelligence-Based Data-Driven Strategy to Accelerate Research, Development, and Clinical Trials of COVID Vaccine. BioMed Res. Int. 2022, 2022, 7205241. [CrossRef] [PubMed]
- [94] Peckham, O. Pfizer Discusses Use of Supercomputing and AI for Covid Drug Development. Available online: https://www.hpcwire.com/2022/03/24/pfizer-discusses-use-of-supercomputing-and-ai-for-covid-drug-development (accessed on 14 August 2024).
- [95] Lee, S.L.; O'Connor, T.F.; Yang, X.; Cruz, C.N.; Chatterjee, S.; Madurawe, R.D.; Moore, C.M.V.; Yu, L.X.; Woodcock, J. Modernizing Pharmaceutical Manufacturing: From Batch to Continuous Production. J. Pharm. Innov. 2015, 10, 191–199. [CrossRef]
- [96] Roggo, Y.; Jelsch, M.; Heger, P.; Ensslin, S.; Krumme, M. Deep learning for continuous manufacturing of pharmaceutical solid dosage form. Eur. J. Pharm. Biopharm. 2020, 153, 95–105. [CrossRef]
- [97] Johnson & Johnson Digital Twins. Available online: https://consumergoods.com/johnson-johnson-digs-deeper-data-unlockproduct-innovation (accessed on 14 August 2024).
- [98] Kavasidis, I.; Lallas, E.; Gerogiannis, V.C.; Charitou, T.; Karageorgos, A. Predictive maintenance in pharmaceutical manufacturing lines using deep transformers. ProcediaComput. Sci. 2023, 220, 576583. [CrossRef]
- [99] Pzifer Preventive Mainteinance AI. Available online: https://www.ge.com/digital/customers/pfizer-cuts-downtime-movingpredictive-maintenance (accessed on 14 August 2024).
- [100]Novartis Supply Chain. Available online: https://www.novartis.com/sites/novartis\_com/files/novartis-responsible-use-of-aisystems.pdf (accessed on 15 August 2024).
- [101]Bayer Global. AI-Driven Thencology. Available online: https://www.bayer.com/en/pharma/artificial-intelligence#4 (accessed on 14 August 2024). 141. Liu, J.; Du, H.; Huang, L.; Xie, W.; Liu, K.; Zhang, X.; Chen, S.; Zhang, Y.; Li, D.; Pan, H. AI-Powered Microfluidics: Shaping the Future of Phenotypic Drug Discovery. ACS Appl. Mater. Interfaces 2024, 16, 38832–38851. [CrossRef]
- [102]Moingeon, P. Harnessing the power of AI-based models to accelerate drug discovery against immune diseases. Expert Rev. Clin. Immunol. 2024, 20, 1135–1138. [CrossRef]
- [103]Shen, C.; Song, J.; Hsieh, C.Y.; Cao, D.; Kang, Y.; Ye, W.; Wu, Z.; Wang, J.; Zhang, O.; Zhang, X.; et al. DrugFlow: An AI-Driven One-Stop Platform for Innovative Drug Discovery. J. Chem. Inf. Model. 2024, 64, 5381–5391. [CrossRef]
- [104]Khan, M.K.; Raza, M.; Shahbaz, M.; Hussain, I.; Khan, M.F.; Xie, Z.; Shah, S.S.A.; Tareen, A.K.; Bashir, Z.; Khan, K. The recent advances in the approach of artificial intelligence (AI) towards drug discovery. Front. Chem. 2024, 12, 1408740. [CrossRef] [PubMed]
- [105] Abbas, M.K.G.; Rassam, A.; Karamshahi, F.; Abunora, R.; Abouseada, M. The Role of AI in Drug Discovery. Chembiochem 2024, 25, e202300816. [CrossRef] [PubMed]
- [106] Gangwal, A.; Lavecchia, A. Unleashing the power of generative AI in drug discovery. Drug Discov. Today 2024, 29, 103992. [CrossRef] [PubMed]
- [107] Thuault, S. Drug discovery by AI trained on aging biology. Nat. Aging 2024, 4, 437. [CrossRef] [PubMed]
- [108] Mullard, A. When can AI deliver the drug discovery hits? Nat. Rev. Drug Discov. 2024, 23, 159-161. [CrossRef]
- [109] Iyer, J.S.; Juyal, D.; Le, Q.; Shanis, Z.; Pokkalla, H.; Pouryahya, M.; Pedawi, A.; Stanford-Moore, S.A.; Biddle-Snead, C.; CarrascoZevallos, O.; et al. Albased automation of enrollment criteria and endpoint assessment in clinical trials in liver diseases. Nat. Med. 2024, 1–10. [CrossRef] Pharmaceutics 2024, 16, 1328 26 of 27
- [110]Goldberg, J.M.; Amin, N.P.; Zachariah, K.A.; Bhatt, A.B. The Introduction of AI Into Decentralized Clinical Trials: Preparing for a Paradigm Shift. JACC Adv. 2024, 3, 101094. [CrossRef] [PubMed]
- [111]Wu, H.; Sun, Z.; Guo, Q.; Liu, X.; Cheng, K.; Li, C. Generative AI intervention clinical trials: A call for pre-registration (Correspondence). Int. J. Surg. 2024, 110, 5926–5927. [CrossRef]
- [112]Li, Z.; Liu, X.; Cheng, Z.; Chen, Y.; Tu, W.; Su, J. TrialView: An AI-powered Visual Analytics System for Temporal Event Data in Clinical Trials. Proc. Annu. Hawaii Int. Conf. Syst. Sci. 2024, 2024, 1169–1178. [PubMed] [PubMed Central] 153. Hutson, M. How AI is being used to accelerate clinical trials. Nature 2024, 627, S2–S5. [CrossRef] [PubMed]
- [113] Chopra, H.; Annu; Shin, D.K.; Munjal, K.; Priyanka; Dhama, K.; Emran, T.B. Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs. Int. J. Surg. 2023, 109, 4211–4220. [CrossRef] [PubMed]
- [114] Perni, S.; Lehmann, L.S.; Bitterman, D.S. Patients should be informed when AI systems are used in clinical trials. Nat. Med. 2023, 29, 1890–1891. [CrossRef] [PubMed]
- [115]156. Balasundaram, A.; Stalin, C.; Ghanta, M.K. Views on artificial intelligence (AI) assisted clinical trials. Bioinformation 2021, 17, 616–622. [CrossRef] [PubMed]
- [116]Kolla, L.; Gruber, F.K.; Khalid, O.; Hill, C.; Parikh, R.B. The case for AI-driven cancer clinical trials-The efficacy arm in silico. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188572. [CrossRef]
- [117] Calaprice-Whitty, D.; Galil, K.; Salloum, W.; Zariv, A.; Jimenez, B. Improving Clinical Trial Participant Prescreening with Artificial Intelligence (AI): A Comparison of the Results of AI-Assisted vs Standard Methods in 3 Oncology Trials. Ther. Innov. Regul. Sci. 2020, 54, 69–74. [CrossRef]
- [118] Woo, M. An AI boost for clinical trials. Nature 2019, 573, S100–S102. [CrossRef] 160. Okati, L.; Lo, S.; Gnjidic, D.; Li, S.J.; Thillainadesan, J. Mobile applications on app stores for deprescribing: A scoping review. Br. J. Clin. Pharmacol. 2024. [CrossRef]
- [119]Askr, H.; Elgeldawi, E.; Aboul Ella, H.; Elshaier, Y.; Gomaa, M.M.; Hassanien, A.E. Deep learning in drug discovery: An integrative review and future challenges. Artif. Intell. Rev. 2023, 56, 5975–6037. [CrossRef]
- [120]Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022, 35, 23–32. [CrossRef]
- [121]Bess, A.; Berglind, F.; Mukhopadhyay, S.; Brylinski, M.; Griggs, N.; Cho, T.; Galliano, C.; Wasan, K.M. Artificial intelligence for the discovery of novel antimicrobial agents for emerging infectious diseases. Drug Discov. Today 2022, 27, 1099–1107. [CrossRef]
- [122]Bhalla, S.; Lagana, A. Artificial Intelligence for Precision Oncology. Adv. Exp. Med. Biol. 2022, 1361, 249–268. [CrossRef] [PubMed]
- [123]Brasil, S.; Allocca, M.; Magrinho, S.C.M.; Santos, I.; Raposo, M.; Francisco, R.; Pascoal, C.; Martins, T.; Videira, P.A.; Pereira, F.; et al. Systematic Review: Drug Repositioning for Congenital Disorders of Glycosylation (CDG). Int. J. Mol. Sci. 2022, 23, 8725. [CrossRef] [PubMed]



- [124] Chopra, H.; Baig, A.A.; Gautam, R.K.; Kamal, M.A. Application of Artificial Intelligence in Drug Discovery. Curr. Pharm. Des. 2022, 28, 2690–2703. [CrossRef] [PubMed]
- [125] Clarke, S.L.; Parmesar, K.; Saleem, M.A.; Ramanan, A.V. Future of machine learning in paediatrics. Arch. Dis. Child. 2022, 107, 223–228. [CrossRef]
- [126]Danishuddin; Kumar, V.; Faheem, M.; Woo Lee, K. A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug Discov. Today 2022, 27, 529–537. [CrossRef]
- [127]Deng, J.; Yang, Z.; Ojima, I.; Samaras, D.; Wang, F. Artificial intelligence in drug discovery: Applications and techniques. Brief. Bioinform. 2022, 23, bbab430. [CrossRef]
- [128] Dhakal, A.; McKay, C.; Tanner, J.J.; Cheng, J. Artificial intelligence in the prediction of protein-ligand interactions: Recent advances and future directions. Brief. Bioinform. 2022, 23, bbab476. [CrossRef]
- [129] Gonsard, A.; AbouTaam, R.; Prevost, B.; Roy, C.; Hadchouel, A.; Nathan, N.; Taytard, J.; Pirojoc, A.; Delacourt, C.; Wanin, S.; et al. Children's views on artificial intelligence and digital twins for the daily management of their asthma: A mixed-method study. Eur. J. Pediatr. 2023, 182, 877–888. [CrossRef]
- [130] Vidovszky, A.A.; Fisher, C.K.; Loukianov, A.D.; Smith, A.M.; Tramel, E.W.; Walsh, J.R.; Ross, J.L. Increasing acceptance of AI-generated digital twins through clinical trial applications. Clin. Transl. Sci. 2024, 17, e13897. [CrossRef]
- [131]173. Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. Sensors 2021, 21, 6340. [CrossRef]
- [132]Roche, V.; Robert, J.P.; Salam, H. A holistic AI-based approach for pharmacovigilance optimization from patients behavior on social media. Artif. Intell. Med. 2023, 144, 102638. [CrossRef] [PubMed]
- [133]Xu, X.; Mazloom, R.; Goligerdian, A.; Staley, J.; Amini, M.; Wyckoff, G.J.; Riviere, J.; Jaberi-Douraki, M. Making Sense of Pharmacovigilance and Drug Adverse Event Reporting: Comparative Similarity Association Analysis Using AI Machine Learning Algorithms in Dogs and Cats. Top. Companion Anim. Med. 2019, 37, 100366. [CrossRef]
- [134]Ball, R.; Dal Pan, G. "Artificial Intelligence" for Pharmacovigilance: Ready for Prime Time? Drug Saf. 2022, 45, 429–438. [CrossRef] [PubMed]
- [135]An, G.; Cockrell, C. Drug Development Digital Twins for Drug Discovery, Testing and Repurposing: A Schema for Requirements and Development. Front. Syst. Biol. 2022, 2, 928387. [CrossRef] [PubMed]
- [136] Hill, D.L.G. AI in imaging: The regulatory landscape. Br. J. Radiol. 2024, 97, 483–491. [CrossRef] Pharmaceutics 2024, 16, 1328 27 of 27
- [137]Derraz, B.; Breda, G.; Kaempf, C.; Baenke, F.; Cotte, F.; Reiche, K.; Kohl, U.; Kather, J.N.; Eskenazy, D.; Gilbert, S. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. NPJ Precis. Oncol. 2024, 8, 23. [CrossRef]
- [138] vanKolfschooten, H. The AI cycle of health inequity and digital ageism: Mitigating biases through the EU regulatory framework on medical devices. J. Law Biosci. 2023, 10, lsad031. [CrossRef] [PubMed]
- [139] Samaan, J.S.; Yeo, Y.H.; Rajeev, N.; Ng, W.H.; Srinivasan, N.; Samakar, K. Towards Responsible AI in Patient Education: Ethical, Linguistic, and Regulatory Considerations. Obes. Surg. 2023, 33, 4160–4161. [CrossRef] [PubMed]
- [140] Townsend, B.A.; Sihlahla, I.; Naidoo, M.; Naidoo, S.; Donnelly, D.L.; Thaldar, D.W. Mapping the regulatory landscape of AI in healthcare in Africa. Front. Pharmacol. 2023, 14, 1214422. [CrossRef]
- [141]Mesko, B.; Topol, E.J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit. Med. 2023, 6, 120. [CrossRef]
- [142] Petrick, N.; Chen, W.; Delfino, J.G.; Gallas, B.D.; Kang, Y.; Krainak, D.; Sahiner, B.; Samala, R.K. Regulatory considerations for medical imaging AI/ML devices in the United States: Concepts and challenges. J. Med. Imaging 2023, 10, 051804. [CrossRef] [PubMed]
- [143] Connor, S.; Li, T.; Roberts, R.; Thakkar, S.; Liu, Z.; Tong, W. Adaptability of AI for safety evaluation in regulatory science: A case study of drug-induced liver injury. Front. Artif. Intell. 2022, 5, 1034631. [CrossRef] [PubMed]
- [144]O'Sullivan, S.; Nevejans, N.; Allen, C.; Blyth, A.; Leonard, S.; Pagallo, U.; Holzinger, K.; Holzinger, A.; Sajid, M.I.; Ashrafian, H. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e1968. [CrossRef] [PubMed]
- [145] The HIPAA Privacy Rule. Available online: https://www.hhs.gov/hipaa/for-professionals/privacy/index.html (accessed on 6 October 2024).
- [146]FDA's Digital Health Innovation Plan. Available online: https://www.fda.gov/media/106331/download (accessed on 14 August 2024). 189. AI Regulation in Europe. Available online: https://www.consilium.europa.eu/es/policies/artificial-intelligence (accessed on 6 October 2024).Bai, F.; Li, S.; Li, H. AI enhances drug discovery and development. Natl. Sci. Rev. 2024, 11, nwad303. [CrossRef]
- [147]Hill, A.; True, J.M.; Jones, C.H. Transforming drug development with synthetic biology and AI. Trends Biotechnol. 2024, 42, 1072–1075. [CrossRef] [PubMed]
- [148] Niazi, S.K. The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Des. Dev. Ther. 2023, 17, 2691–2725. [CrossRef] [PubMed]
- [149] Barrett, J.S.; Oskoui, S.E.; Russell, S.; Borens, A. Digital Research Environment(DRE)-enabled Artificial Intelligence (AI) to facilitate early stage drug development. Front. Pharmacol. 2023, 14, 1115356. [CrossRef]
- [150]Luo, Y.; Peng, J.; Ma, J. Next Decade's AI-Based Drug Development Features Tight Integration of Data and Computation. Heal. Data Sci. 2022, 2022, 9816939. [CrossRef]
- [151]Gallego, V.; Naveiro, R.; Roca, C.; Rios Insua, D.; Campillo, N.E. AI in drug development: A multidisciplinary perspective. Mol. Divers. 2021, 25, 1461–1479. [CrossRef] [PubMed]





10.22214/IJRASET



45.98



IMPACT FACTOR: 7.129



IMPACT FACTOR: 7.429



## INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24\*7 Support on Whatsapp)