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Abstract: Forensic toxicology has long been tasked with addressing fundamental questions of causation in medico-legal 
investigations, such as whether death resulted from poisoning or drug use. Although advanced analytical platforms, including 
liquid chromatography–tandem mass spectrometry (LC–MS/MS) and gas chromatography-mass spectrometry (GC–MS), provide 
highly sensitive and specific data, the interpretation of these complex datasets remains a significant challenge. In recent years, 
artificial intelligence (AI) has emerged as a transformative tool in this domain, offering not only enhanced analytical speed but 
also the capacity to generate deeper, data-driven insights into toxicological findings. This review critically examines the 
application of AI and machine learning techniques within forensic toxicology.  
Key areas of focus include predictive toxicology, the development of AI-driven spectral libraries, automation of analytical 
workflows, and the integration of multi-omics data for comprehensive toxicological profiling. Furthermore, the review discusses 
the current challenges of ensuring robustness, transparency, and admissibility of AI-derived evidence in legal contexts, and 
outlines potential future directions for the incorporation of AI in forensic practice. 
 

I. INTRODUCTION 
Forensic science sits at the intersection application of science and justice. Toxicologists take the responsibility of highlighting the 
truth hidden in the chemical scars - whether in blood, urine, hair, or tissues.[1]. The complexity of this work has increased rapidly. 
Today, labs deal with thousands of novel psychoactive substances, environmental toxins, and naturally occurring poisons. 
Traditional methods remain powerful, but they are rapidly limited when it comes to handling the speed, interpretation and sheer 
diversity of compounds.  
Artificial Intelligence has emerged as a game-changer. Now AI is not just a futuristic discussion - it is now a practical tool for 
sorting through giant chemical datasets, finding hidden patterns and even predicting toxic effects before experiments. This paper 
reviews the latest progress in AI for forensic toxicology, already exposes new techniques in practice, and shows how this technology 
is changing casting and research.[2]. 
 

II. FORENSIC TOXIC SCIENCE AND DATA CHALLENGE 
Historically, the toxic gas depends on methods such as gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-
tandem mass spectrometry (LC-MS/MS). These devices can identify substances with remarkable accuracy, but the data they produce 
is very large. A single LC-qtof-MS run can produce thousands of peaks, many of which can be unknown metabolites or background 
noise.[3].  
The real challenge is not generating data - it is making sense. This is the place where AI is a step. Machine learning models can sift 
through data in ways that humans cannot, identify micro-patterns, and classify unknown compounds with a higher degree of 
accuracy.[3]. 
 

III. AI AND MACHINE LEARNING IN TOXICOLOGY SCIENCES 
Artificial intelligence, in the most basic sense, refers to algorithms that can learn from data. In toxicity science, a model is typically 
trained on known spectra, toxicity profiles, or case results, and subsequently asked to classify or predict new spectra, toxicity 
profiles, or case results. 
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Figure 1 AI and Machine Learning in Toxicology Sciences 

 
1) Supervised Learning: Support Vector Machines (SVMs) or Random Forests can help classify whether your spectrum is a toxin, 

metabolite, or benign compound. 
2) Deep Learning: Neural Networks, especially Convolutional Neural Networks (ConvNets), will find patterns in complex datasets 

such as chromatograms, spectra, or even toxic histopathology images.  
3) Unsupervised Learning: Tools such as clustering methods or principal component analysis (PCA) help the investigator look for 

patterns without pre-fitted data.  
These approaches make toxic science not only more precise but also more active. Instead of waiting to detect toxins, artificial 
intelligence helps them to anticipate them.[4]. 
 
A. Plant Toxins: Pushing "Unknown" with HRMS + AI 
Plant-ritual poison (aconitine, aconitine, calcotropin, and many others) falls at highly complex matrices and lower levels, which is 
actually high-resolution mass spectrometry (HRMS) Excel. Over the years, laboratories have earned LC-HRM in regular screening, 
which is valid with "research-keval"-it is often paired with machine learning, when candidates are preferred when the standards 
disappear when preferred. Actual biological matrix dual screen-end-quantified LC-HRMS methods, showing that with careful 
performance characteristics, nontargeted data can support case decisions, not just a search lead[5].  
A recurring topic in literature is that the real value of HRMS is unexpectedly searching, of course, with rare phytotoxins and their 
metabolites. At the same time, it is clear that reporting rules, library coverage and downstream data processing still need to stay in 
court. In short, the device is here, but it is standardization. 
The environment and the rapid screening approaches are also joining the toolbox. Review of direct analysis in real-time (DART-
MS) and paper-spray MS (PS-MS) is used with full LC-MS/MS confirmation, with increasing adoption for quick triaies of complex 
samples (plant extracts, residue smears). When the time is tight, their speed and minimum are improved to present the samples or 
when they are rare.[6].  
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Takeaway: Antargeted LC-HRMS- Often, AI is promoted to rank suspects; now, rare plants provide a practical passage to detect and 
refer to toxins. At the same time, the environment adds a sharp "front door" for MS Triaz. Verification and transparent reporting in 
the courtroom remain the key to trust. 
 
B. Postmortem toxic science: modeling through redistribution and decline 
Cases of postmortem are dirty: redistribution, pH shift, and enzymatic changes can affect measured concentrations. In the last few 
years, literature indicates a rapid model-assisted interpretation, despite the degradation, connects HRMS profiles with statistical/mL 
layers to estimate the possible concentration boundaries in fluids (blood, urine, vitris). While most of this work is still designed as 
"future saying support", it is moving towards case-use boundaries rather than single absolute numbers, which better align with the 
realities of postmortem chemistry.[6]. 
The same HRMS verification studies mentioned above, the case here is that they install reliable borders, false-super control and 
decision thresholds under real-matrix conditions, when an algorithm will extract with time-by-death or tissue differences. Explosive 
message in reviews: AI can stabilize interpretation, but only when the underlying analytical workflow is well validated and the 
uncertainty of the model is clearly reported.  
Takeaway: In postmortem work, AI/ML is best used as a quantitative reference - a disciplined method for redistribution and decline 
- constructed on top of rigidly valid HRMS. 
 
C. Pesticide toxicity: Fast classification in mixed matrices 
Pesticides - especially in agricultural areas - often include a mixture (organophosphates, carbamates, pyrethroids) that overlap 
equally in chromatographic windows and pieces. In the last five years, two complementary lines have been advanced: 
HRMS-based nontarget screening is valid for broad panels in blood and other matrices, giving labs a rescue "wide net" with the 
option to determine the volume in a single run.  
Contingent TRIES environment ionization (DART-MS, PS-MS). When it comes to time-to-present--to submit and reduce highlights 
that require complete confirmation tasks for samples, recent reviews, and applications underline practical benefits in speed and 
width.  
Both layered ML-Assisted spectral classification on both is the growth of the model potential identification and flag cum-lighting 
interventions on the pesticide spectra. While the method-specific, these models constantly reduce analysts' time on difficult isolation 
and improve the first-pass identity in mixed samples.[7]. (For the challenges of the matrix and to reduce them, especially in PS-MS, 
the description of the work details the effects of paper/surface and ion suppression.)  
 
D. Abuse and NPS medicines: ahead of a moving target 
The NPS landscape can be rapidly changed compared to traditional libraries. Here, the last five years show the most visible effects 
from AI and data-centered surveillance: 
Tackling a shifting challenge from research to practice in toxicology labs, emphasizing clinical/forensic reviews that help catch 
widespread, suspected-unknown data capture labs that they do not think of watching.  
Environmental technology, especially Dart-MS and PS-MS, is being used as front-end trials for seized drugs and biological samples, 
with strong review coverage and growing case apps.  
Unconstrained / mL group clustering on HRMS data is worth knowing people close to know classes (e.g., Nitazenes vs. Fentanels 
analogs) that can be justified search value instead of the standards immediately. These concepts provide similar momentum behind 
wasted water-based epidemiology (WBE), where ML -ML-modeling is supporting and projecting the trend of drug signals at the 
community level, feeding back suspicious listings into lab flows. 
All together, these advanced laboratories, which have moved from reactive to active. Instead of waiting for reference libraries to put 
together, they are capturing a lot of data, using AI, cluster and priority and are leveraging the WBE signal, to the determined 
standards of waves and liberate standards. Takeaway: A practical loop has been shown in recent literature: Wbe + Ml Flags Trends 
→ Labs prioritize suspects in unprotected HRMs → Sluding MS Speeds Triages in Cassworks → Confirmation locks - 
Confirmation in evidence - Confirmation in evidence - Confirmation in evidence - strengthening and lowering interculture[8]. 
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IV. EMERGING TRENDS IN AI-BASED FORENSIC TOXICOLOGICAL SCIENCE 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Emerging trends in AI-based forensic toxicological science 
 
A. Chemomatrix meets AI 
Chemometrics - Science of extracting information from chemical systems - is already a mainstay in toxic science. When used 
together with AI, it becomes more powerful. Instead of linear models, AI introduces adaptive systems that learn from developing 
data. This combination is particularly effective in plant toxin studies and classifying complex drug mixtures. 
 
B. AI-Inaculated spectral library 
Characterial libraries are the backbone of poisonous identity. Traditionally, their construction has been manual; experts need to 
validate the spectra. AI automates this process, dynamically curating, classifying and updating libraries. For example, deep learning 
algorithms can deconvolute overlapping peaks in mass spectra, which allows for cleaner, more accurate identification. 
 
C. Future Poisoning 
Predictive models are a growing star in toxic science. Using AI, researchers can simulate how a substance can behave in the body - 
its metabolism, its toxic threshold, or even chronic diseases due to its potential. Silico poisoning not only reduces dependence on 
animal models in testing but also provides rapid insight for forensic probes. 
 
D. Digital Twins and Silico Models 
AI-operated "digital twins" of biological systems are emerging. These are virtual models of human organs or metabolic passages 
that can help predict how a toxin interacts under different circumstances. Such models are already helping to estimate malignant 
doses or metabolic breakdowns for novel substances, where no pre-curvature exists. 
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E. AI in Histopathology and image-based toxic science 
Forensic matters often rely on tissue-level evidence. AI-in-managed image analysis can detect microseller changes in the liver, 
kidney or brain tissue slides that point to specific toxic humiliation. It is particularly valuable in cases of slow toxicity, where 
traditional tests may fail to catch early tissue-level changes. 
 
F. Omix Integration with AI 
Modern toxic science is not only about small molecules. Toxicogenomics, metabolomics and proteomics produce huge datasets that 
have important clues about toxic risk. AI models integrate these layers, providing overall insight. For example, connecting 
metabolomic fingerprints with genetic sensitivity can predict how different individuals react to the same poison[9]. 
 

V. PRACTICAL APPLICATION IN FORENSIC SCIENCE 

 
Fig. 3 Practical application in forensic science 

 
1) Deep learning for Spectrum Decohering: Overlapping peaks and noise signals are a major headache every day in spectrometry. 

Trained deep learning models on large spectral datasets can open these signals, which can lead to cleaner and faster 
identification. 

2) Drug and Poison Classification: The AI models are now trained on thousands of known drugs and poisons. When an unknown 
sample enters the laboratory, the system may suggest possible matches within seconds. This is particularly valuable in cases 
associated with novel psychoactive substances (NP). 

3) Natural language processing for forensic database: Toxicologists often struggle with unnecessary data -case notes, literature, or 
forensic reports. NLP equipment operated by AI can remove relevant information and mark cases with similar toxin or exposure 
profiles, which can reduce time and effort. 

4) Automatic Workflows & Robotics: Some are opting for a robotics system overseen by Forensic Lab AI. These setups automate 
sample preparations, data collection, and even preliminary interpretation, focusing on decision-making for experts in a repeated 
manner[10]. 

VI. CASE APPLICATION 
A. AI Case in Forensic Toxic Science 
Artificial intelligence is not only a tool of theory and thinking for toxic science, but it is also regularly becoming part of the practical 
course. Its applications are many and vary from plants' rich toxins to postmortem analyzers, pesticides and at times novel 
psychiatric, promoting developing challenges. Below, we describe the move into the descriptive areas of forensic toxic science with 
AI. 
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B. Plant Toxins 
Plant-retail poisons such as Abrin (Efferus Prettyus), Aconitine (Aconitum Napelus), and calotropin (calotropis gigantic) represent 
some of the most potent and difficult toxins encountered in forensic examination. These are typically found at trace level in complex 
biological matriarchies, making them notoriously hard to identify with typical target screening methods. 
The AI-Casisted LC-qtof-MS (or LC-Tof/Lc-Orbiterap) platforms are reducing this difference. By training a machine learning 
model on expansive sets of mass spectral data, analysts can better identify the unique fission pattern of these rare toxins, even in the 
noisy dataset where manual interpretation is tedious. For example, the Convolutional Neural Network (CNN) has been applied to 
spectral deconvolution, allowing analysts to separate toxic peaks from overlapping signals. 
In practice, this means that investigators no longer need to rely on the availability of certified reference standards, which are often 
missing for foreign plant toxins. AI models may suggest the identity of the candidate, assign probability scores, and narrow the 
search space for toxicity. These are the major implications for forensic casework, especially in areas where plant-based poisoning is 
still common in murders and suicides. 
 
C. Postmortem Toxicology  
One of the most complex challenges in forensic toxic science is the analysis of postmortem samples. After death, toxins do not 
remain stable. Instead, they undergo redistribution in tissues, affect pH changes, and are degraded due to microbial or enzymatic 
activity. These factors can lead to misleading concentration measurements, making it complicated to determine whether a toxin 
played a role in death. 
AI provides a novel solution through the future poisoning model. By learning from a large dataset of postmortem toxicological 
cases, machine learning algorithms can estimate the expected toxic concentrations in various fluids such as blood, urine, vitreous 
humor and tissue homogenates. These models can be responsible for time since death, decomposition stages and physiological 
variables, offering potential concentration limits rather than single-point values. 
Forensic pathologists can use these AI-related projections to strengthen their interpretations of toxic findings. For example, if 
decomposition has changed blood concentrations, the model can still predict levels in the vitreous humor that align with fatal risk. 
Such support is invaluable in court, where strong, scientifically appropriate interpretations are necessary. 
 
D. Pesticide Toxicity 
Pesticides are among the most frequent agents faced in forensic toxic science, especially in agricultural fields where compounds 
such as organophosphates, carbamates, and pyrethroids are easily available. Their detection leads to important challenges, as cases 
of toxicity often include a mixture of pesticides, which overlap chromatographic peaks and similar fragmentation patterns. 
Machine learning has proved especially effective in this domain. Trained algorithms - Using spectral libraries of pesticide 
compounds - can quickly identify fission fingers and classify compounds even in complex environments or biological samples. 
Supervised models, such as random forests or support vector machines (SVMs), have been implemented to separate uniform 
pesticides and identify low-level compounds that can not be noticed otherwise. 
In addition, AI equipment can handle large-scale batch analysis, screening hundreds of samples while maintaining accuracy 
continuously. It is particularly valuable during outbreaks of poisoning or suspected large-scale exposure, where rapid identification 
is important for both public health and legal action. 
 
E. Drugs of abuse and novel psychoactive materials  
Perhaps the most pressure and rapidly developing challenge in forensic toxic science is to detect drugs of misuse, especially the 
continuous stream of novel psychoactive substances (NP). These synthetic drugs - which include designer opioids, cannabinoids, 
and cattle - are designed to mimic the effects of controlled substances while evading detection in the traditional toxic science screen. 
AI offers an impressive collection of technologies to help match pace with this moving target. The Uncontrolled Learning algorithm 
can cluster unknown compounds based on the similarities to the drug class, even when the exact structure does not exist in reference 
libraries. Concurrently, the A-NHNSED monitoring system casts a net, incorporating data from toxicology, clinical entry and 
improvement, and even wastewater data to detect patterns from drug use and feeds this intelligence back to forensic labs.  
This adaptive cycle implies that forensic labs are no longer reactants. Instead of waiting for standard reference materials to become 
available, the AI model enables scientists to flag and "suspect unknown", estimate when the emergence of more new NPS waves, 
and change their test protocol. In doing so, AI is creating a more agile and accountable system in forensic toxicology to address the 
global drug crisis.[11]. 
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VII. CHALLENGES AND LIMITATIONS 
A. The Trials and Limits of AI in Forensic Toxicology Science 
Although artificial intelligence is very promising in toxicology analysis, the application of AI in forensic analysis has some very 
important challenges. To support the use of AI's immoral findings as strong, rigorous and legally defensible, considerable challenges 
need to be understood and resolved. 
 
B. Data Quality and Standardization 
AI models are very heavily reliant on the data they are trained on, their quality and the breadth of it. If there is a lack of 
completeness in the training dataset, or if it is incompatible or biased, then the model will carry that forward. In forensic toxic 
science, this problem is compounded by the variability of substances encountered. For example, novel psychoactive substances (NP) 
may appear quicker than, or outside of categories based on reference spectra thresholds, establishing the lack of detectability for an 
extended time period in the dataset.[12].  
Another challenge involves the lack of standardization in laboratory practices. Separate institutions may use different sample 
preparation methods, equipment settings or reporting thresholds. Feeding asymmetrical data into the machine learning pipeline may 
create misleading results, or models may only perform well under very narrow conditions. Without the harmonious protocol for 
sample handling, spectral acquisition and metadata recording, AI applications are being seen as incredible. 
To overcome this, the forensic community is moving towards a shared database and collaborative structure, where valid, high-
quality reference data is pooled into institutions. Initiatives such as federated learning are also being discovered, which can be 
trained in many datasets without direct data sharing - helping to protect sensitive case information by creating a stronger AI system. 
Cost and expertise: Advanced AI systems require investment and training that many forensic labs cannot tolerate yet. 
 
C. Black box problem 
One of the most frequent criticisms of AI, especially in legal contexts, is the so-called black box problem. Many advanced models, 
especially deep teaching systems, can produce highly accurate predictions, but can not easily explain how those predictions were 
reached. In forensic toxic science, it is particularly problematic: it is not enough to know what the algorithm predicts; Courts and 
judges should understand why. For example, if an AI model classifies a spectrum as abrin with 95% probability, but the model 
cannot provide a transparent justification or show which characteristics of the spectrum have removed that classification, its clear 
weight will be limited in court. An anti-lawyer can challenge the acceptance of such conclusions under standards such as Dabert or 
Fry, which requires scientific evidence clear and reproducible. 
Researchers are responding to this concern by developing a clear AI device, aimed at opening a black box by providing feature 
importance, visual or explanatory intermediate stages. These efforts require that AI has to obtain long -lengthy approval in forensic 
practice, where transparency is not only a scientific requirement, but a legal need. 
 
D. Ethical and legal views 
Beyond technical issues, AI forensic raises intensive moral and legal questions for toxic science. A central concern is accountability: 
Who is responsible if the AI system creates an error? If an algorithm considers a toxin wrong, due to a wrong mistake or acquitted, 
the software developer, laboratory or laboratory in court is convicted with experts presenting results in court. 
There are also concerns about the excess of AI predictions. The court can be wooed to see the algorithm output as purpose or 
infallible, when in fact they are subject to uncertainties and prejudices similar to any other scientific tool. For protection against this, 
AI must always be implicated as an accessory tool, rather than changing the specialist decision of poison. 
Finally, moral thoughts expand data privacy. Training AI models often requires large datasets drawn from forensic casting, which 
may include sensitive therapy or legal information. To ensure that such data are anonymous, safely stored, and required to protect 
the rights of individuals, managed morally, and manage scientific progress. 
 

VIII. FUTURE DIRECTION 
A. Future Instructions In Ai-Based Forensic Toxic Science 
The application of artificial intelligence in forensic toxic science is still in its early stages. Still, the trajectory is clear: AI will 
become the cornerstone of toxic analysis in the coming decade. The next phase will be defined not only by technological innovation 
but also by integration - toxic forensic intelligence systems, analysis for individuals, and demonetisation of advanced equipment for 
all laboratories. 
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B. Federated Learning and Associate Model Development 
One of the biggest obstacles to creating a strong AI model in toxic science is the limited availability of large, harmonious datasets. 
Legal and privacy restrictions often prevent laboratories from sharing raw forensic data in courts. Federated learning provides a 
powerful solution. 
In this method, laboratories do not share sensitive raw data; they instead locally train the AI model and then only send the learned 
parameters or model updates. These updates are gathered in a global model that can benefit from many varied training datasets 
without violating the case's privacy. Forensic toxic science means that labs located in different parts of the globe could always be 
improving future models - emerging toxins, novel psychoactive materials (NPs), or even identifying rare metabolites - without the 
need for moral or legal safety plans. 
This collective intelligence could be the basis for the next generation of spectral libraries and the structure of future toxic science, 
which could actually transform various laboratory efforts into a global poisoning knowledge network. 
 
C. Personal (Personal) Poison Detection 
Traditional toxic science considers the “average” human reactions to toxins, but real-class results vary significantly based on 
genetics, age, metabolic health and environmental risks. AI has the potential to unlock personal poisoning, moving beyond average 
population predictive toxic effects to real classes of specific poisoning toxic effects on specific details. 
For example, machine learning models can integrate toxogenomic data, protective biomarkers, and metabolic profiles to estimate 
how a person with a particular genetic background would fare in exposure to a particular poison. Such devices would be incredible 
assets in forensic work: they can help explain why two different individuals experience different results after being exposed to the 
same poison or determine if an accidental death was accidental or associated with an increased sensitivity.  
This approach links forensic toxicology and a general trend of precision therapy to ensure interpretations are not only AC; regional 
surges in pesticides, translocations across borders of novel opioid overdose deaths, and repeated, well-documented use of a 
particular poison in targeted offenses. 
For investigators, it means you'll be able to recognize the extent of broadening from case-by-case observations and, in turn, support 
early intervention and improved policy decisions on informants. For courts, it will bolster the clear reference point and finalize 
toxicological conclusions in the trends of crime overall. 
 
D. Cloud-based poison science platform 
Many small or resource-limited forensic laboratories lack the infrastructure to run complex AI models or maintain high-resolution 
mass spectrometry platforms. Cloud-based toxic science platforms can change by providing advanced computational analysis as a 
service. In this model, laboratories will upload raw spectral or omix data to secure the cloud server, where AI algorithms perform 
functions such as spectral deconvolutions, toxin prediction or library matching. The results will be returned to standardized, court-
tayyaar reports, while heavy computational lifting is handled away from far away. 
Such platforms will democratize access to advanced toxicological sciences, ensuring that fewer laboratories in developing areas can 
benefit from the state-of-the-art AI. In addition, the cloud system can constantly be updated with new models, spectral references, 
and toxicological insights, and all users can be we at the same pace with the latest scientific advances. The future of AI in forensic 
toxicological science is based on cooperation, privatization, integration, and access. Federated learning will provide collective 
intelligence without giving up privacy. Personalized forensic toxicological science will bridge personal consequences and 
population-level science. A forensic intelligence system will provide a methodology for using toxicology to support crime efforts. 
Cloud-based systems will ensure that advances are accessibly to laboratories of all sizes. If these directions are all undertaken with 
care and consideration, strict attention to transparency, ethical accountability, and verifiability, AE will not only be an aid in forensic 
toxic science. In fact, it will be a transformative force, ensuring toxic science is more ethical, robust, and relevant in front of the 
developed realm.  
 

IX. CONCLUSION 
AI is not intended to substitute forensic toxicologists; it is intended to empower forensic toxicologists. By augmenting the data 
surcharge burden, AI actually gives forensic toxicologists much more time to spend on what forensic toxicologists think is 
important, which is interpreting the results in the context of justice and human life. The future forensic toxic science will likely be 
hybrid, where human expertise and an AI in mind are working in tandem. They might work together to provide more rapid, more 
accurate and more accessible toxicology testing for both science and society. 
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