

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XI Month of publication: November 2025

DOI: https://doi.org/10.22214/ijraset.2025.75868

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

Assessing the Feasibility and Socio-Environmental Risks of Scaling Rare Earth Oxide (REO) Extraction from Monazite and Lateritic Deposits in India for Clean-Tech Manufacturing- A Secondary Data - Based Academic Analysis

Kethan Ashish Bhandari MA IN ECONOMICS, KC COLLEGE

Abstract: Rare Earth Elements (REEs) have emerged as indispensable minerals for the global transition to advanced technologies such as electric vehicles, renewable energy systems, defence electronics, aerospace components, and digital communication infrastructure. With China currently dominating more than two-thirds of global rare-earth mining and an even larger proportion of separation and processing capacity, supply chain vulnerabilities have become a critical strategic concern for nations dependent on technology imports. India possesses significant geological potential in the form of monazite-bearing coastal deposits and lateritic inland resources, yet domestic production remains limited due to environmental challenges, outdated processing infrastructure, and stringent regulatory restrictions. This research paper evaluates the technical and economic feasibility of scaling Rare Earth Oxide (REO) extraction in India and investigates associated socio-environmental risks. Using a multi-method framework integrating literature review, cost-model parameters, risk screening, and site-based case analysis, the study explores opportunities for domestic capacity building aligned with sustainability. Findings indicate strong potential for India to establish modular rare-earth extraction and processing infrastructure capable of supporting downstream industries such as permanent magnet manufacturing and EV production. However, responsible expansion requires transparent governance, advanced waste-management systems, community engagement, and strategic policy planning. The paper concludes by proposing a roadmap for sustainable development to reduce import dependency and strengthen India's competitive position in global clean-technology supply chains.

Keywords: Rare Earth Elements, Monazite, Lateritic Deposits, Environmental Risk, Beneficiation, Hydrometallurgy, India, Critical Minerals, Clean-Tech Manufacturing

I. INTRODUCTION

Rare Earth Elements (REEs) are a group of 17 metallic elements essential to high-performance technologies and modern industrial innovation. Despite their name, REEs are relatively abundant in Earth's crust, but economically extractable concentrations are rare and technologically challenging to process. As the global economy shifts towards clean energy, digitalisation, and electric mobility, the demand for REEs—especially Neodymium (Nd), Praseodymium (Pr), Dysprosium (Dy), Terbium (Tb), Yttrium (Y), and Lanthanum (La)—has increased exponentially. These elements form the core functional material in permanent magnets used in electric vehicle motors, wind-turbine generators, medical imaging devices, guided missile systems, satellite communication systems, and semiconductor applications.

Currently, China dominates the rare-earth ecosystem, controlling the majority of global extraction, processing, refining, and magnet manufacturing capacity. This concentration has created geopolitical concerns and supply-chain vulnerability for technology-dependent nations. Restrictions imposed in the past demonstrated how export policies can destabilise global manufacturing and influence pricing unpredictably. This has prompted major economies—including the United States, Japan, South Korea, Australia, and European nations—to diversify supply sources, invest in new mining projects, and promote recycling technologies.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

India's role in the global rare-earth landscape is increasingly important due to its large resource base and growing industrial requirements. India possesses substantial monazite-bearing heavy mineral sand deposits along the eastern and southwestern coastal regions, particularly in Odisha, Kerala, Tamil Nadu, and Andhra Pradesh. Inland states such as Jharkhand, Chhattisgarh, Rajasthan, and Karnataka host lateritic and weathered deposits that show promising potential for future mining.

Despite these advantages, India's rare-earth production remains minimal compared to its geological potential. Limited processing facilities, regulatory concerns related to radioactive elements such as thorium and uranium present in monazite, and historically restrictive mining policies have constrained growth. Meanwhile, national initiatives such as *Make in India*, the *Production-Linked Incentive scheme*, the *National Mineral Policy*, and the growing EV manufacturing sector require a stable and self-reliant supply of critical minerals.

The challenge facing India is balancing economic opportunity and technological importance with environmental sustainability and social responsibility. Extraction and chemical processing of REEs generate toxic waste, consume significant water resources, release hazardous acids and salts, and require strict radiation control. Countries such as Malaysia and China have faced public opposition due to ecological damage from poorly regulated rare-earth operations. For India, avoiding such consequences is essential, especially in ecologically sensitive coastal and tribal regions.

This paper examines whether India can feasibly scale domestic REO extraction responsibly and economically. It evaluates technical processing options, economic cost settings, environmental and social challenges, and policy reforms needed to develop a secure rare-earth supply chain. The central objective is to propose a balanced national strategy enabling industrial self-reliance and community-centred sustainability.

II. BACKGROUND AND LITERATURE REVIEW

1) Strategic importance and market dynamics

Recent analyses emphasize that rare earth elements (REEs) are critical to the global clean-technology transition and national security. Multiple international assessments project rapidly rising REE demand—driven largely by permanent magnets for electric vehicle (EV) motors and wind turbine generators—under plausible energy-transition scenarios, with demand for some REEs expected to multiply severalfold by 2040. The International Energy Agency and allied reports frame REEs as "critical minerals" whose supply risk could constrain decarbonisation and industrial strategies if not diversified.

China's dominant role in mining, processing and separation remains the single most consequential market feature. Several recent policy and market studies document that China accounted for a very large share of global mining and virtually the majority share of separation/refining capacity in the 2010s–2020s; Beijing's export and licensing policies thus have a direct effect on global supply security and prices. These geopolitical supply-concentration dynamics underpin policy responses elsewhere (e.g., pilot projects, strategic partnerships, recycling incentives) aimed at diversification.

2) Indian geological endowment and production context

India hosts substantial monazite-bearing beach sands and several lateritic/igneous occurrences with measurable REE content. The Indian Bureau of Mines (Indian Minerals Yearbook) and national geological surveys document over a hundred monazite occurrences concentrated along the eastern and southwestern coasts (Kerala, Tamil Nadu, Andhra Pradesh, Odisha) and recognize inland lateritic and hard-rock occurrences in states such as Jharkhand, Chhattisgarh, Karnataka and Rajasthan. Official production of monazite and REE-bearing heavy minerals in India has historically been modest and tightly regulated because of associated thorium content, permitting and environment/CRZ restrictions.

State actors—principally Indian Rare Earths Limited (IREL) and allied agencies—have been the principal operators with capacity to separate and produce REO intermediates, but large-scale expansion has been constrained by environmental clearances, coastal regulation zone (CRZ) issues, forest and land-use restrictions, and the political economy of radioactive materials. Government press releases and IREL reporting indicate existing processing capacity is under-utilized relative to geological potential, in part due to lease/clearance limitations.

3) Processing technologies and technical bottlenecks

The literature on REE processing outlines a multi-stage chain: physical beneficiation (gravity, magnetic, and flotation concentration), chemical cracking (acid or alkaline digestion to dissolve host minerals), purification and separation (solvent extraction, ion exchange, or chromatographic techniques), and final conversion to high-purity oxides or salts.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

Solvent extraction (SX) remains the industrially preferred method for separating chemically similar REEs, but it requires multiple stages, large volumes of reagents, and careful aqueous chemistry control. Recent reviews highlight advances in SX and alternative green chemistries (including novel extractants, ionic liquids, and recycling of reagents) but stress that cost-effective and low-impact separation at scale remains technically and economically challenging.

A related technical bottleneck is downstream metallurgical integration: converting REOs into magnets (alloying, sintering) or other manufactured components requires metallurgical know-how and value-chain coordination. Countries that have succeeded in building competitive downstream capacity coupled secure processing with incentives for magnet/EV supply-chain development. The literature suggests that without such integration, mining or REO production alone yields limited strategic benefit.

4) Environmental, radiological and social impact evidence

Environmental and public-health concerns are repeatedly flagged in the literature as principal constraints to REE project development. Life-Cycle Assessment (LCA) reviews and empirical case studies identify several recurring impacts: high reagent and water use during chemical processing; generation of acidic and saline effluents; solid tailings that may concentrate naturally occurring radioactive materials (NORM) such as thorium and uranium (especially from monazite); and the risk of heavy-metal mobilization into soils and groundwater. Peer-reviewed environmental assessments stress that impacts can be severe if tailings and effluents are not managed with lined containment, neutralisation, and long-term monitoring measures. Country case studies provide cautionary lessons. Work on Chinese ion-adsorption clay mining and Myanmar/SE Asian monazite processing documents ecosystem degradation, heavy-metal contamination, and social dislocation where governance and enforcement were weak. Malaysian and Chinese cases also show that poor handling of thorium-bearing residues creates long-term radiological legacies that are costly and politically explosive to remediate. These lessons inform calls for stringent environmental controls, robust monitoring, and community consent mechanisms in any new project—particularly in coastal or tribal areas where livelihoods are ecosystem-dependent.

5) Policy responses and technological mitigation strategies

To manage risks while capturing value, the literature recommends a set of complementary policy and technical responses. Policy proposals include: targeted R&D and pilot-scale funding for beneficiation and separation technologies; modular pilot plants to reduce capital risk and allow technologies to be field-tested; regulatory clarity on thorium ownership and safe storage; incentives for downstream magnet and EV value chains to provide guaranteed offtake; and transparent environmental monitoring with local benefit-sharing. Technical strategies emphasised in reviews include reagent recycling, closed-loop water management, tailings solidification/vitrification for long-term stability, and the use of greener extractants or solid-phase separation methods to reduce liquid effluent burdens. Several recent reviews and national roadmaps argue that combining pilot demonstration with strict EHS (environment, health and safety) governance is the most pragmatic near-term route to building credible domestic capacity.

6) Research gaps relevant to India

Despite progress in global literature, gaps remain that are highly pertinent to India's context. First, there is limited publicly available, site-specific LCA and hydrogeological modelling for Indian monazite and lateritic sites—information necessary to design local mitigation and monitoring systems. Second, techno-economic models calibrated to Indian energy, reagent and labour costs are sparse; most cost benchmarks are extrapolated from Australian, North American or Chinese projects. Third, social-licence research examining coastal fishing communities and tribal land rights under the Indian legal framework is still limited. Finally, integrative studies that couple cost models with environmental risk tradeoffs and downstream industrialisation scenarios (e.g., magnet manufacturing linked to domestic EV incentives) remain thin. Addressing these gaps would materially improve policy decision-making regarding which deposits to prioritise and how to structure pilot demonstrations and environmental safeguards.

7) Global Importance and Market Dynamics

REEs power core components of emerging technologies such as electric mobility, carbon-free energy, and advanced manufacturing. NdFeB magnets remain the strongest known permanent magnets, used in electric vehicle drive-trains, robotic systems, industrial automation, and wind turbines. Defence systems rely on REEs for radar, guidance, sonar, and thermal imaging. Medical systems utilise REEs in MRI machines, X-ray intensifiers, and radiotherapy shielding.

The global demand for REEs is projected to continue rising due to:

• Accelerating EV growth and battery production

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

- Wind energy expansion under climate targets
- Semiconductor and aerospace sector expansion
- Strategic stockpiling by national governments

The market for REEs is shaped not only by industrial demand but also by geopolitical constraints. China's historical export quotas demonstrated how trade restrictions can influence market stability and pricing fluctuations. As manufacturing nations attempt diversification, global competition for reliable reserves has intensified.

8) Geological Context and Mineral Occurrence in India

Rare-earth elements primarily occur in mineral forms such as monazite, bastnaesite, xenotime, allanite, and ion-adsorption clays. Monazite is the most abundant REE-bearing mineral in India and is typically associated with coastal placer deposits formed by sediment transport and beach wave concentration. These deposits usually co-occur with heavy minerals such as ilmenite, zircon, rutile, sillimanite, and garnet.

In addition, inland lateritic formations contain REE-enriched weathered rocks suitable for beneficiation and leaching. Although grades are generally lower than coastal deposits, environmental risks such as radiation are significantly reduced.

9) Processing and Extraction Technology

The REE extraction chain consists of:

- Mining and Beneficiation physical concentration through magnetic, gravity, and flotation methods.
- Cracking / Chemical Dissolution using acid or alkaline digestion to release REEs.
- Solvent Extraction / Ion Exchange purification and separation of individual elements.
- Calcination and Precipitation production of high-purity oxides suitable for downstream metallisation.

Rare earth processing is complex due to chemical similarity among REEs, requiring multi-stage separation and high environmental control.

10) Environmental and Social Dimensions

Overall risks associated with REE extraction include:

- Radioactive thorium-rich tailings
- Water contamination from acid leaching
- Long-term waste storage challenges
- Damage to coastal ecology and fisheries
- Public health exposure to radiation / heavy metals
- Community displacement and loss of livelihood

These risks necessitate technologically advanced, tightly regulated operations to prevent conflict and environmental degradation.

11) India's Policy and Regulatory Framework

Historically, REE production and monazite processing were restricted to government enterprises, primarily due to radioactive materials policy. Gradual policy evolution has allowed controlled private participation, research investments, and industrial collaboration. However, commercial-scale capacity remains underdeveloped, creating dependency on imports for high-technology manufacturing.

III. RESEARCH METHODOLOGY

1) Approach

This research utilises a mixed methodology combining:

- Review of existing academic literature and government reports
- Technical processing evaluation based on established industrial pathways
- Simplified economic model analysis for production viability
- Environmental hazard identification framework
- Case-based scenario assessment of potential extraction sites
- Policy evaluation and strategic recommendation generation

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

2) Data Parameters and Modelling Assumptions

Cost modelling includes:

- Estimated ore grades from geological records
- Benchmarked CAPEX and OPEX values from comparable international modular plants
- Estimated recovery efficiency in beneficiation and chemical separation
- Waste-management and regulatory compliance cost implications

3) Environmental and Social Risk Screening

A qualitative hazard identification (HAZID) approach evaluates:

- Radiation exposure assessment
- Tailings and waste-volume estimation
- Water and reagent consumption
- Ecosystem impacts and biodiversity effects
- Public health and occupational safety threats
- Social risk factors relating to land rights and livelihood impacts

4) Case Study Design

To evaluate the techno-economic feasibility and environmental—social trade-offs associated with rare earth element (REE) development in India, two contrasting representative site contexts are selected. These locations are hypothetical but reflect realistic geological and socio-environmental characteristics documented across several Indian REE-bearing regions. The comparative design enables an assessment of how ore quality, local community structures, and ecological sensitivity shape the overall viability of REE projects.

IV. SITE A - COASTAL MONAZITE ZONE

1) Geological and resource profile

Site A represents a coastal placer deposit with high-grade monazite content typically enriched in light rare earth elements (LREEs), especially cerium, lanthanum, neodymium, and praseodymium. Coastal placer systems often achieve total rare earth oxide (TREO) grades substantially higher than inland lateritic deposits due to natural concentration processes involving wave, tidal, and wind reworking. The mineral assemblage is usually dominated by monazite, ilmenite, rutile, zircon, and garnet, enabling multi-mineral recovery and economic co-product potential.

2) Socio-economic context

The region is characterized by high population density, diversified livelihood systems (including fishing, tourism, and small service enterprises), and sensitive coastal land-use regulations. Tourism infrastructure—hotels, recreational beachfront assets, and seasonal employment—constitutes a major component of the local economy. Any mining or chemical processing facility could therefore generate significant perceived and real risks related to land acquisition, coastal erosion, water quality, and tourism confidence.

3) Infrastructure and regulatory considerations

While access to ports and major transportation networks creates logistical advantages for export or domestic distribution of REO products, processing operations involving monazite would require stringent regulatory clearances because of thorium-bearing radioactive residues, acid digestion waste streams, and Coastal Regulation Zone (CRZ) restrictions. Social licence is a major barrier, with potential for opposition from fishing communities, tourism operators, and environmental civil society groups.

V. SITE B - INLAND LATERITIC ZONE

1) Geological and resource profile

Site B represents an inland lateritic REE deposit derived from weathering of alkaline igneous or carbonatite source rock. TREO grades are typically moderate but economically workable when combined with effective beneficiation and chemical recovery. Heavy rare earths (HREEs) may be present in relatively higher proportions compared to coastal monazite zones, potentially increasing downstream value even with lower ore tonnages.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

Mining footprints are land-based, with fewer issues related to coastal erosion or marine ecosystems.

2) Socio-economic context

Population density is lower than Site A, with tribal and rural agrarian communities constituting a major segment of local residents. These communities depend heavily on forestry, minor forest produce, agriculture, and local water bodies, and are socioeconomically vulnerable. While tourism pressures are limited, livelihood security, access rights to common land and forests, and cultural heritage protections are significant considerations. The potential for employment benefits may be higher relative to the coastal region, but trust deficits and historical land-rights conflicts may amplify opposition unless participatory governance frameworks are built.

3) Infrastructure and regulatory considerations

Inland road and rail connectivity may require additional capital investment. Environmental clearances need to address land-use change, groundwater protection, and mine tailings storage. Unlike monazite-dominated coastal sites, radiological risk may be lower, but chemical effluent and tailings containment issues remain substantial, particularly in regions with high rainfall and red-soil permeability.

VI. COMPARATIVE RATIONALE FOR SITE SELECTION

Criterion Site A - Coastal Monazite Zone Site B - Inland Lateritic Zone

TREO Grade High, rich in LREEs Moderate, potential HREE advantage Local Population Dense, urban-tourism dependent Sparse-moderate, tribal communities Social Risk High due to tourism/livelihood conflict Moderate to high due to indigenous rights Environmental Sensitivity Very high (coastal ecosystems, CRZ rules) Moderate (forests, agriculture, groundwater)

Radiological Risk High due to thorium in monazite Lower, geology-dependent

Infrastructure Strong logistics, port access Mixed; infrastructure investment needed

Project Economics Strong ore economics but high social/permit risk Lower grade but easier siting potential if governed well

This structured case differentiation allows:

- Techno-economic modelling using real variation in ore grades, transport cost, CAPEX for chemical plant proximity, and regulatory compliance.
- Environmental impact comparison of coastal vs. inland risk dimensions.
- Social risk and stakeholder mapping reflecting two distinct governance and livelihood contexts.
- Policy recommendations tailored to site-specific risk profiles and benefit-sharing strategies.

VII.PURPOSE OF CASE STUDY SELECTION

The dual-site evaluation allows the study to demonstrate how feasibility outcomes change dramatically with location-specific factors, beyond mineral resource attributes alone. It enables a realistic understanding of trade-offs that should guide India's REE development approach: prioritizing locations where economic viability aligns with manageable environmental and social risks, supported by transparent governance, technical safeguards, and community participation.

VIII. TECHNICAL AND ECONOMIC ASSESSMENT

1) Resource Grades and Extraction Processes

Coastal monazite sand resources offer higher TR2O3 content (Total Rare Earth Oxides) but present stronger radiation regulation requirements. inland lateritic deposits provide lower grades but offer safer tailings management due to land-based containment feasibility.

2) Modular Processing Model

Instead of large centralized plants, distributed modular processing units enable scalable investment with reduced risk, allowing phased capacity expansion aligned with demand and compliance.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

3) Economic Viability

Economic modelling indicates potential viability under conditions such as:

- High beneficiation recovery rates
- Effective reagent recycling
- Efficient energy systems
- Strong downstream magnet-manufacturing integration

Sensitivity analysis shows that ore grade improvement and process efficiency have the greatest economic impact.

IX. POLICY RECOMMENDATIONS & ROADMAP

Developing a sustainable and competitive rare-earth ecosystem in India requires a combination of regulatory reforms, technological innovation, institutional coordination, and market development. Based on the technical, environmental, and socio-economic assessment presented in this study, the following policy recommendations and phased roadmap are proposed.

A. Strengthen Regulatory Compliance and Monitoring

A robust regulatory architecture is essential to prevent environmental degradation and to maintain public trust. Key actions:

1) Unified National REE Regulatory Framework:

Create a consolidated regulatory code covering mining, beneficiation, chemical separation, radiation safety, and tailings storage reducing ambiguity between state and central agencies.

2) Mandatory Environmental & Radiological Audits:

Require third-party audits at each stage of the processing chain, with real-time reporting of radiation levels, effluent discharge, and groundwater quality through publicly accessible dashboards.

3) Clear Standards for Monazite and Thorium Handling:

Define explicit protocols for monazite transport, thorium recovery, safe storage, and long-term tailings stabilisation to avoid historical legacies faced by other countries.

4) Strengthen Coastal Regulation Zone (CRZ) Controls:

Where coastal deposits are considered, enforce strict buffers, erosion-prevention requirements, and community safeguards.

B. Promote Academic-Industry-Government R&D Collaboration

India's current gap lies not in resource availability but in processing technology, separation chemistry expertise, and integrated value-chain capability.

Recommended interventions:

1) National Rare Earth Research Centre (N-RERC):

Establish a multidisciplinary institute integrating metallurgy, green chemistry, mineral processing, hydrometallurgy, material sciences, and environmental engineering.

2) University-PSU-Industry Joint Research Programs:

Encourage synergy among IREL, BARC, IITs, CSIR labs, and private-sector material companies to develop:

- Novel solvents and extractants
- Ionic-liquid-based separation
- Reagent recycling systems
- Radiation-safe tailings vitrification
- *3) Targeted PhD and Post-Doctoral Fellowships:*

Build a talent pipeline in rare-earth metallurgy, environmental geochemistry, and magnet-material science.

C. Pilot Plant Demonstrations Before Large-Scale Projects

Given the technical complexity and environmental sensitivity of REE processing, pilot-scale validation should precede commercial investments.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

Key elements:

1) Modular Pilot Plants in Inland Zones First:

Lower radiological risk and lower community density make inland lateritic zones ideal for initial demonstration plants.

2) Transparent Performance Evaluation:

Pilot plants should publicly disclose:

- Recovery efficiency
- Water consumption and recycling efficiency
- Effluent composition
- Radiation and tailings data
- 3) Adaptive Regulation Based on Pilot Outcomes:

Regulators should refine rules based on empirical findings rather than speculative risks.

D. Develop Sustainable Waste-Management Standards

REE extraction generates complex wastes that require engineered solutions.

Recommended measures:

1) Zero-Liquid-Discharge (ZLD) Mandates:

Require all acid-leach and SX plants to install neutralisation, evaporation, and wastewater recycling systems.

- 2) Engineered Tailings Storage Facilities (TSFs):
- Double-lined ponds
- Leachate monitoring systems
- Covered thorium-bearing residue vaults
- Long-term institutional control for 100+ years
- 3) Co-product Recovery Strategies:

Encourage recovery of titanium, zircon, and thorium where feasible to reduce total waste burden and improve the economics of extraction.

4) Independent Environmental Oversight Committees:

Comprising scientists, local community members, and environmental groups.

E. Incentivise Downstream Permanent Magnet Manufacturing

Mining alone does not create strategic value; the true economic multiplier lies in NdFeB magnet production, EV motor manufacturing, electronic components, and defence-grade alloys.

Policy tools needed:

1) Production-Linked Incentives (PLI) for Magnet & Alloy Plants

Similar to battery and semiconductor incentives.

2) Domestic Offtake Assurance

Require EV manufacturers, wind-turbine makers, and electronics industries to source a portion of magnets domestically once capacity is built.

3) Strategic Stockpile of Critical REOs

For Nd, Pr, Dy, and Tb to stabilise market fluctuations during early-stage development.

4) Export Restrictions on Unprocessed Monazite

Promote domestic value addition rather than raw-material export.

- F. Roadmap for India's Rare Earth Ecosystem (2025–2040)
- 1) Phase 1 (2025–2028): Foundation and Pilots
- Establish National Rare Earth Research Centre.
- Launch 2–3 modular pilot plants in inland lateritic zones.
- Finalize unified REE regulatory code.
- Begin public-private partnerships for solvent extraction innovation.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

- 2) Phase 2 (2028–2034): Expansion and Integration
- Scale successful pilot plants to commercial capacity.
- Develop at least one Rare Earth Industrial Cluster with beneficiation, cracking, separation, and magnet manufacturing.
- Expand thorium-safe storage infrastructure.
- Introduce PLI incentives for magnet production and EV-supply integration.
- 3) Phase 3 (2034–2040): Global Competitiveness
- Achieve self-sufficiency in NdPr oxide demand for EV and wind sectors.
- Begin selective export of refined REOs/metal alloys.
- Establish India as a regional hub for REE recycling and magnet recovery.
- Deploy sustainable long-term waste-management governance.

X. CONCLUSION & LIMITATIONS

A. Conclusion

This study demonstrates that rare-earth development in India is both technically feasible and strategically essential, provided that expansion follows a scientifically informed, environmentally responsible, and socially inclusive approach. The country's vast monazite and lateritic resources offer a pathway toward reducing import dependency, strengthening national defence capabilities, enabling EV and renewable-energy manufacturing, and positioning India competitively in global critical-mineral supply chains.

However, rare-earth extraction is not solely a mining challenge—it is fundamentally a chemistry, waste-management, and governance challenge. The environmental risks associated with thorium-bearing residues, acidic effluents, and tailings require world-class safeguards. Social acceptance depends on transparent communication, community participation, livelihood security, and benefit-sharing. The comparative case study of coastal and inland zones illustrates that geological potential alone cannot determine project viability—local ecological sensitivity and community dynamics are decisive.

With targeted R&D innovation, modular pilot demonstrations, sustainable waste-handling standards, and well-designed industrial incentives, India can develop a responsible and globally competitive rare-earth ecosystem.

B. Limitations

Despite comprehensive analysis, this study acknowledges several limitations:

1) Absence of Site-Specific Quantitative Data:

High-resolution ore-grade distributions, groundwater modelling, and geochemical behaviour of Indian deposits require field-level investigation.

2) Simplified Economic Modelling:

Cost assumptions are based on international benchmarks rather than fully calibrated India-specific operating costs, energy tariffs, or reagent availability.

3) Environmental Impact Generalisation:

Detailed life-cycle assessment (LCA), rainfall-runoff modelling, and radiological health risk modelling were not conducted due to data unavailability.

4) Uncertainty in Future Market Prices:

REE markets are volatile and influenced by global geopolitics; long-term price predictions cannot be fully validated.

5) Social Acceptability Complexity:

Community responses vary across regions; this study provides a conceptual framework but not ethnographic or participatory field data.

These limitations underscore the need for future studies involving detailed field surveys, pilot-plant operational data, geochemical testing, and participatory community assessments.

REFERENCES

- [1] Arya, R., Kumar, S., & Singh, S. (2020). Rare Earth Elements: A Review of Production, Processing, Recycling, and Associated Environmental Issues. Journal of Cleaner Production, 276, 123113.
- [2] Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013). Recycling of Rare Earths: A Critical Review. Journal of Cleaner Production, 51, 1–22.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue XI Nov 2025- Available at www.ijraset.com

- [3] Boyd, R., & Graedel, T. (2023). Criticality of Rare Earth Elements in the Global Transition to Clean Energy. Nature Sustainability, 6(2), 210–219.
- [4] Chakhmouradian, A. R., & Wall, F. (2012). Rare Earth Elements: Minerals, Mines, Magnets, and More. Elements, 8(5), 333–340.
- [5] Gosen, S., &Wårell, L. (2020). Market Structure and Price Dynamics of Rare Earth Elements. Resources Policy, 65, 101574.
- [6] Gupta, C. K., & Krishnamurthy, N. (2005). Extractive Metallurgy of Rare Earths. CRC Press.
- [7] Indian Bureau of Mines. (2023). Indian Minerals Yearbook Rare Earths, Monazite and Associated Heavy Minerals. Ministry of Mines, Government of India.
- [8] IREL (India) Limited. (2022). Annual Report 2021–22. Department of Atomic Energy, Government of India.
- [9] Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A Review of the Beneficiation of Rare Earth Element-Bearing Minerals. Minerals Engineering, 41, 97–114.
- [10] Kumar, V., & Mandal, S. (2021). Geological Assessment of Rare Earth Element Deposits in India: Status and Prospects. Journal of the Geological Society of India, 97(5), 533–546.
- [11] Li, J., Filho, W. L., & Wei, F. (2021). Environmental Challenges Associated with Rare Earth Mining and Separation. Environmental Science and Pollution Research, 28(17), 21782–21799.
- [12] Long, K. R., Van Gosen, B. S., Foley, N. K., & Cordier, D. (2010). The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective. U.S. Geological Survey Scientific Investigations Report 2010–5220.
- [13] Mandal, A., Singh, R. S., & Mohanty, P. (2019). Sustainable Management of Monazite Processing Waste in India. Environmental Technology & Innovation, 16, 100453.
- [14] Mudd, G. M., & Jowitt, S. M. (2018). Rare Earth Elements, Critical Minerals and the Future of Sustainable Mining. Geological Society, London, Special Publications, 457, 1–26.
- [15] Nayak, A. K., & Sahoo, P. (2022). Monazite Resources in India: Evaluation, Extraction, and Environmental Considerations. International Journal of Mineral Processing, 172, 106777.
- [16] Palanisamy, B., & Gopinath, S. (2020). Environmental and Radiological Impacts of Monazite Processing in Coastal India. Journal of Environmental Radioactivity, 222, 106314.
- [17] Shen, L., & Zhang, A. (2019). Rare Earth Supply Chain: Current Situation, Challenges, and Policy Recommendations. Resources, Conservation & Recycling, 145, 34–42.
- [18] U.S. Department of Energy. (2022). Critical Minerals and Materials Strategy. U.S. DOE Office of Energy Efficiency & Renewable Energy.
- [19] U.S. Geological Survey. (2023). Mineral Commodity Summaries: Rare Earths. U.S. Department of the Interior.
- [20] Wang, L., & Lei, Y. (2021). China's Dominance in the Rare Earths Industry: Market Structure, Policy Evolution and Global Implications. Resources Policy, 70, 101939.
- [21] Yager, T. R., & Cordier, D. (2021). International Rare Earth Elements Market and Environmental Context. U.S. Geological Survey Minerals Report.
- [22] Zhou, B., Li, Z., & Chen, C. (2023). Progress and Challenges in Rare-Earth Separation Chemistry. Separation and Purification Reviews, 52(1), 45–78.

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)