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Abstract: The aim here is to explore the methods to automate the labelling of the information that is present  in bug trackers and 
client support systems. This is majorly based on the classification of the content depending on some criteria e.g., priority or 
product area. Labelling of the tickets is important as it helps in effective and efficient handling of the ticket and help is quicker 
and comprehensive resolution of the tickets. The main goal of the project is to analyze the existing methodologies used for 
automated labelling and then use a newer approach and compare the results. The existing methodologies are the ones which are 
based of the neural networks and without neural networks. In this project, a newer approach based on the recurrent neural 
networks which are based on the hierarchical attention paradigm will be used. 
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I. INTRODUCTION 
While handling any client support ticket, the first thing a representative agent has to do is to mark the ticket with various criterion. 
There could be a lot of different kinds of criteria e.g., priority, product area, platform, customer etc. Also, the service agent has to 
choose a specific action for the service ticket to move forward. The action could be from different groups within the company. Some 
tickets might need assistance from the engineering teams, or some tickets might need an onsite visit.  
The main idea behind labelling the tickets is to ensure that the tickets are handled effectively. E.g., if you consider the priority of the 
ticket, low priority tickets are handled after the high priority ones are handled. The engineering team or onsite technician team will 
only get involved if the ticket is marked for intervention. Similar situations arise while handling the project management tools such 
as Jira or Bugzilla or ClearQuest. Team members label the tasks based on the area of work, platform on which the work is carried 
out, components involved etc. One such example can be the task needing work on Kernel or the task needing work on the front end 
of the system. 
Manually labelling such customer support tickets or tasks might take days or in some cases weeks even, and it will be costly for any 
organization. If there is a system that labels such tickets or tasks automatically, it would reduce a lot of expediter. It would also help 
the organization operate speedily by taking quick actions wherever needed. For organizations this would be a strikingly important 
problem to address. The recent evolution in neural networks and word embedding leverages help address and resolve this problem. 
Text classification is the general problem which is handled in this project. Consider a fixed set of known text classes. If we have the 
body of text, we need to find out the class of the body from the fixed set of classes. On the other hand, if the text classification is to 
be considered on the customer  support tickets or project tasks, there will be some admonition. The reason behind this is that the 
data will contain a lot of unique fragments which can be complex for the automated system to understand e.g., the data from 
customer support tickets or project tasks can contain stack traces or some HTML code block or some system images etc. However, 
such data is usually very well formatted and structured. This kind of structuring or formatting can be helpful in some of the novel 
methods used to solve this problem including the method this project proposes. 
Multi class text classification where the quantity of classes being predicted are more than 2 are of main interest of this method. 
Binary classification tasks such as sentiment analysis more commonly produce the best results. An example of sentiment analysis is 
the Twitter data set using which a prediction can be made if the tweet is positive or negative, another example could be using the 
sentiment analysis to mark an email as spam or clean. Using this method 95% or more times accurate results can be achieved. This 
can be credited because of the fact that the dual categories usually have a lot of clue words e.g. “good” or “grate” could mean that 
the tweet is positive, and “sale” would mean the email is spam. This way the classification becomes simpler. 
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II. METHODOLOGY 
This project proposes the usage of hierarchical attention archetype with assorted GRU (Gated Recurrent Units) cell sizes, and a 
shallow network that would be used apace with. This approach allows networks to outperform regular hierarchical attention on 
datasets where straightforward term-based approach works well.  
In this approach, there are multiple steps involved. Sentence hierarchy and attention vectors are used. The networks architecture is 
changed to use hierarchical attention blocks and shallow network is introduced which takes a word embedding as input and 
generated a vector. In the end in depth trainings are performed on the data sets to automate the labelling. 
  
 
 
              
       
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

A. Pre-processing data 
A set of preprocessing is done on the data that is used to analyse the results. This preprocessing is done across all the approaches 
mentioned in the paper. One of the most important activity which needs to be carried out which applying any machine learning is 
data cleaning. This activity should similarly be done on the data received in customer support tickets and project tasks. The data set 
used in this paper has broadly two categories of data i.e stack trace or error messages and HTML snippets. This information at times 
only adds noise to the date and should be cleaned. Below mentioned steps are used to clean the data: 
1) Casting everything to lower case 
2) Removing stop words 
3) Filtering data set specific garbage using custom regular expressions 
 
B. Model Building 
This approach comprises of two ideas: 
1) Utilizing sentence hierarchy 
2) Utilizing attention vectors 
By sentence hierarchy it is meant that one RNN will accept word embeddings from a particular sentence as input and enumerate 
additional vector which will act as the characterization of that sentence. And then the seconds RNN will use the sentence vectors 
and quantify a concluding vector for the document. The final vector will be fed to SoftMax layer to obtain final probabilities. This 
paradigm will work nicely as the language is structured in sentences.  
Documents in a dataset can frequently follow structured pattern e.g., the most predominant information is usually found at the end 
of the document. This makes a good case to have pertinent coefficients for outputs of both word and sentence encoders. This task is 
achieved by instigating attention vectors which are marked as us and uw  in the figure. These attention vectors are divided across all 
outputs at their level, and they are trained alongside other parts of the model. When it comes to combining sentence or word vectors 
into one, the coefficients which are going to be used will be a dot product of a suitable attention vector with sentence or word.  
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In this way the attention vector acts as “the ideal vector” which if present would achieve perfect score.  Using attention vectors in 
this network makes a lot of sense as data is often well formatted with a noteworthy portion of items in the Linux bugs dataset filling 
a pre-defined template for their bug report. These kinds of scenarios are best to be used with attention-based mechanisms.  
The concepts of hierarchy for detection and classification are previously used as well e.g., in visual recognition.  
 
C. Network Architecture 
Depending on the results as mentioned in following sections, the hierarchical attention works best on the datasets which follow 
some structure. It is also evident that hierarchical attention does not produce good results for dataset which are not well structured. 
To solve this problem two changed are proposed. 
The first change involves using several attention blocks similar to the ones in Fig II with each of them having a different GRU cell 
size. Hierarchical attention uses GRU cells instead of the more common Long short-term memory (LSTM) cells, which is turn 
produces higher performances although with a small margin. The architecture of one such block is portrayed in below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. TRAINING DETAILS 
For data training below mentioned cross-entropy loss function is used.  
 
Ly′(y) := − ∑ y′i log(yi)   
                                                                               
 
where yi is the predicted probability value for class i and y′i is the accurate probability for that class. 
Training deep neural networks can be a meticulous task. In this section details about the training used on the datasets are mentioned. 
First of all, dropout is widely used to avoid overfitting. Overfitting can happen very easily depending on the size of the datasets. 
Even more captivating fact is that dropout probability to work best when set at around ½ was found, which is 
higher than typical values. In this solution, dropout layers are between any two RNNs of affine layer in this solution as depicted in 
Fig III. Secondly, RMSprop is also used for optimization. Lastly Word2vec library is used to compute the word embeddings.  
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IV. RESULTS AND DISCUSSION 
Two live data sets are used to evaluate the performance of the proposed model. One if from the Arch Linux bug tracking tool and 
the other one is from the Chromium bug tracker tool. 
 
A. Arch Linux bugs classification based on Priority/importance:  

Accuracy: 73.2% 

 
Logistic Regression 

 Precision Recall F1-
score 

support 

P1 blocking 0.292 0.719 0.416 313 
P1 
enhancement 

0.130 0.794 223 97 

P1 high 0.584 0.741 0.654 986 
P1 low 0.283 0.728 0.408 302 
P1 normal 0.927 0.736 0.820 6078 
P2 blocking 0.500 0.761 0.604 657 
P2 high 0.708 0.707 0.708 1664 
P2 low 0.482 0.737 0.582 654 
P2 normal 0.917 0.730 0.813 5531 
Accuracy   0.732 16282 
Macro avg 0.536 0.739 0.581 16282 
Weighted avg 0.816 0.732 0.759 16282 

 
Confusion Matrix(Logistic Regression) 
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B. ARCH Linux Bugs Classification Based On Product Type 
F1-Score Accuracy: 61.8% 
Logistic Regression: Classification report 

 Precisi
on 

Reca
ll 

F1-
scor
e 

support 

ACPI 0.777 0.61
6 

0.68
7 

2161 

Alternate Trees 0.187 0.58
1 

0.28
2 

172 

Documentation  0.040 0.43
6 

0.07
2 

39 

Drivers 0.933 0.62
0 

0.74
5 

5580 

File System 0.693 0.62
3 

0.65
6 

1374 

IO/Storage 0.693 0.61
5 

0.65
2 

1542 

Memory 
Management 

0.432 0.62
8 

0.51
2 

487 

Networking 0.638 0.60
7 

0.62
2 

1142 

Other 0.650 0.61
6 

0.63
2 

1071 

Platform 
Specific/Hardw
are 

0.623 0.61
2 

0.61
8 

1078 

Power 
Management 

0.442 0.61
7 

0.51
5 

486 

Process 
Management 

0.314 0.62
3 

0.41
7 

276 

SCSI Drivers 0.371 0.63
7 

0.46
9 

364 

Timers 0.212 0.64
1 

0.31
8 

170 

Virtualization 0.064 0.60
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Weighted avg 0.726 0.61
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Confusion Matrix 

 
 
C. Chromium Bugs Classification Based on Class 
F1-Score Accuracy: 92.7% 
Logistic Regression:  

 
 Precision Recall F1-

score 
support 

Bug 0.965 0.926 0.945 29997 
Compatibility 0.783 0.932 0.851 7400 
Feature 0.935 0.927 0.931 21471 
Accuracy   0.927 58868 
Macro avg 0.894 0.928 0.909 58868 
Weighted 
avg 

0.931 0.927 0.928 58868 
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Confusion Matrix 

 
      

V. CONCLUSIONS 
In this project, a newer approach to solving the complex multi-class classification problem was proposed. The model consisted of 
various concepts which perform poorly individually but when they are stacked together as proposed, the results outperform the 
results of the previous methods.  
The proposed model was applied to two real world datasets, one from the Arch Linux bug tracker and other one being the 
Chromium bug tracker. The existing methodologies and models were also applied on the same dataset and the results were 
compared. Evidently from the results, the proposed model outperformed the results of most of the existing other models.  
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