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Abstract: With the rapid advancement of cloud computing technologies, the management and provisioning of cloud 
infrastructure have become increasingly complex. The adoption of Infrastructure as Code (IaC) tools, such as Terraform, has 
streamlined cloud resource management. However, the manual creation of Terraform configuration files remains a challenging 
task that requires significant expertise in both cloud architecture and Terraform syntax. This paper presents an innovative 
approach to automating Terraform file generation using Natural Language Processing (NLP) and graph-based cloud 
architecture visualization. Our system enables users to describe their cloud infrastructure using natural language or through a 
graphical drag-and-drop interface. By integrating topological sorting techniques, our solution ensures the correctness of 
dependencies within the cloud architecture before generating Terraform files. The experimental results demonstrate that our 
approach enhances efficiency by reducing configuration time by up to 60%, minimizes human error in complex architectures, 
and makes Terraform more accessible to users with varying levels of expertise. This research contributes to the growing field of 
automated cloud infrastructure management by bridging the gap between human-readable descriptions and machine-executable 
infrastructure code. Index Terms—Terraform, Natural Language Processing, Graph-Based Visualization, Cloud Architecture, 
Topological Sorting, Infrastructure as Code 
Keywords: Terraform, Natural Language Processing (NLP), Infrastructure as Code (IaC), Graph-Based Visualization, Cloud 
Architecture Automation 
 

I. INTRODUCTION 
Cloud computing has revolutionized how organizations manage and deploy IT resources. The paradigm shift from traditional on-
premises infrastructure to cloud-based solutions has enabled unprecedented scalability, flexibility, and cost efficiency for businesses 
of all sizes. Despite these advantages, effectively provisioning and managing cloud resources remains a technically intensive task 
that requires specialized knowledge and considerable attention to detail. Modern cloud architectures often encompass numerous 
interdependent components, including networking configurations, storage systems, compute instances, and security policies, making 
manual management increasingly impractical and error-prone. Infrastructure as Code (IaC) tools, particularly Terraform, have 
emerged as a solution to these challenges by allowing users to define infrastructure in a declarative manner. This approach 
encapsulates cloud resource configurations in version-controlled code repositories, thereby reducing configuration drift, enhancing 
reproducibility, and facilitating collaboration among team members. Terraform’s provider-agnostic framework supports multiple 
cloud platforms, including AWS, Azure, Google Cloud, and others, making it a versatile choice for organizations with multi-cloud 
strategies. Despite its advantages, writing Terraform scripts manually demands extensive knowledge of both the target cloud 
environment and Terraform’s specific syntax. Engineers must understand resource dependencies, proper configuration parameters, 
and security best practices—a combination that presents a steep learning curve for many practitioners. Furthermore, the manual 
creation of Terraform configurations introduces potential for human error, especially when dealing with complex architectures 
comprising dozens or hundreds of interconnected resources. Misconfigurations can lead to deployment failures, resource leakage, 
security vulnerabilities, or performance bottlenecks, all of which can significantly impact operational stability and business 
continuity. Additionally, the time required to author and validate Terraform scripts manually represents a substantial overhead in the 
deployment process, reducing agility and potentially hindering innovation. To address these challenges, we propose a 
comprehensive system that automates Terraform file generation through a novel combination of Natural Language Processing (NLP) 
and graph-based visualization techniques. Our solution empowers users to either input infrastructure requirements using natural 
language descriptions (e.g., ”Create a three-tier web application with a load balancer, three web servers, and a PostgreSQL 
database”) or visually design their architecture through an intuitive drag-and-drop interface. The system intelligently processes these 
inputs, validates the logical dependencies through sophisticated topological sorting algorithms, and generates executable Terraform 
configurations that adhere to best practices in cloud architecture.  
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This approach significantly simplifies cloud infrastructure management, reduces the barrier to entry for newcomers to cloud 
computing, ensures error-free deployments, and accelerates the provisioning process—all critical factors in today’s fast-paced 
technological landscape. 
 

II. BACKGROUND AND RELATED WORK 
Several studies have explored the integration of NLP and graph-based approaches in cloud computing and Infrastructure as Code 
(IaC). These interdisciplinary efforts have yielded valuable insights that inform our current research direction and methodology. By 
examining existing literature, we can better position our contribution within the broader context of cloud infrastructure automation. 
Below are some key contributions from relevant research domains: 
 
A. NLP-based Cloud Resource Management 
Previous research has highlighted the potential of Natural Language Processing in automating cloud service provisioning and 
management tasks. Sarhan and Garg (2018) proposed a framework for interpreting natural language commands into cloud 
configuration instructions, demonstrating feasibility but achieving limited accuracy with simple rule-based NLP techniques. 
Similarly, Wei et al. (2020) explored using semantic parsing to translate human instructions into actionable cloud operations, 
focusing primarily on basic resource allocation tasks rather than comprehensive infrastructure configurations. These studies focus 
on automating cloud configuration by processing textual descriptions into machine-executable scripts—a promising approach that 
aligns with our objectives. However, most existing implementations rely heavily on predefined templates and rule-based approaches 
rather than leveraging the full potential of modern deep learning techniques for improved accuracy and flexibility. Additionally, 
many solutions are tightly coupled with specific cloud providers, limiting their applicability in heterogeneous cloud environments. 
Our research extends these initial efforts by incorporating state-of-the-art transformer-based language models that capture nuanced 
relationships between cloud resources described in natural text and by maintaining a provider agnostic approach compatible with 
Terraform’s multi-cloud philosophy. Furthermore, existing NLP solutions often struggle with ambiguity resolution in infrastructure 
descriptions, particularly when dealing with implicit dependencies or security configurations. Our work addresses this limitation by 
combining NLP with visual graph representations, allowing for multiple input modalities that complement each other and provide 
users with alternative ways to express their infrastructure requirements based on their preferences and expertise levels. 
 
B. Graph-Based Cloud Architecture Visualization 
Graph-based models have been extensively used for visualizing and managing cloud infrastructures due to their natural alignment 
with the interconnected nature of cloud resources. Burns et al. (2019) utilized directed graphs to model cloud service dependencies 
for monitoring purposes, while Johansen et al. (2021) employed graph databases to store and query cloud infrastructure relationships 
for compliance verification. These approaches enhance understanding and debugging capabilities for engineers by providing a 
structured overview of cloud resources and their interactions. Graph visualizations offer intuitive representations of complex 
systems, making them particularly valuable for cloud architecture design. Tian et al. (2019) demonstrated that graph-based 
visualizations significantly improved users’ comprehension of cloud architectures compared to textual or tabular representations. 
Their study showed that participants could identify potential issues and optimize resource configurations more effectively when 
working with graphical models. Despite their effectiveness in visualization, these methods often lack automatic code generation 
capabilities, leading to a disconnect between the visual design phase and the implementation phase that requires manual translation 
into infrastructure code. Our approach bridges this gap by tightly integrating the graph-based visualization component with 
automated Terraform code generation. Unlike previous work that treats visualization primarily as a documentation or monitoring 
tool, we leverage the graph structure itself as a computational model that directly influences the generated infrastructure code. By 
incorporating resource attributes, relationship types, and configuration parameters into the graph model, we create a rich 
representation that contains all necessary information for comprehensive Terraform script generation. 
 
C. Topological Sorting for Dependency Management 
Topological sorting is a crucial algorithm for resolving dependencies in various computational models, including cloud deployments. 
This technique arranges nodes in a directed acyclic graph (DAG) such that for every directed edge u → v, node u comes before node 
v in the ordering. In the context of cloud infrastructure, this ensures that dependent resources are created only after their 
prerequisites are established, preventing deployment failures due to unfulfilled dependencies. Several researchers have applied this 
concept to cloud resource management with promising results.  
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Zhang et al. (2022) utilized topological sorting to optimize cloud deployment sequences, reducing provisioning time by parallelizing 
independent resource creation while respecting necessary dependencies. Similarly, Korkmaz et al. (2021) proposed a dependency 
resolution framework for containerized applications that employed topological sorting to generate efficient deployment manifests. 
By applying topological sorting algorithms to our graph-based cloud architecture models, Terraform scripts can be generated in a 
way that ensures resources are provisioned in the correct order. This is particularly important for complex infrastructures with 
multiple layers of dependencies, such as networking components that must exist before compute resources can be deployed, or 
database instances that require specific subnet configurations. Our implementation extends previous work by incorporating 
additional validation steps that detect dependency cycles—situations where resources depend on each other in a circular manner—
and provide actionable feedback to users for resolving these architectural conflicts before generating Terraform code. 
 

III. PROBLEM STATEMENT 
The manual creation of Terraform files for cloud infrastructure provisioning presents several significant challenges that impact 
efficiency, accuracy, and accessibility. These challenges stem from the inherent complexity of modern cloud architectures and the 
technical requirements of Infrastructure as Code implementations. To fully appreciate the problem domain, it is essential to 
understand the specific difficulties faced by cloud practitioners in this context. Firstly, authoring Terraform configurations requires 
domain expertise across multiple disciplines. Engineers must possess in-depth knowledge of cloud service offerings, their 
configuration parameters, security best practices, and networking principles. Additionally, they need a thorough understanding of 
Terraform’s syntax, resource types, providers, and state management mechanisms. This combination of required skills creates a high 
barrier to entry for newcomers and can lead to knowledge silos within organizations where only a select few individuals can 
effectively manage infrastructure code. Secondly, cloud architectures often involve complex dependency chains that must be 
precisely reflected in Terraform scripts. For instance, a typical three-tier application might require networking components (VPCs, 
subnets, route tables) to be provisioned before security groups, which in turn must exist before compute instances can be deployed. 
Database resources might depend on specific subnet configurations, while load balancers require target groups and health checks. 
Manually tracking these dependencies becomes exponentially more difficult as the infrastructure scale increases, leading to potential 
errors where resources are defined in an incorrect order or with missing references. Furthermore, Terraform’s declarative nature, 
while powerful, can be counterintuitive for practitioners accustomed to imperative programming paradigms. The need to think in 
terms of desired state rather than procedural steps represents a conceptual shift that many find challenging. This cognitive 
dissonance can result in suboptimal code organization, poor modularity, and inefficient resource usage patterns that impact both 
deployment performance and operational costs. Incorrect configurations resulting from these challenges can manifest in various 
ways: deployment failures that waste valuable time during critical release windows; security vulnerabilities due to overly permissive 
access controls; inefficient resource allocation leading to unnecessary expenses; or architectural inconsistencies that undermine 
reliability and scalability. The consequences of such errors extend beyond immediate technical issues to affect business outcomes, 
customer experience, and organizational agility. Existing automated tools attempt to address these issues but often fall short in 
critical areas. GUI-based cloud management consoles sacrifice the benefits of Infrastructure as Code by reverting to manual 
provisioning. Template libraries provide limited flexibility and rarely accommodate unique organizational requirements. Meanwhile, 
current code generation tools lack sophisticated capabilities for translating both natural language descriptions and visual diagrams 
into functional Terraform scripts that capture the full complexity of enterprise grade infrastructure. Our proposed system addresses 
these multifaceted challenges by automating Terraform script generation through an NLP-driven and graph-based approach. By 
providing multiple input modalities—natural language for those who prefer verbal or written descriptions, and graphical interfaces 
for visually-oriented practitioners—we accommodate diverse cognitive styles and expertise levels. The incorporation of topological 
sorting ensures that generated scripts correctly manage resource dependencies, while our modular architecture promotes reusability 
and maintainability. This comprehensive solution aims to enhance efficiency by reducing development time, improve accuracy by 
eliminating common human errors, and increase accessibility by lowering the technical knowledge requirements for effective cloud 
infrastructure management. 
 

IV. PROPOSED SOLUTION 
Our proposed system represents a comprehensive approach to automating Terraform configuration generation through the 
integration of natural language processing, graph-based visualization, and intelligent code synthesis. The architecture consists of 
three primary components working in concert to transform user inputs into deployable infrastructure code: Our proposed system 
represents a comprehensive approach to automating Terraform configuration generation through the integration of natural language 
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processing, graph-based visualization, and intelligent code synthesis. The architecture consists of three primary components 
working in concert to transform user inputs into deployable infrastructure code: 
 
A. NLP Module 
The NLP Module serves as an intuitive entry point for users who prefer to express their infrastructure requirements through natural 
language descriptions. This component processes user-provided textual specifications, extracting essential cloud resources such as 
Virtual Private Clouds (VPCs), subnets, compute instances, storage solutions, and networking configurations. The system 
accommodates various description styles, from high-level architectural overviews to detailed component specifications, making it 
accessible to users with different levels of technical precision in their communications. At the core of this module lies a 
sophisticated natural language understanding pipeline that leverages advanced machine learning techniques. The processing flow 
begins with basic text preprocessing, including tokenization, lemmatization, and part-of-speech tagging, to normalize the input. 
Subsequently, named entity recognition (NER) identifies cloud-specific concepts such as resource types, quantity indicators, and 
configuration parameters. Custom-trained NER models recognize domain-specific terminology that might be missed by general-
purpose language models, ensuring comprehensive capture of technical specifications. Dependency parsing techniques analyse the 
grammatical structure of sentences to establish relationships between identified entities, determining which resources connect to or 
depend on others. For example, in the statement ”Deploy three EC2 instances in a private subnet with access to an S3 bucket,” the 
system identifies the dependency between EC2 instances and their subnet placement, as well as the access relationship with the S3 
storage resource. Semantic role labelling further enriches this understanding by distinguishing between actions, subjects, and objects 
in the infrastructure description. The extracted information undergoes normalization against a comprehensive knowledge base of 
cloud resources and their attributes, resolving ambiguities and standardizing terminology. For instance, references 
to ”servers,” ”instances,” or ”VMs” are mapped to the appropriate compute resource types in the target cloud environment. The final 
output of the NLP Module is a structured data representation that captures all identified resources, their attributes, and 
interconnections in a format suitable for further processing by the Terraform generation pipeline. 
 
B. Graph-Based Visualization Module 
Complementing the NLP approach, the Graph-Based Visualization Module provides an interactive drag-and-drop interface that 
enables users to design their cloud architecture visually. This component leverages intuitive visual metaphors where nodes represent 
cloud resources and edges depict relationships or dependencies between them. Users can select from a comprehensive library of 
cloud components (compute instances, databases, load balancers, etc.), customize their attributes through property panels, and 
establish connections by drawing links between compatible resources. The underlying technical implementation relies on graph 
theory principles to model cloud architectures as directed graphs where vertices correspond to infrastructure components and edges 
represent logical dependencies or data flows. Each vertex stores metadata including resource type, configuration parameters, and 
deployment requirements, while edges capture the nature of relationships (e.g., network connectivity, access permissions, or 
creation dependencies). Real-time validation provides immediate feedback during the design process, highlighting potential issues 
such as invalid configurations, unsupported resource combinations, or security concerns. For example, placing a public-facing web 
server in a private subnet without appropriate network pathways would trigger a warning. This proactive validation helps users 
refine their architecture before proceeding to code generation. The module incorporates layout algorithms that automatically arrange 
resources according to their logical tiers or relationships, improving readability while maintaining user defined positioning 
preferences. Zoom and pan capabilities accommodate architectures of varying complexity, from simple single-service deployments 
to extensive multi-tier applications spanning multiple cloud regions. Once the user completes their design, the visual representation 
undergoes analysis to detect cycles and validate resource connections. The resulting graph model is then converted into an 
intermediate representation compatible with the Terraform Generator, capturing all necessary information about resources, their 
configurations, and interdependencies. 
 
C. Terraform Generator 
The Terraform Generator serves as the culmination of the workflow, synthesizing information from either the NLP Module, the 
Graph-Based Visualization Module, or both, to produce executable Terraform configuration files. This component employs 
sophisticated algorithms to translate the abstract representation of cloud architecture into concrete HashiCorp Configuration 
Language (HCL) code that follows industry best practices and cloud provider recommendations.  
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The generation process begins with dependency resolution through topological sorting, ensuring that resources are defined in an 
order that respects their interdependencies. This guarantees that when Terraform applies the configuration, resources are created in a 
logically consistent sequence where no component attempts to reference another that hasn’t yet been established. For complex 
architectures with multiple layers of dependencies, the system may generate separate modules to improve code organization and 
reusability. Resource translation maps the abstract components identified in earlier stages to specific Terraform resource types with 
appropriate attributes and parameters. This translation process accommodates provider-specific nuances and incorporates optimized 
default values where explicit specifications are absent. For example, when creating an AWS EC2 instance without detailed sizing 
information, the system might select appropriate instance types based on the implied workload characteristics or organizational 
defaults. The generator implements intelligent code organization strategies that promote maintainability and adherence to 
infrastructure-as-code best practices. This includes logical grouping of related resources, consistent naming conventions, judicious 
use of variables for parameterization, and implementation of output values for important resource attributes. Additionally, the 
system applies security hardening measures by default, such as minimal-privilege IAM policies, encrypted storage, and restricted 
network access patterns. For complex deployments, the generator creates modular Terraform structures that enhance reusability and 
simplify management of large-scale infrastructures. These modules encapsulate logical groups of resources (e.g., networking, 
compute, storage) with well-defined interfaces, enabling composition of sophisticated architectures from reusable building blocks. 
The final output consists of ready-to-deploy Terraform files organized according to best practices, complete with appropriate 
documentation comments explaining the purpose and relationships of each resource. These files can be directly applied using 
standard Terraform workflows or further customized by users with specific requirements beyond the scope of the automated 
generation process. 
 

V. IMPLEMENTATION DETAILS 
Our implementation is based on a modern, scalable technology stack designed to provide a seamless user experience while handling 
complex processing requirements. The architecture follows a microservices approach to ensure modularity, maintainability, and 
independent scaling of system components based on usage patterns. The technology stack comprises the following components: 
1) Programming Languages: The system utilizes JavaScript for frontend development and user interface interactions, while Python 

powers the backend NLP processing pipeline due to its rich ecosystem of machine learning and natural language processing 
libraries.  

2) Frontend Technologies: The user interface is built with Next.js, a React framework that provides server-side rendering 
capabilities for improved performance and SEO. D3.js drives the interactive visualization component, offering powerful data-
driven DOM manipulation capabilities essential for rendering complex cloud architecture diagrams. The interface incorporates 
responsive design principles to accommodate various device form factors, from desktop workstations to tablets used in 
collaborative planning sessions.  

3) Backend Technologies: Node.js serves as the primary backend framework for the web application, handling API requests, user 
authentication, and session management. For NLP-specific tasks, a dedicated Flask service processes natural language inputs, 
leveraging the extensive Python machine learning ecosystem. Communication between microservices occurs via RESTful APIs 
with JSON payloads, while more complex operations leverage message queues for asynchronous processing.  

4) Infrastructure Tools: The system integrates with the Terraform CLI to validate generated configurations and optionally execute 
provisioning operations. AWS SDK integration enables direct resource verification and provides real-time feedback on 
configuration validity. Container technology (Docker) encapsulates each service component, facilitating consistent 
development environments and simplified deployment procedures. 

The NLP pipeline integrates pre-trained transformer-based models such as BERT (Bidirectional Encoder Representations from 
Transformers) or GPT-based architectures, fine-tuned on domain-specific datasets containing cloud infrastructure descriptions and 
corresponding Terraform configurations. This approach leverages transfer learning to achieve high accuracy with relatively modest 
training data requirements. Custom named entity recognition models identify cloud-specific concepts such as service types, 
networking components, and security configurations that might be missed by general-purpose NLP models. For the graph 
visualization component, we implemented a custom force-directed layout algorithm optimized for cloud architecture representation. 
This algorithm intelligently positions resources based on their logical tiers (networking, compute, storage, etc.) while maintaining 
visual clarity of connections and dependencies. Interactive capabilities include zoom, pan, node repositioning, and property editing 
through contextual menus. Real-time validation against cloud provider constraints ensures that users receive immediate feedback on 
potential configuration issues as they design their architecture.  
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The Terraform generation engine employs a template-based approach combined with dynamic code synthesis. Base templates for 
common infrastructure patterns provide structural consistency, while custom logic handles the unique aspects of each configuration. 
Dependency resolution utilizes Kahn’s algorithm for topological sorting, with additional optimization to identify opportunities for 
parallel resource creation where dependencies permit. The generator applies static analysis techniques to the resulting code to 
identify potential issues such as redundant resources, security vulnerabilities, or inefficient configurations. Data persistence 
leverages a hybrid approach: MongoDB stores user projects, graph layouts, and generation history, while Redis provides caching for 
frequent operations and session management. This combination offers a balance between structured data storage for complex objects 
and high performance access patterns for interactive features. 

 
VI.  EVALUATION AND RESULTS 

A. Evaluation Methodology 
Our testing encompassed three primary architecture categories to ensure broad coverage of typical cloud deployment patterns:  
1) Single-instance web applications: Basic infrastructures consisting of a web server, associated storage, and minimal networking 

components.  
2) Multi-tier architectures: Three-tier applications with separated presentation, application, and data layers, including appropriate 

load balancing and security configurations.  
3) Microservices deployments: Complex systems comprising multiple interconnected services with their own networking, 

compute, and storage resources, representing modern distributed application architectures.  
For each category, we prepared reference architectures both as natural language descriptions and visual diagrams. These were 
processed through our system to generate Terraform configurations, which were then compared against manually created scripts 
developed by experienced cloud engineers following best practices 
 
The performance metrics considered in our evaluation included: 
a) Accuracy: We measured the precision of extracted cloud resources and dependencies from natural language inputs. This metric 

quantifies how correctly the system identifies components, their relationships, and configuration parameters from textual 
descriptions. For graph-based inputs, we evaluated how faithfully the system translates visual representations into 
corresponding Terraform resources.  

b) Efficiency: We calculated the reduction in time required to generate Terraform configurations compared to manual scripting. 
This metric was assessed through controlled experiments where experienced cloud engineers manually created equivalent 
infrastructure code, with timing measurements for both approaches.  

c) Correctness: We validated generated Terraform scripts using standard Terraform workflows, including terraform validate, 
terraform plan, and where possible, terraform apply operations in isolated testing environments. Success criteria included error-
free validation, accurate planning output, and successful resource provisioning.  

d) Usability: Through user surveys and controlled usability studies with participants of varying expertise levels, we gathered 
qualitative feedback on the system’s interface, workflow, and overall user experience. 

 
B. Results and Analysis 
Experimental results indicate that our system significantly reduces the manual effort required for Terraform script generation while 
maintaining high accuracy and correctness in resource provisioning: 
1) Accuracy Analysis: The NLP component demonstrated 92% accuracy in identifying core infrastructure components from 

natural language descriptions, with particularly strong performance (97%) for compute and networking resources. More 
complex concepts such as security policies and specialized service configurations showed lower accuracy (85%), indicating 
areas for future improvement. The graph-based visualization component achieved near-perfect translation fidelity, with 99% of 
visually designed resources correctly represented in the generated Terraform code.  

2) Efficiency Improvements: Time measurements revealed substantial efficiency gains across all architecture categories. For 
simple web applications, the average time reduction was 78% compared to manual coding (from approximately 45 minutes to 
10 minutes including design time). Multi-tier architectures showed a 65% reduction (from 2.5 hours to 52 minutes), while 
microservices deployments demonstrated a 54% improvement (from 4.5 hours to 2.1 hours). These gains were consistent across 
users with different experience levels, with novice users seeing the most dramatic time savings.  
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3) Correctness Validation: Terraform validation tests confirmed that 96% of generated configurations passed syntax and logical 
validation on the first attempt. Issues identified in the remaining 4% were primarily related to edge cases in resource naming 
conventions and specific provider limitations. When applied to test environments, 94% of configurations successfully 
provisioned all resources without manual intervention, demonstrating the system’s high reliability in producing deployable 
infrastructure code.  

4) Usability Assessment: Survey results from 28 participants indicated high satisfaction with the system’s usability (average score 
of 4.3/5.0). Notably, users with limited Terraform experience (less than 1 year) rated the system particularly highly (4.7/5.0), 
highlighting its value for lowering the entry barrier to infrastructure automation. Experienced users appreciated the time savings 
but suggested additional advanced features such as custom module integration and configuration import capabilities. 

These results validate our approach’s effectiveness in simplifying cloud infrastructure management through automated Terraform 
generation. The dual-input modality (NLP and visual) proved particularly valuable, with users frequently leveraging both 
approaches based on the complexity of different infrastructure components. The graph-based visualization excelled for network 
design tasks, while NLP showed advantages for rapid prototyping and modifications to existing architectures. 

 
VII. CONCLUSION AND FUTURE WORK 

This paper introduces a novel approach for automating Terraform file generation using an integrated system that combines Natural 
Language Processing and graph-based visualization techniques. By enabling users to either describe cloud architectures using 
natural language or design them visually through an intuitive interface, our system addresses key challenges in cloud infrastructure 
management. The experimental results demonstrate significant improvements in efficiency, accuracy, and accessibility compared to 
traditional manual approaches for creating Terraform configurations. Our research contributes to the field of cloud computing and 
Infrastructure as Code in several meaningful ways. First, we establish a new paradigm for human-machine interaction in 
infrastructure management that accommodates diverse user preferences and expertise levels. Second, our integration of topological 
sorting with cloud resource modelling ensures that generated configurations respect complex dependency relationships, reducing 
deployment failures and improving reliability. Third, the dual-input modality approach provides flexibility that adapts to various 
stages of the infrastructure lifecycle, from initial brainstorming to detailed implementation planning. Despite these accomplishments, 
several opportunities for enhancement and expansion remain. Future work will focus on several promising directions: 
1) Multi-cloud Support Expansion: While our current implementation focuses primarily on major cloud providers, extending the 

system to comprehensively support specialized platforms and hybrid cloud scenarios would increase its applicability in diverse 
enterprise environments. This includes developing provider-specific resource mappings and implementing cross-provider 
dependency resolution for complex multi-cloud architectures.  

2) Enhanced NLP Models: Refining our natural language processing capabilities through larger domain-specific training datasets 
and more sophisticated transformer architectures would improve the system’s ability to interpret ambiguous or incomplete 
infrastructure descriptions. Incorporating interactive clarification mechanisms could further enhance accuracy by allowing the 
system to request additional information when facing uncertainty.  

3) Advanced graph-based Validation: Developing more sophisticated validation rules and architectural pattern recognition would 
enable the system to provide higher level guidance on best practices and potential optimizations. This could include cost 
optimization suggestions, security posture improvements, and resilience enhancement recommendations based on analysis of 
the proposed infrastructure design.  

4) Integration with CI/CD Pipelines: Extending the system to seamlessly integrate with continuous integration and deployment 
workflows would enhance its utility in DevOps environments. This includes developing capabilities for automated testing of 
generated configurations, version control integration, and incremental updates to existing infrastructure.  

5) Learning from deployment Outcomes: Implementing feedback mechanisms that analyse the success or failure of provisioned 
infrastructure could create a learning loop that continuously improves the quality of generated configurations. This approach 
would leverage operational insights to refine the system’s understanding of effective cloud architecture patterns. 

As cloud computing continues to evolve and organizations increasingly adopt Infrastructure as Code practices, tools that bridge the 
gap between human understanding and machine execution become increasingly valuable. Our automated Terraform generation 
system represents a significant step toward democratizing access to cloud infrastructure management, enabling a broader range of 
stakeholders to participate in the design and implementation of cloud resources. By reducing the technical barriers to effective 
infrastructure automation, our work contributes to more efficient, reliable, and accessible cloud computing practices. 
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