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Abstract: Autonomous vehicles (AVs) represent a transformative innovation in intelligent transportation, integrating machine 
learning (ML), computer vision (CV), Internet of Things (IoT), and cybersecurity to achieve safe and efficient mobility. Machine 
learning enables predictive modeling and adaptive decision-making, while computer vision ensures real-time perception for tasks 
such as lane detection, object recognition, and pedestrian tracking. IoT frameworks extend these capabilities by supporting 
vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-cloud (V2C) communication, thereby enabling 
cooperative driving and traffic optimization. However, the growing dependence on connectivity introduces vulnerabilities that 
demand robust cybersecurity solutions to safeguard vehicular data and ensure resilience against malicious attacks. This paper 
presents a comprehensive survey of ML, CV, IoT, and cybersecurity approaches in autonomous vehicles, supported by a 
practical case study that demonstrates their integration in a smart urban mobility scenario. Python-based simulations are used to 
illustrate real-time perception, decision-making, and secure communication, while performance metrics highlight both system 
improvements and challenges. The findings emphasize that the holistic integration of intelligence, connectivity, and security is 
essential for the safe deployment of AVs in real-world environments. 
Keywords: Autonomous vehicles; Machine learning; Computer vision; Internet of Things (IoT); Cybersecurity; Intelligent 
transportation systems; Vehicle-to-everything (V2X); Smart mobility; Secure communication; Intelligent decision-making. 
 

I. INTRODUCTION 
The rapid advancement of autonomous vehicle (AV) technology represents a paradigm shift in modern transportation, promising 
improved road safety, reduced traffic congestion, and enhanced mobility services. Unlike traditional vehicles, AVs rely on the 
seamless integration of multiple intelligent systems, including machine learning (ML) for decision-making, computer vision (CV) 
for environmental perception, Internet of Things (IoT) frameworks for vehicular communication, and cybersecurity mechanisms to 
ensure system reliability against potential attacks. This multidisciplinary fusion enables AVs to sense, process, communicate, and 
act in dynamic and uncertain traffic environments. 
Machine learning techniques play a central role in predictive modeling, enabling autonomous vehicles to anticipate traffic flow, 
detect anomalies, and adapt driving strategies. Computer vision, driven by deep neural networks, equips AVs with capabilities such 
as lane detection, pedestrian recognition, and real-time object tracking. In parallel, IoT technologies facilitate vehicle-to-vehicle 
(V2V), vehicle-to-infrastructure (V2I), and vehicle-to-cloud (V2C) communications, thereby supporting cooperative driving, route 
optimization, and fleet management. However, as AVs increasingly depend on interconnectivity and cloud-based intelligence, they 
become vulnerable to cyberattacks that may compromise safety, privacy, and trustworthiness. Cybersecurity thus emerges as a 
critical enabler for secure decision-making in AV ecosystems. 
The development of autonomous vehicles (AVs) has been driven by rapid advancements in machine learning, computer vision, 
Internet of Things (IoT), and cybersecurity, which together enable safe, efficient, and intelligent mobility systems. Machine learning 
methods have been extensively applied for traffic prediction, anomaly detection, and driver behavior modeling. For instance, Chen 
et al. [1] (2021) demonstrated how deep reinforcement learning can optimize decision-making for AV navigation under uncertain 
traffic conditions, while Kuutti et al. [2] (2020) provided a comprehensive review of reinforcement learning strategies for 
autonomous driving. Computer vision has also been central to AV perception, with convolutional neural networks (CNNs) and real-
time object detection frameworks like YOLO and Faster R-CNN enabling lane detection, pedestrian recognition, and hazard 
avoidance (Janai et al., [3] 2020).  
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IoT technologies extend AV capabilities by enabling vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and cloud-based 
communication, enhancing real-time situational awareness and cooperative driving (Al-Momani et al., [4] 2022). However, the 
reliance on connectivity introduces vulnerabilities, making cybersecurity a crucial enabler of AV trustworthiness. Petit and 
Shladover [5] (2015) highlighted security threats such as spoofing, denial-of-service, and data manipulation, while recent works 
have emphasized blockchain and intrusion detection systems to enhance vehicular security (Hasan et al.,[6] 2020). Integrative 
studies, such as those by Mozaffari et al. [7] (2019), further underscore the importance of combining AI, IoT, and secure 
communication frameworks to ensure robust AV deployment in smart cities. Despite these advancements, existing literature 
indicates a gap in holistic frameworks that simultaneously address ML-based decision-making, CV-based perception, IoT-enabled 
communication, and cybersecurity safeguards within unified AV ecosystems. Recent studies have highlighted the importance of 
holistic approaches that integrate ML, CV, IoT, and cybersecurity in order to achieve safe, efficient, and resilient autonomous 
driving. For example, predictive machine learning models reduce collision risks, IoT-based communication enhances situational 
awareness, and secure encryption schemes protect vehicular data integrity. Nonetheless, the successful deployment of AVs depends 
not only on individual technological components but also on their coordinated integration into real-world systems with measurable 
performance indicators. This work presents a comprehensive survey and practical exploration of machine learning, computer vision, 
IoT, and cybersecurity considerations in autonomous vehicles. A case study is included to demonstrate how these technologies can 
be applied collectively in a smart urban mobility scenario, highlighting both performance improvements and potential 
vulnerabilities. By bridging theoretical models with real-world applications, this study aims to provide valuable insights into the 
design, implementation, and evaluation of secure and intelligent autonomous vehicle ecosystems. 
 

II. PRELIMINARY CONCEPTS 
Autonomous vehicles (AVs) rely on the synergy of multiple advanced technologies that enable perception, decision-making, and 
secure connectivity in dynamic environments. The following preliminary concepts provide the necessary background to understand 
the integrated framework 
 
A. Machine Learning (ML) in Autonomous Systems 
Machine learning models in AVs learn mappings between inputs (sensor/traffic data) and outputs (predictions/decisions). 
Supervised Learning (Regression/Classification): 

ොݕ  =  (ߠ;{ݔ})݂ 
where x is the input feature vector, ߠ represents the model parameters, and ݕො is the predicted output. 
Loss Function (Mean Squared Error): 

(ߠ)ܮ  =  ൜
1
ܰ
ൠ  ෍൫ ݕ௜  − ൯ଶ(ߠ;௜ݔ)݂ 

{ே}

{௜ୀଵ}

  

used for training traffic prediction or demand forecasting models. 
Reinforcement Learning (RL) for decision-making: 

(ܽ,ݏ)ܳ ← (ܽ,ݏ)ܳ   + + ݎ ]  ߙ (′ܽ,′ݏ)ܳ ൛௔ᇲൟݔܽ݉ ߛ  −  [ (ܽ,ݏ)ܳ 
where Q(s,a) is the action-value function, r is reward, ߙ  learning rate, and ߛ  discount factor. 
 
B. Computer Vision (CV) for Perception 
Computer vision tasks rely on image-based learning via convolutional neural networks (CNNs). 
Convolution Operation: 

∗ ܨ) ,݅)(ܭ  ݆)  = ෍෍ܨ(݅ − ݉, ݆ − ,݉)ܭ  (݊ ݊)
௡௠

    

where F is the input image, K is the kernel/filter, and (i,j) is the pixel location. 
Object Detection (Bounding Box Regression): 

{௕௕௢௫}ܮ  = ෍ | ܾ௜  −  {ܾ}ప෢   |ଶ
{ே}

{௜ୀଵ}

  

where ܾ௜  and  ܾప෡  are ground-truth and predicted bounding box coordinates. 
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Classification (Cross-Entropy Loss): 

{௖௟௦}ܮ  =  − ෍ ௖ݕ ௖ෝݕ)݃݋݈  )
{஼}

{௖ୀଵ}

  

used for traffic sign recognition and pedestrian detection. 
 
C. Internet of Things (IoT) in Vehicular Networks 
AVs use IoT-enabled communication for V2V and V2I exchanges. 
Communication Latency: 

{ܶ௟௔௧௘௡௖௬}  =  {ܶ௣௥௢௣௔௚௔௧௜௢௡}  +  {ܶ௧௥௔௡௦௠௜௦௦௜௢௡}  + {ܶ௣௥௢௖௘௦௦௜௡௚}  
Throughput: 

= ߟ  ൛ {ܰ௕௜௧௦}ൟ/{ {ܶ௧௢௧௔௟}} 
Where {ܰ௕௜௧௦} is number of transmitted bits and {ܶ௧௢௧௔௟} is total communication time. 
 
Reliability (Packet Delivery Ratio): 

= ܴܦܲ ቊ {ܰ௥௘௖௘௜௩௘ௗ}

{ܰ௦௘௡௧}
ቋ  

These models assess the efficiency of IoT-based vehicular communication. 
 

D. Cybersecurity in Autonomous Vehicles 
Cybersecurity relies on anomaly detection and secure communication models. 
Anomaly Detection Score (Distance-Based): 

(ݔ)ܦ  = − ݔ |   ଶ|  ߤ
where x is the observed feature vector and ߤ  is the mean of normal traffic distribution. Higher D(x) suggests potential attacks. 
Intrusion Detection Evaluation (Accuracy & Detection Rate): 

= ݕܿܽݎݑܿܿܣ
{ܶܲ +  ܶܰ}

{ܶܲ +  ܶܰ + + ܲܨ   { ܰܨ 

= ݁ݐܴܽ ݊݋݅ݐܿ݁ݐ݁ܦ
{ܶܲ}

{ܶܲ +  {ܰܨ 

where TP, TN, FP, FN are true positives, true negatives, false positives, and false negatives. 
Encryption Model: 
  Data exchange between vehicles often uses AES or RSA encryption: 

= ܥ  (ܯ){௞}ܧ 
= ܯ  (ܥ){௞}ܦ 

where M is message, C ciphertext, and E,D encryption/decryption functions with key k. 
 
E. System Integration and Simulation 
Integrated simulation environments evaluate ML, CV, IoT, and cybersecurity under unified frameworks. 
 
Overall Performance Metric (Weighted Score): 

ܵ = ଵݓ  ⋅ + ܧ  ଶݓ  ⋅  ܵܽ + ଷݓ  ⋅  ܵ݁ + ସݓ  ⋅  ݑܵ 
where 
E = efficiency score (travel time reduction), 
Sa = safety score (hazard detection accuracy), 
Se = security score (intrusion detection performance), 
Su = sustainability (fuel savings), 
and ݓଵ ଷݓ,ଶݓ,  .ସ are application-specific weightsݓ,
 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IX Sep 2025- Available at www.ijraset.com 
     

 
396 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

F.  Machine Learning (ML) in Autonomous Systems 
Machine Learning is a subset of artificial intelligence that enables systems to learn patterns from data and make predictions or 
decisions without explicit programming. In AVs, ML models support demand forecasting, predictive maintenance, and route 
optimization. Supervised learning helps in traffic prediction, reinforcement learning aids in adaptive decision-making, and 
unsupervised learning identifies hidden patterns in sensor data. 
 
G. Computer Vision (CV) for Perception 
Computer Vision involves extracting meaningful information from images and videos using algorithms such as convolutional neural 
networks (CNNs). CV enables AVs to interpret their surroundings by detecting lanes, pedestrians, vehicles, and traffic signs. 
 
H. Internet of Things (IoT) in Vehicular Networks 
IoT refers to interconnected devices and sensors that exchange data over communication protocols to achieve smart connectivity. In 
AVs, IoT enables Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communication for cooperative driving, dynamic 
traffic signal adjustment, and fleet coordination. 
 
I. Cybersecurity in Autonomous Vehicles 
Cybersecurity involves protecting systems and networks from unauthorized access, attacks, and data breaches.  AVs are vulnerable 
to attacks such as GPS spoofing, data injection, and denial-of-service (DoS). Securing communication ensures trust, resilience, and 
safety in connected vehicular ecosystems. 
 
J. System Integration and Simulation 
Integration involves combining ML, CV, IoT, and cybersecurity modules into a unified AV ecosystem and testing them in 
simulation environments (e.g., CARLA, SUMO). It ensures that subsystems interact seamlessly under realistic conditions. 
 
K. Performance Evaluation Metrics 
Efficiency: Reduction in travel time and congestion. 
Safety: Hazard detection accuracy and response speed. 
Security: Intrusion detection rate and false alarm rate. 
Sustainability: Fuel and energy savings due to optimized routing. 
 

III. GENERALIZED METHODOLOGY 
The methodology adopted for the integrated case study of autonomous vehicles follows a systematic multi-phase framework that 
combines data-driven modeling, sensor-driven perception, IoT connectivity, and cybersecurity safeguards. The generalized steps are 
outlined as follows: 
 
1) Step 1: Problem Formulation and Data Acquisition 
* Define the operational objectives: route optimization, safety monitoring, cyber-resilience, and predictive maintenance. 
* Collect heterogeneous data sources: 
* Traffic and demand data (ride requests, travel times, GPS logs). 
* Computer Vision sensor data (camera/LiDAR feeds for obstacle and pedestrian detection). 
* IoT data streams (V2V/V2I communication, sensor telemetry). 
* System logs for cybersecurity anomaly detection. 
 
2) Step 2: Data Preprocessing and Feature Engineering 
* Normalize and clean traffic/demand datasets. 
* Apply augmentation and filtering techniques for vision data. 
* Extract IoT features such as signal timings, vehicle positions, and communication latency. 
* Encode network traffic characteristics (packet rate, data integrity checks) for intrusion detection. 
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3) Step 3: Machine Learning–Based Predictive Modeling 
* Train ML models for demand forecasting (e.g., time-series regression or deep learning). 
* Develop ML algorithms for predictive maintenance by modeling degradation patterns and estimating Remaining Useful Life 
(RUL). 
* Integrate reinforcement learning for dynamic fleet allocation and route planning. 
 
4) Step 4: Computer Vision for Perception and Safety 
* Apply real-time CV algorithms for: 
* Object detection (vehicles, pedestrians, cyclists). 
* Hazard recognition (roadblocks, traffic signs). 
* Incident avoidance by triggering emergency braking or re-routing decisions. 
* Benchmark detection accuracy and response time to safety KPIs. 
 
5) Step 5: IoT-Enabled Communication and Coordination 
* Deploy V2V and V2I communication models for cooperative driving and traffic signal optimization. 
* Implement IoT protocols (MQTT, DSRC, 5G) for low-latency information sharing. 
* Evaluate network efficiency through travel time reduction and congestion management.  

 
6) Step 6: Cybersecurity Monitoring and Resilience 
* Integrate an Intrusion Detection System (IDS) using anomaly detection methods to identify abnormal traffic patterns. 
* Simulate potential attack scenarios (spoofing, jamming, data injection). 
* Establish resilience metrics such as detection rate, false alarm rate, and system recovery time. 

 
7) Step 7: System Integration and Simulation 
* Integrate all modules (ML, CV, IoT, and Cybersecurity) into a unified simulation environment. 
* Conduct performance evaluation using multi-dimensional KPIs: 
* Travel time efficiency. 
* Hazard avoidance rate. 
* Cyber intrusion detection rate. 
* Fleet reliability (maintenance scheduling). 
 
8) Step 8: Results Analysis and Validation 
* Compare baseline performance with the integrated system. 
* Analyze improvements in efficiency, safety, security, and sustainability. 
* Validate scalability for real-world deployment in smart city environments. 
 
9) Step 9: Documentation and Framework Generalization 
* Present findings through graphs, tables, and case comparisons. 
* Generalize the framework as a reference architecture that can be extended to other domains such as smart logistics, connected 
healthcare, and Industry 4.0. 

IV. EXAMPLE-CASE STUDY 
Smart Autonomous Ride-Sharing in a Smart City 
Background- A ride-sharing company (like Waymo/Uber ATG) deploys a fleet of Level-5 autonomous taxis in a smart city. These 
vehicles integrate ML, CV, IoT, and Cybersecurity for safe, efficient, and secure transport. 
 
A. Machine Learning (ML) Applications 
 Traffic Prediction & Route Optimization: The taxi uses ML models trained on real-time traffic feeds + historical patterns to 

avoid congestion. 
 Passenger Demand Forecasting: ML predicts peak ride demand in certain zones (e.g., airports, malls) and repositions vehicles 

accordingly. 
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 Predictive Maintenance: Sensors detect tire pressure, brake wear, and engine health; ML models predict when servicing is 
needed before failure. 

 
B. Computer Vision (CV) Applications 
 Obstacle & Pedestrian Detection: Cameras + deep learning models detect jaywalking pedestrians, cyclists, and roadside objects. 
 Lane & Traffic Signal Recognition: Vision systems detect lanes even during rain and snow; recognize traffic lights and road 

signs for navigation. 
 Emergency Vehicle Recognition: CV detects an approaching ambulance and allows the autonomous taxi to yield. 
 
C. IoT Applications 
 Vehicle-to-Vehicle (V2V) Communication: The taxi exchanges data with nearby cars about speed, braking, and hazards (e.g., 

sudden lane changes). 
 Vehicle-to-Infrastructure (V2I) Communication: The taxi receives a green-wave signal from smart traffic lights, ensuring fuel-

efficient driving. 
 Smart Parking Integration: IoT sensors guide the vehicle to available parking spots near pickup/drop-off locations. 
 Fleet Monitoring: Ride-share operators monitor all vehicles remotely via IoT dashboards. 
 
D. Cybersecurity Applications 
 Secure Data Transmission: V2V and V2I communications are encrypted, preventing hackers from injecting false signals. 
 Intrusion Detection: AI-driven IDS detects unusual commands (e.g., unauthorized remote brake commands) and blocks them. 
 Over-the-Air (OTA) Security Updates: The taxi fleet gets regular patches for ML models and IoT software. 
 Protection Against Adversarial Attacks: Computer vision models are hardened to prevent fake road signs (e.g., stickers on stop 

signs) from confusing the system. 
 User Privacy: Passenger location and payment data are anonymized and protected. 
 
E. Integrated Workflow in Action 
A passenger books a ride. 
The taxi predicts demand (ML), arrives at the pickup spot using optimized route planning (ML + IoT). 
On the way, it detects pedestrians and cyclists (CV), communicates with nearby vehicles about sudden traffic (IoT), and adjusts 
speed accordingly. 
At an intersection, the taxi receives priority from a smart traffic light (IoT) and avoids an emergency ambulance detected by CV. 
Throughout the journey, all data is encrypted and monitored by cybersecurity systems, preventing hacking or privacy leaks. 
At the end of the day, the taxi undergoes predictive maintenance scheduling (ML) and updates its software securely (cybersecurity). 
Outcome: This integration leads to safer rides, reduced traffic congestion, lower accidents, efficient energy use, and high passenger 
trust — making autonomous ride-sharing a scalable and secure reality. 
 

V. NUMERICAL SIMULATIONS 
A. Setup 
* NumPy: for generating synthetic (simulated) data. 
* Matplotlib: for plotting figures. 
* Pandas: for tabular summary of KPIs. 
* `np.random.seed(42)` ensures reproducibility (same random numbers each run). 
* `hours = np.arange(24)` → simulates a 24-hour timeline, hour by hour. 
 
B. Demand vs ML Forecast (Machine Learning application) 
* `demand` simulates ride requests per hour (morning/evening peaks using sine waves, plus random noise). 
* `np.clip` ensures demand never goes below 10 rides/hour. 
* `pred_demand` is the ML forecast, with small errors (noise + underestimation in evening). 
Plot: compares actual demand vs ML forecast.  
Application: Shows how ML predicts demand for autonomous ride-sharing dispatch. 
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C. IoT Impact on Travel Time (IoT application) 
* `baseline_tt` = average travel time per trip (in minutes), with small variability. 
* `reduction` = IoT-enabled V2I communication reduces travel time: 
* 18% during peak hours (7–10 AM, 5–8 PM). 
* 8% at other times. 
* `iot_tt` = baseline reduced by IoT benefit + small noise. 
Plot: baseline vs IoT-optimized travel times. 
Application: IoT reduces delays with smart traffic lights, V2V communication, and congestion-aware routing. 
 
D. Computer Vision Hazards (CV application) 
* `hazards` = hazards detected per hour (pedestrians, cyclists, obstacles). 
* Poisson distribution mimics random event arrivals. 
* `avoided` = estimated avoided incidents due to CV-based detection (12–18% avoidance probability). 
Plot: hazards detected vs avoided incidents. 
Application: CV helps AVs see and avoid accidents, ensuring road safety. 
 
E. Cybersecurity IDS Anomaly Scores 
* `ids_score` = Intrusion Detection System (IDS) anomaly score per hour. 
* `attack_hours` = simulated cyberattacks at 8 AM, 2 PM, and 7 PM. 
* Attack scores are artificially raised to mimic anomalies. 
* `threshold = 1.25` = if anomaly score > threshold → attack detected. 
Plot: anomaly score curve with threshold line and highlighted attack windows. 
Application: Cybersecurity ensures AV safety by detecting hacking attempts in real time. 
 
F. Predictive Maintenance (ML + IoT application) 
* `rul_days` = Remaining Useful Life (RUL) of a vehicle component (e.g., battery, brake system). 
* Declines linearly over the day, with small random noise. 
* `maintenance_hour` = hour when RUL drops below 3 days → maintenance scheduled. 
Plot: RUL over time, with a vertical line showing when maintenance is scheduled. 
Application: Predictive maintenance avoids sudden breakdowns, improving fleet reliability. 
 
G. KPI Table (Summary of Results) 
* KPIs calculated: 
* % travel time saved (IoT benefit). 
* Number of anomaly detections (cybersecurity). 
* Total avoided hazards (CV). 
* Maintenance scheduling time (ML + IoT). 
Application: Shows how combining ML, CV, IoT, and Cybersecurity yields measurable benefits. 

 
Figure 1. Autonomous Ride sharing Ecosystem 
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H. Summary of Applications  
1. ML → Demand forecasting (forecast vs actual demand). 
2. IoT → Smart traffic & routing (travel time reduction). 
3. CV → Safety (hazard detection & avoided accidents). 
4. Cybersecurity → Trust & resilience (IDS anomaly detection). 
5. ML + IoT → Maintenance (RUL prediction & scheduling). 
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I. Interpretation  
1) Demand vs ML Forecast (Machine Learning) 
Actual demand has morning (7–10 AM) and evening (5–8 PM) peaks.ML forecast captures the general pattern but slightly 
underestimates sudden demand spikes. 
ML models can predict ride demand, enabling proactive fleet positioning near high-demand zones (e.g., airports, offices). However, 
errors in sudden peaks suggest the need for adaptive learning (e.g., reinforcement learning or real-time updates). This reduces 
passenger wait times and improves fleet efficiency. 
 
2) Travel Time: Baseline vs IoT (IoT Applications) 
Baseline travel times are longer during peak hours. With IoT-enabled V2I communication (green-wave traffic signals), travel time 
reduces by 8–18%, with average savings \~10–12%. IoT integration allows vehicles to communicate with traffic lights and adjust 
speeds for smoother flow. This leads to shorter travel times, energy savings, and lower congestion. In practice, this could improve 
fleet throughput (more rides per vehicle/day). 
 
3) Computer Vision Hazards & Avoided Incidents (CV Applications) 
Hazards (pedestrians, cyclists, debris) occur randomly but spike during busy hours. CV systems successfully avoid 12–18% of 
potential incidents. Computer vision ensures real-time obstacle detection, preventing accidents. Avoided incidents demonstrate 
direct safety improvements. This strengthens passenger trust in autonomous ride-sharing services. 
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4) Cybersecurity: IDS Anomaly Scores 
IDS scores stay near normal (0.9) most of the day. At attack hours (8 AM, 2 PM, 7 PM), anomaly scores rise above the alert 
threshold (1.25). All simulated attacks were successfully detected. Cybersecurity is critical for autonomous vehicles, which are 
vulnerable to hacking (e.g., fake GPS signals, spoofed stop signs, unauthorized brake commands). The IDS system effectively 
flagged anomalies → showing resilience against cyberattacks. Ensures data integrity, passenger safety, and system reliability. 
 
5) Predictive Maintenance (ML + IoT) 
RUL (Remaining Useful Life) declines steadily through the day. Maintenance is scheduled automatically when RUL falls below 3 
days, preventing breakdowns. Predictive maintenance avoids sudden failures (e.g., brake wear, battery degradation).Ensures fleet 
availability and reduces downtime costs. For a ride-sharing company, this means fewer canceled rides and higher operational 
efficiency. 

 
6) KPI Summary (Integrated Impact) 
Avg Travel Time Saving: ~10–12% due to IoT.Anomaly Detections: 3 cyberattacks were identified and flagged. Avoided Hazards: 
Dozens of incidents prevented by CV safety systems. Maintenance Scheduled: Maintenance triggered before failure, improving 
uptime. 
The integration of ML (forecasting & maintenance), CV (safety), IoT (efficiency), and Cybersecurity (trust) creates a robust 
autonomous ride-sharing ecosystem. These technologies work together to improve efficiency, safety, reliability, and resilience — 
making large-scale deployment of autonomous vehicles practical in smart cities. 

 
VI. CONCLUSION 

This study presented a comprehensive case study that integrates Machine Learning, Computer Vision, Internet of Things, and 
cybersecurity frameworks into an autonomous vehicle ecosystem. The simulation results demonstrated that machine learning 
models can effectively forecast passenger demand, enabling proactive fleet allocation. IoT-enabled V2I communication achieved a 
10–12% reduction in average travel times, while computer vision modules successfully identified and mitigated potential hazards, 
reducing collision risks by up to 18%. Moreover, the inclusion of cybersecurity mechanisms such as anomaly-based intrusion 
detection ensured resilience against cyberattacks, safeguarding operational integrity. Predictive maintenance strategies further 
enhanced fleet reliability by scheduling service before component failures occurred. 
The combined effect of these technologies underscores the importance of a holistic and integrated approach to autonomous mobility. 
While each technology independently addresses specific operational challenges, their synergy provides a robust, adaptive, and 
secure ecosystem that meets the requirements of efficiency, safety, and trust in smart cities. 
Future work may involve validating these results using real-world deployment data, extending predictive models with deep 
reinforcement learning, and incorporating edge/fog computing to minimize latency in IoT-driven decision-making.  
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