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Abstract: Cloud computing environments demand robust and intelligent task management to ensure scalability, efficiency, and
cost-effectiveness. This paper introduces an Autoscaling Enabled Intelligent Load Balancing System designed for dynamic cloud
environments. The system is divided into four key modules: task classification using XGBoost, resource prediction via XGBoost
Regression, optimal load balancing using Particle Swarm Optimization (PSO), and adaptive autoscaling with fuzzy logic.
Evaluation of each module demonstrated significant improvements in task distribution accuracy, resource utilization, and system
stability. The integration of machine learning and heuristic algorithms ensures a dynamic, responsive, and energy-efficient
cloud environment.

Index Terms: Cloud Computing, Load Balancing, Autoscaling, XGBoost, Fuzzy Logic, PSO, Resource Prediction, Streamlit,
FastAPIL

L INTRODUCTION
As cloud services scale to meet increasing demands, efficient resource management becomes crucial. Traditional load balancing
strategies fall short in environments with varying workloads and unpredictable user behavior. Our proposed system introduces
intelligent decision-making for classification, resource forecasting, and real-time load adjustment. Integrating XGBoost, PSO, and
Fuzzy Logic into the system design provides adaptability and performance in distributed cloud environments.

I PROBLEM STATEMENT
Conventional static load balancing and threshold-based scaling methods are inefficient in dynamic environments. They often result
in under-utilization, task delays, and increased costs. The lack of task-awareness in existing systems hampers optimal resource
allocation. This project aims to resolve these limitations using machine learning and heuristic-based load scheduling and
autoscaling.

II1. LITERATURE SURVEY

S1. No. Paper & Authors Methodologies Drawbacks

1 CA-MLBS (Adil et al., 2023) SVM + PSO-based Load Balancer SVM computationally heavy, lacks flexibility
2 Saleha Alharthi et al. (2024) Auto-scaling via Thresholds Abrupt and inefficient scaling

3 Juliet Muchori et al. (2022) ML Load Balancing Survey Lacks implementation detail

4 Bacanin et al. (2023) PSO + LSTM Hybrid Model High complexity, long training time

5 Sethi et al. (2014) Fuzzy Logic for Load Balancing Limited scalability in large-scale tests

These references confirm that hybrid approaches, although effective, still face challenges in cost efficiency and latency under
dynamic load patterns. Our solution attempts to overcome these drawbacks using real-time data and lightweight ML models.

Iv. SYSTEM ARCHITECTURE
I[System Architecture Diagram Placeholder]
The system comprises four interconnected modules:
1) Task Classification — XGBoost model for classifying incoming workloads (video, audio, text, image).
2) Resource Prediction — XGBoost Regression predicts CPU and memory usage.
3) Load Balancing & Scheduling — PSO assigns tasks based on predicted load.
4) Autoscaling — Fuzzy Logic dynamically scales VM count.
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Backend is built on FastAPI; Ul in Streamlit; data stored in SQLite or MongoDB.

V. METHODOLOGY

A. Task Classification (Module 1)

e Input: File features from FFT-75.

e  Model: XGBoost classifier.

e  OQOutput: Task label (Text, Image, Audio, Video).

e  Metrics: Accuracy, Precision, Recall, F1-score, Confusion Matrix.
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B. Resource Prediction (Module 2)

e Input: Task type, priority, scheduling class, previous usage.
e  Model: XGBoost Regressor.

e Output: CPU and memory estimates.

e Metrics: MAE, MSE, RMSE, R2.

rout

scheduting class
Output

average CPU
priornty

> CPU usage peak
Module_2

requested (PU - Trasned module -
average memory usage

reqguested memory

assigned memory

C. Load Balancing (Module 3)

e Input: Resource demand, current load.

e  Model: PSO-based optimization.

e Output: VM-to-task assignment.

e  Metrics: Task Execution Time, Throughput, Load Distribution Index (LDI), Rejection Rate.

module 1 input Task id
S \
e 2i .
module 2 input MODULE 3 Assigned VM
Current system . y, Expected Completion
Time

specs

Autoscaling: True / F
Reason for Scal-
ing Cpu>80 scaleu)

D. Autoscaling (Module 4)

e Input: VM CPU utilization.

e  Model: Fuzzy Logic (triangular membership + weighted defuzzification).
e Output: No Action, Moderate/Aggressive Scale Up.

e  Metrics: System Stability Index, Time to Scale, Cost Optimization Rate.
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VL DATASETS USED
1) FFT-75 Dataset: File fragments with statistical byte-level features. Used for task classification.
2) Google Cluster 2019 Dataset: Real-world resource usage traces. Used for regression and scaling predictions.

VIL EXPERIMENTAL RESULTS
A. Task Classification Results
e Accuracy: 94.6%
e  Precision/Recall: 92.8% / 93.3%
e Fl1-Score: 93.1%
e  Confusion Matrix: Minimal misclassification between audio/video tasks.
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Resource Prediction Results
CPU Usage RMSE: 0.27
Memory RMSE: 0.24

R2? Score: 0.89
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MODULE 2 RESULT
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C. Load Balancing Performance

e Response Time: Improved by 22% over baseline.
e LDI: 0.91 vs. 0.75 (Round Robin)

e Rejection Rate: Below 2%

e VM Utilization: Increased by 19%

D. Autoscaling Accuracy

e Time to Scale: Reduced from 5.2s (threshold) to 3.1s (fuzzy)
e  Over-Provisioning: Decreased by 28%

e Under-Provisioning: Controlled under 3%

e  Cost Optimization: ~17% savings over static provisioning

E. User Feedback & Simulation
e  Streamlit UI: Rated 4.7/5 for clarity and usability.
e  Stress Testing: Simulated 5,000 concurrent tasks — system scaled to 20 VMs dynamically without error.

VIII. CONCLUSION AND FUTURE SCOPE
This work presents a holistic cloud management system combining ML classification, regression, optimization, and fuzzy logic. The
integration of XGBoost, PSO, and fuzzy logic results in an adaptive, stable, and cost-efficient infrastructure.

A. Future Enhancements

e Integrate LSTM for time-series-based resource forecasting.
e  Use real-time feedback for adaptive PSO weight tuning.

e Add anomaly detection module for security-aware scaling.

e Implement container-level orchestration using Kubernetes.
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