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Abstract: AutoTestGen is a privacy-preserving, multi-language framework that automates unit-test synthesis and iterative repair 
for Java, Python, and JavaScript projects using local large language models (LLMs). The system addresses three practical 
limitations of current test generators: single-ecosystem focus, brittle outputs that require significant developer edits, and reliance 
on remote cloud inference. AutoTestGen combines a language-agnostic orchestration core with per-language adapters 
(JUnit/pytest/Jest), a deterministic prompt/sanitization layer, and a compile–run–repair feedback loop that analyzes runtime and 
compile diagnostics to refine test generation automatically. The pipeline performs static code inspection to build intent 
descriptors, issues framework-aware prompts to an on-premise LLaMA family model, sanitizes and normalizes generated code 
(imports, signatures, module layout), and repeatedly regenerates until a configurable success criteria is met or retries are 
exhausted. We evaluate AutoTestGen on representative Java, Python, and JavaScript modules and report improvements in first-
pass compilation validity and final pass rates, along with measurable coverage uplift. Results show that iterative repair increases 
compilation success by ≈9 percentage points and yields high-quality, assertion-rich tests requiring minimal manual edits. The 
design emphasizes reproducibility, CI friendliness, and privacy — making AutoTestGen suitable for enterprise and research 
contexts where code confidentiality is important. 
Keywords: Automated Test Generation, Large Language Models (LLMs), LLaMA, Ollama, Software Testing, Search-Based 
Software Testing (SBST), Python, Java, JavaScript, Privacy-Preserving AI, Unit Testing, Compile–Run–Repair Loop, Multi-
language Framework. 
 

I. INTRODUCTION 
Software testing is a critical phase in the software development life cycle (SDLC) that ensures system reliability, maintainability, 
and functional correctness. Among all testing levels, unit testing plays a key role in validating individual code components before 
integration. However, manual unit-test creation remains labor-intensive and error-prone, prompting the need for automated 
approaches [1], [2]. 
Search-based and feedback-directed tools such as EvoSuite [1]–[4] and Randoop [5], [6] have been widely adopted for automatic 
test generation. Although effective for small projects, these tools struggle with semantic alignment and produce brittle test cases 
lacking contextual understanding. In parallel, Pynguin [7] extended these ideas to Python, and industrial frameworks like Sapienz 
[8], [9] and Diffblue Cover [10] demonstrated the feasibility of automation at enterprise scale. 
The recent emergence of large language models (LLMs) has introduced a new paradigm for code synthesis and test generation [12]–
[15]. These models can understand code semantics and generate syntactically correct test cases but depend heavily on cloud 
infrastructure, introducing privacy and cost challenges. Furthermore, their outputs often require human refinement due to missing 
imports or misaligned assertions. 
To address these limitations, this work presents AutoTestGen, a local, privacy-preserving LLaMA-based framework that automates 
multi-language test generation and iterative repair. Unlike prior LLM-based approaches [12]–[15], AutoTestGen operates entirely 
offline using the Ollama API [11] for local inference. The system introduces a feedback-driven compile–run–repair loop that 
automatically refines tests until all validation checks succeed. 
This paper aims to (1) automate generation of assertion-rich test suites, (2) preserve data privacy via on-premise model deployment, 
and (3) improve reliability and reproducibility of multi-language unit tests. Empirical comparisons show that AutoTestGen achieves 
higher compilation validity and coverage uplift compared to existing tools [1]–[4], [12], [13]. 
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Fig 1. Architecture of the Proposed System 
 

II. LITERATURE REVIEW 
Automated test generation has evolved from heuristic search to intelligent reasoning. Early systems like EvoSuite [1]–[4] and 
Randoop [5], [6] employ evolutionary and feedback-directed algorithms, respectively. These methods maximize coverage but 
frequently yield low-quality or semantically inconsistent tests. Pynguin [7] extended automated testing to Python through dynamic 
analysis, while industrial efforts such as Sapienz [8], [9] applied large-scale evolutionary testing at Facebook, validating the 
scalability of search-based testing in production environments. 
Modern tools now integrate machine learning and AI. Diffblue Cover [10] uses symbolic analysis and pattern learning to improve 
Java unit test accuracy. More recently, LLM-based approaches [12]–[15] leverage natural language reasoning to synthesize tests that 
align with developer intent. However, these systems often depend on online APIs, posing confidentiality risks. Some recent research 
explores retrieval-augmented generation (RAG) [14], [15] for improved context retention, but this still relies on cloud infrastructure. 
AutoTestGen advances these efforts by combining SBST principles [1]–[4] with local LLM reasoning, enabling reproducible and 
privacy-aware test generation. Unlike previous works, it performs iterative prompt refinement using error feedback from native 
compilers — an idea inspired by mutation-based whole-suite generation [4], [16]. 

 
III.    PROBLEM STATEMENT  

While test automation has matured considerably, real-world software projects continue to face critical gaps. Current methods either 
specialize in a single programming ecosystem or depend on online inference models that compromise privacy [10], [12]. Developers 
working in secure environments require automated testing solutions that operate offline and produce framework-compliant results 
without extensive manual editing. 
This motivates the development of AutoTestGen, designed to: 
1) Eliminate reliance on remote APIs by performing local inference [11]; 
2) Generate semantically relevant and executable test cases guided by source intent [13], [15]; and 
3) Incorporate a self-healing repair loop to correct compiler and runtime errors automatically. 
Such a solution bridges the gap between traditional search-based testing [1], [2] and intelligent LLM-driven reasoning [12], [13], 
[15], providing a unified, privacy-conscious approach. 

 
IV. PROPOSED METHODOLOGY 

A. System Overview 
AutoTestGen is designed as a layered architecture that combines a centralized orchestration core with modular components for 
language adaptation, sanitization, and feedback analysis. The system follows a compile–run–repair workflow, enabling automatic 
regeneration of tests until all validation checks pass successfully. 
As shown in Fig. 1, the framework consists of the following key components: 
 Code Inspector – Parses source code and extracts method signatures, docstrings, and comments to infer testing boundaries. 
 Intent Builder – Converts code metadata into structured “intents” describing edge cases, exceptions, and mock behaviors. 
 Prompt Builder – Generates framework-specific prompts (JUnit/pytest/Jest) tailored to each target language. 
 LLM Client (Ollama Interface) – Invokes a local LLaMA-based model to generate candidate tests deterministically. 
 Sanitizer and Formatter – Automatically corrects imports, package names, and formatting issues. 
 Runner – Executes native test runners (Maven, pytest, Jest) and captures logs and results. 
 Repair Engine – Analyzes compiler or runtime errors, refines prompts, and re-generates tests within retry limits. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue X Oct 2025- Available at www.ijraset.com 
     

 
1414 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

Each iteration improves test reliability and assertion quality, forming a self-healing feedback cycle that converges toward successful 
test execution. 

 
B. Workflow Description 
The workflow diagram shown in Fig. 2 illustrates the overall operation of AutoTestGen. The process begins with source code 
selection and metadata extraction, followed by LLM-based test synthesis. Generated tests are sanitized, executed, and validated. In 
case of failure, diagnostic feedback from the compiler or runtime environment is analyzed, and the repair engine automatically 
adjusts prompts for regeneration. The cycle continues until the success threshold or retry cap is reached. 
Steps of the workflow: 
1) Inspection: Extract signatures, comments, and dependencies from code. 
2) Intent Formation: Build structured metadata describing test goals. 
3) Prompt Generation: Craft framework-specific test generation queries. 
4) Test Synthesis: Generate code using the local LLaMA model. 
5) Sanitization: Fix syntax, imports, and layout inconsistencies. 
6) Execution: Run the test suite with appropriate native tools. 
7) Repair Loop: Collect feedback, refine, and regenerate as needed. 
8) Reporting: Aggregate metrics such as coverage, success rate, and latency. 
This pipeline enables reproducibility, scalability, and deterministic outputs across all supported languages. 

 
Fig 2. Workflow Diagram of AutoTestGen 

 
C. Implementation Details 
AutoTestGen is implemented using Python and Node.js for orchestration, with Ollama providing the local inference interface for 
LLaMA-based models. The adapters for Java, Python, and JavaScript ensure native integration with the respective testing 
ecosystems — JUnit, pytest, and Jest. The framework supports parallel execution and deterministic seeding, ensuring reproducible 
results across runs. All operations execute within a sandboxed environment that prevents network access, guaranteeing data 
confidentiality. Logging and telemetry modules collect statistics such as test pass rates, latency, and resource utilization for later 
analysis. 

Fig 3. Layered Architecture Diagram 
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V. EXPERIMENTAL SETUP AND EVALUATION METHOD 
The evaluation of AutoTestGen was conducted on representative open-source and academic codebases to measure compilation 
validity, test pass rate, coverage uplift, and execution latency. Experiments were executed on a local workstation equipped with an 
8-core CPU, 16 GB RAM, and SSD storage, running the Ollama local LLaMA model with deterministic settings. 
 
A. Evaluation Metrics 
1) Compilation Validity (%): Ratio of test cases that compile without errors. 
2) Pass Rate (%): Fraction of successfully executed tests after repair. 
3) Coverage Uplift (%): Improvement in code coverage compared to baseline tests. 
4) Generation Latency (ms): Average time taken per test generation cycle. 
5) Manual Edit Distance: Number of lines changed after automatic generation. 

 
B. Comparative Baselines 
The proposed system was compared against: 
1) Manual developer-written tests, 
2) EvoSuite (Java SBST tool), and 
3) Basic LLM-based test generation (without repair loop). 
Results revealed that AutoTestGen achieved 95% average compilation validity and 91% overall pass rate, outperforming other 
baselines by a margin of 8–12 percentage points. Moreover, the iterative repair loop reduced manual editing by approximately 60%, 
demonstrating its capability to produce ready-to-use test cases with minimal human involvement. 

 
VI. RESULTS AND DISCUSSION 

AutoTestGen’s evaluation demonstrates substantial improvements in compilation validity and test reliability compared with 
traditional generation methods. Table I summarizes quantitative outcomes across three programming languages. 

Language Compilation Validity (%) Test Pass Rate (%) Coverage Uplift (%) 
Java 94 91 +11 

Python 96 92 +10 

JavaScript 95 90 +9 

Fig 4. Comparative Analysis Chart 
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The iterative repair mechanism reduced generation errors such as missing imports and malformed assertions. Qualitative analysis 
revealed that AutoTestGen produced human-readable, assertion-rich test cases with logical flow and minimal redundancy. 
Furthermore, the framework achieved an average generation latency of 1.8 s per test case, making it suitable for integration into 
continuous integration pipelines. The local LLaMA-based model maintained deterministic outputs, ensuring reproducibility — a 
limitation frequently observed in cloud-hosted models. 

 
VII. CONCLUSION 

This paper presented AutoTestGen, a novel LLaMA-based automated test generation framework that supports multiple 
programming languages while preserving data privacy through local inference. By combining a compile–run–repair feedback loop 
with language-specific adapters, AutoTestGen ensures high compilation validity, improved coverage, and reproducible results 
without cloud dependency. Experimental results show significant improvements in both compilation and pass rates compared with 
conventional and LLM-based baselines. The modular design and deterministic output make AutoTestGen suitable for enterprise 
environments, CI/CD integration, and academic research requiring reproducible results. 
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