IJRASET

International Journal For Research in
Applied Science and Engineering Technology

" INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGQGY

Volume: 13 Issue: X Month of publication: October 2025

DOIl: https://doi.org/10.22214/ijraset.2025.74776

www.ijraset.com
Call: (£)08813907089 | E-mail ID: ijraset@gmail.com

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue X Oct 2025- Available at www.ijraset.com

AutoTestGen: A LLaMa-Based Framework for
Automated Test Case Generation and Refinement
across Multiple Programming Languages

Dr. S. Subashini, Sahana P S?, Shobika S A®,
!Associate Professor of Computer Science Department
23Department of Computer Science Engineering

Abstract: AutoTestGen is a privacy-preserving, multi-language framework that automates unit-test synthesis and iterative repair
for Java, Python, and JavaScript projects using local large language models (LLMs). The system addresses three practical
limitations of current test generators: single-ecosystem focus, brittle outputs that require significant developer edits, and reliance
on remote cloud inference. AutoTestGen combines a language-agnostic orchestration core with per-language adapters
(JUnit/pytest/Jest), a deterministic prompt/sanitization layer, and a compile-run—repair feedback loop that analyzes runtime and
compile diagnostics to refine test generation automatically. The pipeline performs static code inspection to build intent
descriptors, issues framework-aware prompts to an on-premise LLaMA family model, sanitizes and normalizes generated code
(imports, signatures, module layout), and repeatedly regenerates until a configurable success criteria is met or retries are
exhausted. We evaluate AutoTestGen on representative Java, Python, and JavaScript modules and report improvements in first-
pass compilation validity and final pass rates, along with measurable coverage uplift. Results show that iterative repair increases
compilation success by =9 percentage points and yields high-quality, assertion-rich tests requiring minimal manual edits. The
design emphasizes reproducibility, Cl friendliness, and privacy — making AutoTestGen suitable for enterprise and research
contexts where code confidentiality is important.

Keywords: Automated Test Generation, Large Language Models (LLMs), LLaMA, Ollama, Software Testing, Search-Based
Software Testing (SBST), Python, Java, JavaScript, Privacy-Preserving Al, Unit Testing, Compile-Run—Repair Loop, Multi-
language Framework.

I. INTRODUCTION
Software testing is a critical phase in the software development life cycle (SDLC) that ensures system reliability, maintainability,
and functional correctness. Among all testing levels, unit testing plays a key role in validating individual code components before
integration. However, manual unit-test creation remains labor-intensive and error-prone, prompting the need for automated
approaches [1], [2].
Search-based and feedback-directed tools such as EvoSuite [1]-[4] and Randoop [5], [6] have been widely adopted for automatic
test generation. Although effective for small projects, these tools struggle with semantic alignment and produce brittle test cases
lacking contextual understanding. In parallel, Pynguin [7] extended these ideas to Python, and industrial frameworks like Sapienz
[8], [9] and Diffblue Cover [10] demonstrated the feasibility of automation at enterprise scale.
The recent emergence of large language models (LLMSs) has introduced a new paradigm for code synthesis and test generation [12]—
[15]. These models can understand code semantics and generate syntactically correct test cases but depend heavily on cloud
infrastructure, introducing privacy and cost challenges. Furthermore, their outputs often require human refinement due to missing
imports or misaligned assertions.
To address these limitations, this work presents AutoTestGen, a local, privacy-preserving LLaMA-based framework that automates
multi-language test generation and iterative repair. Unlike prior LLM-based approaches [12]-[15], AutoTestGen operates entirely
offline using the Ollama API [11] for local inference. The system introduces a feedback-driven compile-run—repair loop that
automatically refines tests until all validation checks succeed.
This paper aims to (1) automate generation of assertion-rich test suites, (2) preserve data privacy via on-premise model deployment,
and (3) improve reliability and reproducibility of multi-language unit tests. Empirical comparisons show that AutoTestGen achieves
higher compilation validity and coverage uplift compared to existing tools [1]-[4], [12], [13].

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1412

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Return summary report
Finish
touser >

Refine prompt with errors | ———)

Run tests with language-
specific runner

Select language, source Build prompt from source
file, project root > (lang-aware) j [)
j LLM generates initial
"t L ;
(sta) tests ‘

Save test file into project

Parse errors & extract S

Fig 1. Architecture of the Proposed System

Il. LITERATURE REVIEW
Automated test generation has evolved from heuristic search to intelligent reasoning. Early systems like EvoSuite [1]-[4] and
Randoop [5], [6] employ evolutionary and feedback-directed algorithms, respectively. These methods maximize coverage but
frequently yield low-quality or semantically inconsistent tests. Pynguin [7] extended automated testing to Python through dynamic
analysis, while industrial efforts such as Sapienz [8], [9] applied large-scale evolutionary testing at Facebook, validating the
scalability of search-based testing in production environments.
Modern tools now integrate machine learning and Al. Diffblue Cover [10] uses symbolic analysis and pattern learning to improve
Java unit test accuracy. More recently, LLM-based approaches [12]-[15] leverage natural language reasoning to synthesize tests that
align with developer intent. However, these systems often depend on online APIs, posing confidentiality risks. Some recent research
explores retrieval-augmented generation (RAG) [14], [15] for improved context retention, but this still relies on cloud infrastructure.
AutoTestGen advances these efforts by combining SBST principles [1]-[4] with local LLM reasoning, enabling reproducible and
privacy-aware test generation. Unlike previous works, it performs iterative prompt refinement using error feedback from native
compilers — an idea inspired by mutation-based whole-suite generation [4], [16].

I1l. PROBLEM STATEMENT
While test automation has matured considerably, real-world software projects continue to face critical gaps. Current methods either
specialize in a single programming ecosystem or depend on online inference models that compromise privacy [10], [12]. Developers
working in secure environments require automated testing solutions that operate offline and produce framework-compliant results
without extensive manual editing.
This motivates the development of AutoTestGen, designed to:
1) Eliminate reliance on remote APIs by performing local inference [11];
2) Generate semantically relevant and executable test cases guided by source intent [13], [15]; and
3) Incorporate a self-healing repair loop to correct compiler and runtime errors automatically.
Such a solution bridges the gap between traditional search-based testing [1], [2] and intelligent LLM-driven reasoning [12], [13],
[15], providing a unified, privacy-conscious approach.

IV.PROPOSED METHODOLOGY
A. System Overview
AutoTestGen is designed as a layered architecture that combines a centralized orchestration core with modular components for
language adaptation, sanitization, and feedback analysis. The system follows a compile-run—repair workflow, enabling automatic
regeneration of tests until all validation checks pass successfully.
As shown in Fig. 1, the framework consists of the following key components:
e Code Inspector — Parses source code and extracts method signatures, docstrings, and comments to infer testing boundaries.
o Intent Builder — Converts code metadata into structured “intents” describing edge cases, exceptions, and mock behaviors.
e Prompt Builder — Generates framework-specific prompts (JUnit/pytest/Jest) tailored to each target language.
e LLM Client (Ollama Interface) — Invokes a local LLaMA-based model to generate candidate tests deterministically.
e Sanitizer and Formatter — Automatically corrects imports, package names, and formatting issues.
e Runner — Executes native test runners (Maven, pytest, Jest) and captures logs and results.
e Repair Engine — Analyzes compiler or runtime errors, refines prompts, and re-generates tests within retry limits.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1413

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Each iteration improves test reliability and assertion quality, forming a self-healing feedback cycle that converges toward successful
test execution.

B. Workflow Description

The workflow diagram shown in Fig. 2 illustrates the overall operation of AutoTestGen. The process begins with source code
selection and metadata extraction, followed by LLM-based test synthesis. Generated tests are sanitized, executed, and validated. In
case of failure, diagnostic feedback from the compiler or runtime environment is analyzed, and the repair engine automatically
adjusts prompts for regeneration. The cycle continues until the success threshold or retry cap is reached.

Steps of the workflow:

1) Inspection: Extract signatures, comments, and dependencies from code.

2) Intent Formation: Build structured metadata describing test goals.

3) Prompt Generation: Craft framework-specific test generation queries.

4) Test Synthesis: Generate code using the local LLaMA model.

5) Sanitization: Fix syntax, imports, and layout inconsistencies.

6) Execution: Run the test suite with appropriate native tools.

7) Repair Loop: Collect feedback, refine, and regenerate as needed.

8) Reporting: Aggregate metrics such as coverage, success rate, and latency.

This pipeline enables reproducibility, scalability, and deterministic outputs across all supported languages.

GitLab Docker

A

Web
User Input LaMA Model———| AutoTestGen
Interface

.
o Output
Test Results L Matcher

Fig 2. Workflow Diagram of AutoTestGen

C. Implementation Details

AutoTestGen is implemented using Python and Node.js for orchestration, with Ollama providing the local inference interface for
LLaMA-based models. The adapters for Java, Python, and JavaScript ensure native integration with the respective testing
ecosystems — JUnit, pytest, and Jest. The framework supports parallel execution and deterministic seeding, ensuring reproducible
results across runs. All operations execute within a sandboxed environment that prevents network access, guaranteeing data
confidentiality. Logging and telemetry modules collect statistics such as test pass rates, latency, and resource utilization for later
analysis.

Select language, source Build prompt from source. Run tests with language-
file, project root > flong:aware)] f specific runner

j LLM gener:
C start) g —

(

| Refine promot with errors

Fig 3. Layered Architecture Diagram

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue X Oct 2025- Available at www.ijraset.com

V. EXPERIMENTAL SETUP AND EVALUATION METHOD
The evaluation of AutoTestGen was conducted on representative open-source and academic codebases to measure compilation
validity, test pass rate, coverage uplift, and execution latency. Experiments were executed on a local workstation equipped with an
8-core CPU, 16 GB RAM, and SSD storage, running the Ollama local LLaMA model with deterministic settings.

A. Evaluation Metrics

1) Compilation Validity (%): Ratio of test cases that compile without errors.

2) Pass Rate (%): Fraction of successfully executed tests after repair.

3) Coverage Uplift (%): Improvement in code coverage compared to baseline tests.
4) Generation Latency (ms): Average time taken per test generation cycle.

5) Manual Edit Distance: Number of lines changed after automatic generation.

B. Comparative Baselines

The proposed system was compared against:

1) Manual developer-written tests,

2) EvoSuite (Java SBST tool), and

3) Basic LLM-based test generation (without repair loop).

Results revealed that AutoTestGen achieved 95% average compilation validity and 91% overall pass rate, outperforming other
baselines by a margin of 8-12 percentage points. Moreover, the iterative repair loop reduced manual editing by approximately 60%,
demonstrating its capability to produce ready-to-use test cases with minimal human involvement.

VI.RESULTS AND DISCUSSION
AutoTestGen’s evaluation demonstrates substantial improvements in compilation validity and test reliability compared with
traditional generation methods. Table | summarizes quantitative outcomes across three programming languages.

Language Compilation Validity (%) Test Pass Rate (%) Coverage Uplift (%)
Java 94 91 +11

Python 96 92 +10

JavaScript 95 90 +9

[Ollama/LLaMa

test code

\C_) results, errors | Maven/JUnit,
[———— PyTest, Jest
execute
& status. \

tests, logs, coverage

Cljobs —_— Storage

AutoTestGen

reports Developer

U

GitHub Actions /
GitLab CI

o S lang, src, project -
Fig 4. Comparative Analysis Chart

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 13 Issue X Oct 2025- Available at www.ijraset.com

The iterative repair mechanism reduced generation errors such as missing imports and malformed assertions. Qualitative analysis
revealed that AutoTestGen produced human-readable, assertion-rich test cases with logical flow and minimal redundancy.
Furthermore, the framework achieved an average generation latency of 1.8 s per test case, making it suitable for integration into
continuous integration pipelines. The local LLaMA-based model maintained deterministic outputs, ensuring reproducibility — a
limitation frequently observed in cloud-hosted models.

VII. CONCLUSION
This paper presented AutoTestGen, a novel LLaMA-based automated test generation framework that supports multiple
programming languages while preserving data privacy through local inference. By combining a compile-run—repair feedback loop
with language-specific adapters, AutoTestGen ensures high compilation validity, improved coverage, and reproducible results
without cloud dependency. Experimental results show significant improvements in both compilation and pass rates compared with
conventional and LLM-based baselines. The modular design and deterministic output make AutoTestGen suitable for enterprise
environments, CI/CD integration, and academic research requiring reproducible results.

REFERENCES

[1] G. Fraser and A. Arcuri, “EvoSuite: Automatic Test Suite Generation for Object-Oriented Software,” in Proc. ESEC/FSE, 2011.
evosuite.org

[2] G. Fraserand A. Arcuri, “Whole Test Suite Generation,” IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 276-291, 2013. evosuite.org

[3] J. M. Rojas, G. Fraser, and A. Arcuri, “A Detailed Investigation of the Effectiveness of Whole Test Suite Generation,” Empirical Softw. Eng., 2016. White
Rose Research Online

[4] G. Fraser and A. Arcuri, “Achieving Scalable Mutation-based Generation of Whole Test Suites,” Empirical Softw. Eng., 2014. evosuite.org

[5] C.Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed Random Test Generation,” in Proc. ICSE, 2007. Homes at UW

[6] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Randoop: Feedback-Directed Random Testing for Java,” (tech. report/extended paper), 2007. MIT
CSAIL+1

[7]1 S. Lukasczyk and G. Fraser, “Pynguin: Automated Unit Test Generation for Python,” arXiv:2202.05218, 2022. arXiv

[8] M. Harman etal., “Deploying Search Based Software Engineering with Sapienz at Facebook,” (case/deployment paper), 2018. UCL Discovery

[9] Facebook Engineering, “Sapienz: Intelligent Automated Software Testing at Scale,” engineering blog, May 2018. Engineering at Meta

[10] Diffblue Ltd., “Diffblue Cover—Al for Java Unit Test Generation,” product documentation and site, 2025. Diffblue+1

[11] Ollama, “API Reference—POST /api/generate (streaming can be disabled via \"stream\": false),” 2025. Ollama Docs

[12] z. Lietal., “An Empirical Study of Unit Test Generation with Large Language Models,” arXiv:2406.18181, 2024. arXiv

[13] Y. Liuetal., “Test Intention Guided LLM-Based Unit Test Generation (IntUT),” in Proc. ICSE, 2025. ACM Digital Library

[14] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Kuttler, M. Lewis, W.-T. Yih, T. Rocktaschel, S. Riedel, and D. Kiela, “Retrieval-
Augmented Generation for Knowledge-Intensive NLP Tasks,” NeurlPS, 2020. NeurlPS Proceedings+1

[15] Z.Zhang, H. Li, Y. Wang, and Z. Jin, “LLM-based Unit Test Generation via Property Retrieval,” arXiv:2410.13542, 2024. arXiv

[16] Additional EvoSuite studies and environment notes (selection for background reading): “On the Effectiveness of Whole Test Suite Generation,” SSBSE, 2014;
“Automated Unit Test Generation for Classes with Environment Dependencies,” ASE, 2014. evosuite.org+1

[17] Supplementary Sapienz sources (industry context): Resource management and large-scale testing at Facebook (engineering notes), 2017-2018. Engineering at
Meta+1

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

d lIsRA

ef n\m
cross’ COPERNICUS

10.22214/1JRASET 45,98 IMPACT FACTOR: IMPACT FACTOR:
7.129 7.429

INTERNATIONAL JOURNAL
FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (V) (24*7 Support on Whatsapp)

