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Abstract: Stress-strength reliability is an important concept in reliability analysis, quantifies the probability that the strength of a
system surpasses its applied stress. This paper focuses on the reliability analysis for exponentiated exponential distribution
strength variable and the exponentiated Weibull distribution stress variable. The study explores the estimation of the parameters
in stress-strength reliability model using maximum likelihood estimation and Bayesian estimation. In particular, the Bayesian
estimator of stress-strength reliability is obtained by utilizing Lindley’s approximation by considering both linear exponential
loss function and squared error loss function for informative and non-informative priors. A comprehensive simulation study is
conducted and the performances of estimators are compared using mean squared errors. The stress-strength reliability for real
datasets is also investigated for real-time data sets.

Keywords: Bayes estimation, Exponentiated exponential distribution, Exponentiated Weibull distribution, Informative and non-
informative prior, Lindley's approximation, Maximum likelihood estimation.

I. INTRODUCTION
A. Exponentiated Exponential Distribution
Gupta and Kundu [17] established the Exponentiated Exponential Distribution (EED) as a two-parameter variant of the exponential
distribution for the analysis of object lifetimes. Depending on the shape parameter, the EED can exhibit either a decreasing or
increasing failure rate.
Let x represent the continuous, non-negative random variable from EED. The probability density function (pdf) of EED is

-1
f(t) = oy exp(= Byx) (1 - exp(- Byx))™
For x>0, 0, >0 and B, >0, where ¢, is shape parameters and f3, is scale parameter.
The EED’s cumulative distribution function (CDF) is
F(x) = (L - exp(= B1x))™.
The reliability function is of EED is

R(x) = 1— {1 - exp(~ Bpx)}™.
The hazard rate function is

-1
_ 0Py exp(= Pax) (L — exp(= B1x))™
h(t) = .
1— {1 - exp(= Bpx)i™
B. Exponentiated Weibull Distribution
The Exponentiated Weibull Distribution (EWD) is the prominent extension of the Weibull Distribution, enabling the modelling of a
wide range of failure patterns through the incorporation of an additional shape parameter. Extensive research has been conducted to
investigate the statistical properties, parameter estimation techniques, and applications of the EWD in various fields.
Let y represent the non-negative continuous random variable from EWD. The EWD’s probability density function (pdf) is

=gt enl- () )] o))

for x>0,a, >0, 5, >0 and k >0, where a,, K are shape parameters and f3, is scale parameter.
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The EWD’s cumulative distribution function (CDF) is

k%2
F(y) = [1 - exp[— (%) D :
k42
R(X)=1- [1 - exp[— (%) D .
The hazard rate function EWD is

as-1
k | k-1 y YN y )"
A 1-— A X
_QZ[BEJV [ exp[ [BZNJ exp[ (32”
h(t) = — .
1—[1—exp[— [Bl) B
2
C. Stress-Strength Reliability (SSR)

The stress-strength model, proposed by Birnbaum [19] and modified further by Birnbaum and McCarty [20], is used to analyze
stress-strength reliability (SSR), which indicates the chance that a system’s strength is greater than its stress. The application of
stress-strength models spans diverse fields such as medicine, environment, agriculture, bioinformatics, engineering, and
behavioral/psychology. Several researchers have contributed to the estimation of stress-strength reliability for various distributions.
Sengupta and Mukhuti [18] focused on estimating stress- strength reliability based on ranked set sample data, while Muttlak et al. [9]
studied the stress-strength reliability for the exponential distribution. For the exponentiated Weibull distribution, Chaturvedi and
Pathak [3] worked on estimating the reliability function, and Chaturvedi and Pathak [2] focused on estimating the reliability
function for a family of exponential distributions. Hussian [11] used ranked set sampling to estimate stress-strength models for the
generalized inverted exponential distribution. Kundu et al. [15] investigated the estimation of the reliability function, Jana et al. [12]
presented Bayes estimation of parameters for two exponential distributions with a same location but different scale parameters and
Qin et al. [10] explored the estimation procedures for stress-strength reliability when both stress and strength follow a one-parameter
exponential distribution. The estimation and testing methods for the reliability functions of exponentiated distributions under
censoring were studied by Chaturvedi and Vyas [1]. Li and Hao [6] estimated the reliability of a stress-strength model for the
inverse Weibull distribution, Chaturvedi and Kumari [4] concentrated on the robust Bayesian analysis of the generalized half
logistic distribution, Pandit and Joshi [16] investigated the estimation of multicomponent system stress- strength reliability for the
generalized Pareto distribution. The stress-strength parameter was studied by Eissa [8] using Bayesian and non-Bayesian
conclusions when random variables X and Y had the exponentiated Weibull distribution. Stress-strength reliability estimation for
exponentially distributed systems with a common minimum guarantee time was investigated by Kundu et al. in [14]; and stress-
strength reliability estimation for exponential distributions with different scale and location parameters was the focus of Jana et al.
in [13]. Li et al. [21] proposed a novel estimation method for stress-strength reliability considering various censoring schemes,
including right, left, and interval censoring.

The stress-strength reliability can be represented by P(Y < X) and it is a reliability parameter. Let X and Y be two random

The reliability function is of EWD is

variables, with Y denoting “stress” and X denoting “strength”. The reliability of the component can be defined as
+0
R=P(Y<X)=[G,(x)f(x)dx, (1)

X
where G, (X) = .[ g(y)dy, f(x)and g(y) are pdf of X and pdf of Y, respectively.
The main focus of this article is to discuss the SSR for EED (strength) and EWD (stress) with maximum likelihood estimation
(MLE) method and Bayes estimation using Lindley’s approximation. This article is organized as follows. The estimation of SSR for
EED with EWD is derived in Section 2. In Section 3, the MLE of SSR based on the random variables X and Y is examined.
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In Section 4, Bayesian estimation of SSR based on two loss functions namely, LINEX and symmetric loss functions are found. In
Section 5, the simulation study and real time data of SSR for EED with EWD are analyzed and the performance of each method of
estimation is also compared. The summary and conclusion of the study based on stress-strength reliability based on MLE and Bayes
estimation are given in Section 6.

Il. STRESS-STRENGTH RELIABILITY FOR EED WITH EWD
Suppose strength (X ) is independent random variable with the shape parameter o and scale parameter B,. The pdf of X is

f(x) = ogBy exp(— Byx) (1 — exp(= Byx)™ L, oy, By > 0 and x > 0.
Stress (Y) is independent random variable with the shape parameters a.», k and scale parameter 3,. The pdf of X is
k221 k
k _
9(y) = o) e [V 1-exp —(l) exp —[l) ,
i B2 B2
o, By, k>0and y > 0.

Substituting f(x) and Gy (x) in (1), the stress-strength reliability becomes

. K))\“2
R = [y expl(- Byx) 1 - exp(- le»“l—l{l—exp{— [ﬁj D dx (@)

Gy(x) = [1 _ exp[— [é)kDaz }

HL.MAXIMUM LIKELIHOOD ESTIMATION OF THE EED WITH EWD STRESS-STRENGTH RELIABILITY
Suppose X1, Xo, ..., Xp, isarandom sample of size m from EED with shape parameter a4 and scale parameters £3; and

where

Y1, Yo, ..., Yy isarandom sample of size n from EED with shape parameters o, , K and scale parameter f3,. The likelihood

function is

a,-1

L= [(a.B.exp(~Bx ) (L-exp(-Bx))" " XH az[ﬁzj e _[;_sz e [;j

=1 j=1

3

3)

The log likelihood function for the equation of 3 is written as follows:

{m Inay + minPy - Bl{z xiJ + (o — 1)2 In(1 — exp(— B1Xi ))J
i=1 i=1

n
In Loy, ap, B) = +{nlna2 +n|nk—nkInB2+(k—1)Zlnyj + (ap —1)
j=1

ot )

(4)
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The ML estimators of aq, 0.5, ﬁl, ﬁz and k can be obtained by simultaneously solving the following equations by numerical

simulation:

olnL
aOL]_

-2 4ol ]

aInL:Bm_Z:XI (Oll—l)z Xi exp (= B1xi)
1=

=— + Z In(L - exp(ByX;)),

0By —exp (- B1Xj)’

-1+k
: (hj :
oinL Z ~(a-D

" e ()
2

et Znt- S G o0

The MLE of stress-strength reliability R using the invariance property is
~\\ G

k
R = [ 6Py exp(—Byx) 2 — exp(— )™ 1-exp| | = dx. (5)
0 B2

IV.BAYESIAN ESTIMATION OF EED WITH EWD STRESS-STRENGTH RELIABILITY
The Bayesian estimation of SSR for EED is analyzed using Lindley’s approximation for various loss functions namely, linear

exponential loss function and squared error loss function. The prior distributions of the parameters a4, ap, By, B and k are
considered to be gamma (c;, d;j), i =1, 2, 3, 4, 5.

The pdf of oy, oy, By, B2 andkare

-1

o) = b o8 exp(- ty),

dC
raz) = - 2503 exp(- daotz),

‘33

w(P) =SSP  expl— dapy)

C

4
R(B2) = 5 expl dafy).

(k) = (4) 5 expl(— dgk),
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where ¢y, Cy, C3, C4, Cg, 0y, dy, d3, dy and dg are hyperparameters.
The joint posterior probability distribution of random variables a4, as, By, By, K is obtained by combining both likelihood
function and joint prior probability density function of oy, oy, By, B2, K using Bayes theorem,

-1 _m+c;-1_n+co—-1,m+c3—1,cq—nk-1, cs+n-1
klalla22Bl3B24 k*“5

x exp(—djoy —dpoy —d3By —dyBy —dsk)

(o, o, By, Ba, k)=

[ T (exp(-Byx @ exp(-Byx )™ ™)
i=1

oo (2 | oo (2

(6)
where
a1m+cl—1a;+cz—1 1m+%—1ﬁ2c4—nk—1kcs+n—1
x eXp(_d1a1 —d,o, —d; 5 —d, B, - dsk)
© poo pon e oo xmex —Bx )(1—exp(- B x )"
G=J; 10| HEeC AR et AR L ssaanan
K a,—-1 K
n ~ y y
el =
111 J B, B,

The squared error loss function (SELF) is L(R, R) = (R — Ii)z, where R is the Bayes estimate of R. The Bayes estimator of R
under squared error loss function (SELF) is given by

Reeve = [ [ [ ] R(ews @y By By K)x7 (0, @, B, B KIX, Y )deryder,d Bd Bdk.
(7)

The Bayes estimator of U = u(ocl, oy, B1, Bo, k) = R under linear exponential (LINEX) loss function is

-sR

A 1
RLINEX = —gm E(e™"|x,y), s#0, (8)

where

B T I P R Y k|X,Y)da1da2dﬁ1dﬁ2dk.

E(e (X, y)=
ey .[ow.[ow.[ow.[ow.[:”(alaaziﬁliﬁzak|X,Y)da1da2dﬁ1dﬁ2dk

Equations (7) and (8) cannot be reduced to closed forms. Hence, we can use Lindley’s approximation method to approximate the
ratio of integrals in Equations (7) and (8).
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Lindley [7] developed an approximate method for determining the ratio of integrals to the posterior mean given by
J.v(k)e"(x)w(x)d(k)
E(v(A)| %, y) =2 I

L0009 ) ©)

A
where V(1) isa function of L = (Aq, Ay, ..., A;), p(L) is the logarithm of the prior density of 2. and L(A) is the logarithm of

the likelihood function. The approximate form of E (V(ﬂ.)/ X,y ) using Lindley’s approximation is given by

V+%ZZ("U + 2Vipj ) o +%ZZZZ Lijk Sijo Vi
i i ] k|

2

E(v(A)/x, y) =

+ terms of order n~“ or smaller

where
v=v(dA), i, j,k, 1=1273 ..,
ov %

S i e

Lo L . op
k= nangan P17 A

cij isthe (i, j)th element in the inverse of the matrix {- L;; } and A = (A, Ay, .., Ay ) isthe MLE of .

A. Lindley’s Approximation for Squared Error Loss Function
The Bayes estimator under SELF for 5 parameters case is given as

U(O{l, oo, Bl’ Bz, k) + U161 + U262 + U363 + U464 + U565 + 66 + 67

RseLF = . A(U1o11 + U3013) + B(Upo2; + Ugopg + Usops)
Tt C(u1o31 + U3033) + D(Upo4p + Uy sy + UsO4s)
+ E(Up055 + UyOsy + Usoss)
where
81 = P1011 + P3013;
8y = Pp02p + P4S24 + P50 25,
83 = P1031 + P3033;
84 = P2O42 + P4S44 + P5O4s,
85 = P05 + P4Os54 + P5O5E,
0 = U3013 + Up4024 + Up5025 + Ugs04s,
67 = %(Ullcll +UppGp + U33033 + UggO 4y + Us50ss5),
A =o11l911 + o33l333,!
B = 022L202 + 26441442 + 26550557 + 20450452,
C = 2013l433 + 033L333,
D = 644l a44 + 055L554 + 2024244 + 20351054 + 26450454,
E = 644l445 + 055ls55 + 20241245 + 26251255 + 26451455
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c, -1 €, —1 cq—1 cc—1
2= _dy, p3 = 331 —d3:P4=4B—2—d4195=5T—d5,

_ (X|)2 exp( B1X|)
) o) B Z(1 exp(~ B1x;))*

”"[ “fmif”_“* st

el G afeel 2)
(o, 1) 2 jk_l N exp[_[gn y,—[;ij ky,[;;ij

B; B;

[y j ' B B;
2ky;
z ﬁz _ kn

ol LTI ) AT LR () (oS (3
L A A )
polr

Xi exp(— Px;)
Liz = Lay = Z( — exp(— Bx;))’
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ol - ) (2] el )
R I == ) R ==

o ) el () el )
sl G el )

S 2exp(—-3p,% ) X +3exp( —2B,% )% exp( Bx )%
A (e 1§(1 exp(—B.x ))3 (1 exp (- )) 1o exp(—B%)’

HU ol 23] Jo[ ]
uw( e

2 N J 3 J k N
L... =k2—jzlln{y} [;j +(a2—l)j2::
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O x? exp(— xiB)
L133 = L3]_3 = L331 = ; (1_ exp(— XiB))Z,

o (P G la]” A LT
oG] (] ]
W

B, /i3 ;

AT T
Sl i

U =u(ayg, oy, By, B2, k) =R,

=1

L255:L552:L525:_

T
T
£
/lﬁ\
=<
S~

R= [y, exp (- fix) (1-exp (- X)) x| 1-exp [ﬁ—] ot

The derivative of u; and Uij» i, j =1 to5 are solved using Leibniz integral rule.
Recommended font sizes are shown in Table 1.

B. Lindley’s Approximation for Linear Exponential Loss Function
The Bayes estimator under linear exponential (LINEX) loss function is given by

V((Xl, a2, [31, [32, k)+V181 +V282 +V383 +V484 +V585 +86 +87

51+ C (V1031 +V3033) + D(V2042 +V4044 +V5045)

A 1
Runex == In A(v1011 +V3613) + B(V20 25 +V4024 + V56 25) }
+E(V2057 + V4054 + V5055)
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O = V13013 + V24024 + V25025 + V45045,
1
87 = §(V11011 +V92G9y + V33033 + VaqG44 + V55055),

v = exp(- sR).

V. VALIDATION OF THE MODEL
A. Simulation Study
A simulation study is conducted to estimate the SSR using 15,000 observations generated from EED and EWD through MLE and
Bayesian approaches. The performances of different estimators under MLE and Bayesian frameworks are compared using Lindley’s
approximation. Various combinations of sample sizes for strength (m) and stress (n), such as (10, 20), (20, 10), (30, 50) and (50, 50)
are examined while loss parameters (s) are set to -1.5 and 1.5. The initial values of the parameters are selected as

a, =(15,25,35), ay =(1.5105), B; = (05, 0.4, 0.2), B, = (L5, 2.5, 3.5).

The informative gamma prior becomes non-informative gamma prior when all the hyperparameters are uniformly set to zero (i.e.,
(ie, ¢ =cy=c3=c4 =C5 =0dy =dy, =d3 =dy = dg =0), Kohansal [5]. The average estimates and mean squared error
(MSE) values of stress-strength reliability are computed for MLE and SELF, LINEX loss function with positive loss parameter

(LLF) and LINEX loss function with negative loss parameter (LLF1) under both informative and non-informative priors. The
performance of these estimators is compared based on their respective MSE values.

Tables I to V present the findings of the simulation study examining the effects of variations in oy, oo and hyperparameters.

In Table |1, the impact of a, = (1.5, 2.5, 3.5) was explored while keeping the other parameters fixed
(a,=05,4=0.2 8,=25k=35,=05c,=01c,=0.18c,=02,,=0.25d,=01d,=0.12,d,=02,d,=0.1 and
ds =0.2).

The results demonstrate that increasing o4 leads to higher stress-strength reliability. Notably, the Bayes estimator for gamma prior,
utilizing LLF and SELF performed better than other estimation methods by showing lower mean squared errors.

In Table II, the variation of ¢, = (1.5, 1.0, 0.5) is explored while holding the remaining parameters constant. The results indicate
that reducing oo values leads to higher stress-strength reliability. Furthermore, the Bayes estimators for gamma prior provide more

accurate estimates of SSR with minimal MSEs.
In Table Ill, the variation of g, = (0.5, 0.4, 0.2) is presented while keeping the other parameters constant. The results show that

reducing [3; values tends to higher stress-strength reliability. Also, the Bayes estimators for gamma prior give better estimates of
SSR with lower MSEs.
In Table IV, the variation of g, = (1.5, 2.5, 3.5) is explored and rest of the parameters are constant. From the results, it is observed

that decreasing 3, values leads to higher stress-strength reliability. The Bayes estimators for gamma prior performed better
estimates of SSR with smaller MSEs than the other estimation methods.

In Table V, the variation in hyperparameters (cl,cz,ca,dl,dz,d3) is presented while fixing model parameters

(ag =35, a9 =05, By =0.2, B, =2.5and k = 3.5). Itis found that the Bayes estimator for gamma prior under LLF performs
better than other estimators, yielding smaller MSEs across all three sets of hyperparameters.
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TABLE |
AVERAGE SSR ESTIMATES AND MSE FOR MLE, INFORMATIVE AND NON- INFORMATIVE PRIORS WITH SELF AND LINEX Loss
FUNCTION WHEN

a,=05p8=02,B,=25k=35.c =05.c,=01c,=0.18,c, =02, ¢ =0.25,
d,=01d,=012,d,=0.2,d,=0.1,d, =0.2,s=%1.5 (VARIATION N @)

o, =150, R =0.834716

Bayes estimators with Bayes estimators with
MLE gamma prior non-informative prior

SELF LLF LLF1 SELF LLF LLF1

m =10 [0.836234|0.829287(0.833167{0.825091 | 0.822492 | 0.826512 | 0.818643
n =20 |0.006070{0.005545|0.005350(0.005778| 0.005963 | 0.005707 | 0.006245

m = 20 |0.834403|0.825352|0.828236|0.819869| 0.820539 | 0.824736 | 0.816390
n =10 |0.006416|0.005847(0.005613|0.006127| 0.006058 | 0.005788 | 0.006370

m = 30 |0.833408|0.829851|0.831463|0.828451| 0.827465 | 0.828968 | 0.815984
n =50 |0.002076{0.002013|0.001988|0.002043| 0.002055 | 0.002022 | 0.002092

m = 50 |0.833221{0.829384|0.830627|0.828347| 0.827952 | 0.829092 | 0.816822
n =50 |0.001604{0.001569|0.001553|0.001587| 0.001588 | 0.001568 | 0.001610

o, =2.50, R =0.941611

m =10 10.941208|0.937850{0.941241|0.936336 | 0.935731 | 0.938187 | 0.933384
n =20 |0.003703{0.003403|0.003245|0.003572| 0.003848 | 0.003673 | 0.004030

m = 20 |0.933241{0.932355|0.937967(0.932772| 0.933493 | 0.936102 | 0.930932
n =10 [0.003949|0.003714{0.003531{0.003915| 0.003917 | 0.003720 | 0.004129

m = 30 |0.934558|0.942433|0.942964 |0.941112| 0.940578 | 0.931501 | 0.939669
n =50 |0.001295{0.001263|0.001243|0.001285| 0.001309 | 0.001286 | 0.001333

m =50 |0.935617{0.942218|0.942730|0.941331| 0.941097 | 0.931796 | 0.930404
n =50 |0.001000{0.000985|0.000972|0.000998| 0.001006 | 0.000992 | 0.001020

a, =3.50, R =0.9778074

m =10 10.981048|0.966856(0.969512|0.966259 | 0.967788 | 0.969459 | 0.966189
n =20 |0.002521{0.002312|0.002195|0.002433| 0.002725 | 0.002607 | 0.002844

m = 20 |0.97274410.965950|0.967829|0.964302| 0.965731 | 0.967514 | 0.963985
n =10 |0.002687|0.002593(0.002462|0.002732| 0.002763 | 0.002628 | 0.002903

m = 30 |0.977081{0.972344|0.975578|0.972317| 0.972338 | 0.972969 | 0.971716
n =50 |0.000888(0.000868|0.000853|0.000883| 0.000911 | 0.000895 | 0.000927

m =50 |0.975840{0.973253|0.975731|0.972779| 0.972842 | 0.973319 | 0.972370
n =50 |0.000693{0.000685|0.000676|0.000694| 0.000704 | 0.000695 | 0.000714
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TABLE 11
AVERAGE SSR ESTIMATES AND MSE FOR MLE, INFORMATIVE AND NON- INFORMATIVE PRIORS WITH SELF AND LINEX Loss
FUNCTION WHEN

al=353 =02 8,=25k=35,=05c,=01.¢,=0.18,c,=0.2,c, =0.25,
d=021d,=012d,=0.2,d,=0.1,d, =0.2,s=%1.5 (VARIATION IN ¢, )
o =15 R =0.744681

Bayes estimators with gamma| Bayes estimators with
Sample| MLE prior non-informative prior

SELF LLF LLF1 SELF LLF LLF1

m =10 |{0.752971|0.738811|0.742953|0.734810 | 0.738628 | 0.742836 | 0.734595
n =20 |0.005381|0.004387|0.004141{0.004671| 0.005213 | 0.004963 | 0.005491

m = 20 |0.741439|0.738333|0.742665 | 0.734018 | 0.736849 | 0.741211 | 0.732536
n =10 |0.005752|0.004866 | 0.004629|0.005154 | 0.005332 | 0.005072 | 0.005638

m =30 0.747733|0.743684 |0.745263 | 0.742124 | 0.742798 | 0.744374 | 0.741244
n =50 {0.001183|0.001073|0.001045(0.001107| 0.001152 | 0.000121 | 0.001188

m =50 |0.745999|0.743869|0.745067 | 0.742679 | 0.743202 | 0.744399 | 0.742014
n =50 |0.000688|0.000629|0.000613 {0.000649 | 0.000666 | 0.0001647 | 0.000687

o =1, R =0.813953

m =10 |0.821515|0.806730|0.809573|0.803994 | 0.806961 | 0.809848 | 0.804201
n =20 |0.003347|0.002806|0.001607 | 0.002020 | 0.002425 | 0.002226 | 0.003634

m =20 [0.811374|0.805298 |0.808326 | 0.802311 | 0.804869 | 0.807911 | 0.801881
n =10 |0.003634 |0.003220|0.003007|{0.002455| 0.002512 | 0.002292 | 0.003752

m =30 [0.816739|0.812247|0.813335(0.811173| 0.811613 | 0.812699 | 0.810545
n =50 |0.000500|0.000441|0.000417 {0.000367 | 0.000403 | 0.000378 | 0.000530

m =50 [0.815201|0.812530|0.813356 {0.811711| 0.812083 | 0.812908 | 0.811267
n =50 |0.000160|0.000130|0.000116 | 0.000046 | 0.000058 | 0.000043 | 0.000174

oo = 0.5 R = 0.853659

m =10 |0.860378 | 0.846089 | 0.848149|0.844107 | 0.846467 | 0.848559 | 0.844468
n =20 |0.002144)0.001834|0.001686 {0.001990| 0.001317 | 0.000169 | 0.002469

m = 20 [0.851375|0.844448|0.846661 | 0.842273 | 0.844372 | 0.846594 | 0.842195
n =10 |0.002348|0.002163|0.001999|0.002338 | 0.001367 | 0.000200 | 0.002545

m = 30 [0.856120|0.851667 |0.852458 | 0.850887 | 0.851168 | 0.851956 | 0.850391
n =50 |0.000089|0.000056|0.000038 [0.000075 | 0.000106 | 0.000067 | 0.000126

m =50 [0.854704|0.851948|0.852546 | 0.851355| 0.851608 | 0.852205 | 0.851017
n =50 |0.000045|0.000030|0.000019|0.000042 | 0.000752 | 0.000021 | 0.000064

TABLE Il
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AVERAGE SSR ESTIMATES AND MSE FOR MLE, INFORMATIVE AND NON-INFORMATIVE PRIORS WITH SELF AND LINEX Loss
FUNCTION WHEN

a,=35a,=05,6,=25k=35,¢=057.c,=0.1.c,=0.18,¢c,=0.2, ¢, =0.25,
d,=01d,=012,d,=0.2,d,=0.1,d,=0.2,s=%1.5 (VARIATIONIN )
B1 = 0.5, R = 0.820750

Bayes estimators with

Bayes estimators with gamma ’ ) :
non-informative prior

prior
SELF LLF LLF1 SELF LLF LLF1

m =10 | 0.832971 |0.818811| 0.820153 | 0.814810 | 0.738628 | 0.820036 |0.814595
n =20 | 0.006321 {0.005382| 0.005142 | 0.005670 | 0.006212 | 0.005962 |0.006490

Sample| MLE

m = 20 | 0.821439 |0.818333| 0.820365 | 0.814018 | 0.736849 | 0.820111 |0.812536
n =10 | 0.006712 |0.005862| 0.005627 | 0.006153 | 0.006331 | 0.006071 |0.006637

m =30 | 0.827733 |0.820084| 0.820463 | 0.812124 | 0.742798 | 0.820134 |0.811244
n =50 | 0.002133 |0.002063| 0.002044 | 0.002106 | 0.002151 | 0.002120 |0.002186

m =50 | 0.825999 |0.820269| 0.820567 | 0.812679 | 0.743202 | 0.820299 |0.812014
n =50 | 0.001628 {0.001630| 0.001612 | 0.001648 | 0.001665 | 0.001645 |0.001685

By = 0.4, R =0.883877

m =10 | 0.881515 [0.876730| 0.879573 | 0.873994 | 0.876961 | 0.879848 |0.874201
n =20 | 0.004346 {0.003805| 0.003606 | 0.004021 | 0.004424 | 0.004225 |0.004633

m =20 | 0.871374 |0.875298| 0.878326 | 0.872311 | 0.874869 | 0.877911 |0.871881
n =10 | 0.004632 |0.004221| 0.004006 | 0.004454 | 0.004513 | 0.004291 |0.004753

m = 30 | 0.886739 |0.882247| 0.883335 | 0.881173 | 0.881613 | 0.882699 |0.880545
n =50 | 0.001501 {0.001440| 0.001415 | 0.001466 | 0.001502 | 0.001476 |0.001531

m =50 | 0.885201 {0.882530| 0.883356 | 0.881711 | 0.882083 | 0.882908 |0.881267
n =50 | 0.001162 {0.001131| 0.001114 | 0.001145 | 0.001157 | 0.001142 |0.001173

B = 0.2, R =0.977807

m =10 | 0.980378 |0.966089| 0.968149 | 0.964107 | 0.966467 | 0.968559 0.964468
n =20 | 0.003143 |0.002833| 0.002685 | 0.002991 | 0.003316 | 0.003168 |0.003462

m = 20 | 0.971375 |0.964448| 0.966661 | 0.962273 | 0.964372 | 0.966594 |0.962195
n =10 | 0.003347 |0.003164| 0.002997 | 0.003337 | 0.003366 | 0.003201 |0.003544

m =30 | 0.978820 {0.961667| 0.975458 | 0.970887 | 0.971168 | 0.971956 |0.970391
n =50 | 0.001088 {0.001055| 0.001036 | 0.001074 | 0.001105 | 0.001086 |0.001125

m =50 | 0.978704 {0.961948| 0.976746 | 0.971355 | 0.971608 | 0.972205 |0.971017
n =50 | 0.000844 {0.000831| 0.000818 | 0.000841 | 0.000851 | 0.000840 |0.000865
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TABLE IV
AVERAGE SSR ESTIMATES AND MSE FOR MLE, INFORMATIVE AND NON-INFORMATIVE PRIORS WITH SELF AND LINEX Loss
FUNCTION WHEN

O(l = 3-5,(12 = 0-5, ﬁl = 0.2, k = 3.5, Cl = 0,5’ C2 = 0.1’ 03 = 0.18’ C4 — 0.2’ CS — 0.25’
dl = 01, d2 = 0121 d3 = 02, d4 = 01, d5 = 02, S = i15 (VAR|AT|ON IN ﬁz)
Bo =3.50, R = 0.947772

Bayes estimators with gamma Bayes estimators with
Sample MLE prior non-informative prior

SELF LLF LLF1 SELF LLF LLF1

m =10 | 0.952971 | 0.938811 | 0.942953 | 0.934810 | 0.938628 | 0.942836 | 0.934595
n =20 | 0.000261 | 0.000267 | 0.000121 | 0.000561 | 0.000273 | 0.000153 | 0.000681

m =20 | 0.951439 | 0.938333 | 0.942665 | 0.934018 | 0.936849 | 0.941211 | 0.932536
n =10 | 0.000632 | 0.000746 | 0.000109 | 0.000144 | 0.000642 | 0.000162 | 0.000188

m =30 | 0.949733 | 0.943684 | 0.945263 | 0.942124 | 0.942798 | 0.944374 | 0.941244
n =50 | 0.000163 | 0.000053 | 0.000035 | 0.000106 | 0.000142 | 0.000111 | 0.000178

m =50 | 0.949699 | 0.943869 | 0.946067 | 0.942679 | 0.943202 | 0.944399 | 0.942014
n =50 | 0.000078 | 0.000019 | 0.000003 | 0.000039 | 0.000056 | 0.000037 | 0.000077

B, = 2.50, R = 0.977807

m =10 | 0.981515 | 0.966730 | 0.969573 | 0.963994 | 0.966961 | 0.969848 | 0.964201
n =20 | 0.000237 | 0.000205 | 0.000200 | 0.000210 | 0.000217 | 0.000216 | 0.000239

m =20 | 0.979374 | 0.965298 | 0.968326 | 0.962311 | 0.964869 | 0.967911 | 0.961881
n =10 | 0.000324 | 0.000110 | 0.000106 | 0.000115 | 0.000120 | 0.000118 | 0.000128

m =30 | 0.978939 | 0.972247 | 0.975635 | 0.971173 | 0.971613 | 0.972699 | 0.970545
n =50 | 0.000101 | 0.000100 | 0.000097 | 0.000110 | 0.000117 | 0.000115 | 0.000120

m =50 | 0.978701 | 0.972530 | 0.976856 | 0.971711 | 0.972083 | 0.973907 | 0.971267
n =50 | 0.000050 | 0.000020 | 0.00006 | 0.000026 | 0.000080 | 0.000045 | 0.000094

Bo =150, R = 0.994776

m =10 | 0.998378 | 0.986089 | 0.988149 | 0.984107 | 0.986467 | 0.988559 | 0.984468
n =20 | 0.000134 | 0.000124 | 0.000106 | 0.000150 | 0.000207 | 0.000159 | 0.000259

m =20 | 0.997375 | 0.984448 | 0.986661 | 0.982273 | 0.984372 | 0.986594 | 0.982195
n =10 | 0.000238 | 0.000153 | 0.000120 | 0.000161 | 0.000257 | 0.000100 | 0.000235

m =30 | 0.996120 | 0.991667 | 0.992458 | 0.990887 | 0.991168 | 0.991946 | 0.990391
n =50 | 0.000079 | 0.000046 | 0.000028 | 0.000088 | 0.000105 | 0.000077 | 0.000116

m =50 | 0.996004 | 0.991948 | 0.992546 | 0.991355 | 0.991608 | 0.992205 | 0.991017
n =50 | 0.000035 | 0.000020 | 0.000002 | 0.000038 | 0.000092 | 0.000042 | 0.000096
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TABLEV
AVERAGE SSR ESTIMATES AND MSE FOR MLE, INFORMATIVE AND NON- INFORMATIVE PRIORS UNDER SELF AND LINEX Loss
FUNCTION WHEN ¢, =3.5,, =0.5, 8, =0.2, B, =25,k =3.5,s=+15 (VARIATION IN HYPERPARAMETERS
c.C,¢CsC,C,d,d,,dg,d,, dy)
0 =0.7,¢p =0.2,03 =0.25,¢c4 =0.21, ¢5 =0.23,dy =0.2, dp =0.22,d3 =0.3,d4 = 0.24,d5 = 0.21

Bayes estimators with Bayes estimators with
MLE gamma prior non-informative prior
SELF LLF LLF1 SELF LLF LLF1
m =10 |0.870378|0.849871|0.841704 |0.838118 | 0.856467 | 0.858559 | 0.854468
n =20 |0.003144{0.002651|0.002486 |0.002826 | 0.003317 | 0.003169 | 0.003469
m = 20 |0.861375| 0.85083 |0.842989|0.838726| 0.854372 | 0.856594 | 0.852195
n =10 |0.003348|0.003121|0.002941 |0.003310| 0.003367 | 0.003200 | 0.003545
m =30 |0.866120{0.860112|0.850891 |0.849346| 0.861168 | 0.861956 | 0.860391
n =50 {0.001089{0.001031|0.001011|0.001053| 0.001106 | 0.001087 | 0.001126
m =50 |0.864704|0.860942 |0.851535|0.850354 | 0.861608 | 0.862205 | 0.861017
n =50 |0.000845|0.000820|0.000808 |0.000833| 0.000852 | 0.000841 | 0.000864
¢ =0.65,cp =0.3,c3=0.4,cq =0.35, c5 =0.41, dy =0.35,d» = 0.28, d3 = 0.4, d4 = 0.39, d5 = 0.29
m =10 |10.870369|0.834145|0.835148 | 0.83320 | 0.856458 | 0.858549 | 0.854458
n =20 |0.003143{0.003054 |0.002870|0.003241| 0.003316 | 0.003168 | 0.003468
m = 20 |0.861375|0.841389|0.835314|0.834561 | 0.854372 | 0.856594 | 0.852195
n =10 |0.003348|0.003380|0.003165 |0.003598 | 0.003367 | 0.003200 | 0.003545
m =30 |0.866120|0.855545|0.856269 | 0.854844 | 0.861168 | 0.861956 | 0.860391
n =50 {0.001089{0.0010490.001021|0.001077| 0.001106 | 0.001087 | 0.001126
m =50 |0.867704|0.857986 |0.858558 | 0.857425| 0.861608 | 0.862205 | 0.861017
n =50 |0.000845|0.000831|0.000815|0.000847| 0.000852 | 0.000841 | 0.000864
¢ =0.9,0)=08,c3=0.7,¢4 =0.6,c5 =0.5, dy = 0.4, dp =0.85,d3 =0.88,d, = 0.89, d5 = 0.8
m =10 |10.870369|0.831191|0.831908 | 0.830484 | 0.856458 | 0.858549 | 0.854458
n =20 |0.003143{0.003087|0.002929|0.003260| 0.003316 | 0.003168 | 0.003468
m = 20 |0.861375|0.838893|0.840718|0.837165| 0.854372 | 0.856594 | 0.852195
n =10 |0.003348|0.003319|0.003098 |0.003542 | 0.003367 | 0.003200 | 0.003545
m =30 |0.866120|0.854776|0.855486 |0.854090| 0.861168 | 0.861956 | 0.860391
n =50 {0.001089{0.001039|0.001010{0.001068| 0.001106 | 0.001087 | 0.001126
m =50 |0.864704|0.857335|0.857900|0.856782| 0.861608 | 0.862205 | 0.861017
n =50 |0.000845|0.000827|0.000811 |0.000844| 0.000852 | 0.000841 | 0.000864

Sample
size

B. SSR Analysis of Breaking Strength Data

In this subsection, the real data sets of single carbon fibers with gauge lengths of 10 mm and 20 mm. These data sets were obtained
from the study conducted by Badar and Priest (1982) and are measured in GPa. The sample size for the 10 mm gauge length is 63,
while the sample size for the 20 mm gauge length is 69.

Data set 1: X (10 mm gauge length, m = 63)

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616,
2.618, 2.624, 2.659, 2.675, 2.738, 2.740, 2.856, 2.917, 2.928, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235,
3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.852, 3.871, 3.886,
3.971, 4.024, 4.027, 4.225, 4.395, 5.020.
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Data set 2: Y (20 mm gauge length: n = 69)

1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.140,
2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514,
2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 2.848,
2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585.

The EED is fitted to data set 1 and EWD is fitted to data set 2 using Q-Q plots and Kolmogorov-Smirnov (K-S) test. The K-S
statistic values for datasets 1 and 2 are 0.1187 and 0.1294 with corresponding p-values of 0.7127 and 0.3428, respectively. Fig. 1
displays the Q-Q plots for both data sets. Based on the p-values and visual inspection of the Q-Q plots, it can be concluded that EED
provides a good fit to the data set 1 and EWD provides a good fit to the data set 2. The maximum likelihood and Bayes estimates of

stress-strength reliability based on the parameters of ay = 144.0232, &, = 50.53977, ﬁl = 1.824965, ﬁz = 30.289321and
k = 9.821343 are Ry, g = 0.923607.
Under informative prior,
RsgL p = 0.925674, R = 0.926138, R F; = 0.924321.
Under non-informative prior,
RsgL p = 0.921931, Ry = 0.922398, R,y = 0.920584.

The estimated value of the stress-strength reliability (R) is found to be greater than 0.5, indicating that the 10 mm carbon fibers have
a higher strength compared to the 20 mm carbon fibers.
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Fig. 1 Q-Q plots of datasets 1 and 2.

VI.SUMMARY AND CONCLUSIONS
The study focuses on estimating the stress-strength reliability using EED as the strength variable and EWD as the stress variable.
The estimation is performed using MLE and Bayesian methods under LINEX loss function and SELF using Lindley’s
approximation. The performance of these estimators is compared based on the mean squared errors. The simulation study reveals
the following findings.

1) Increasing the values of ¢, while keeping other parameters fixed leads to an increase in stress-strength reliability.

2) Decreasing the values of ,, B, and [3, while keeping the remaining parameters fixed results in an increase in stress-strength
reliability.

3) The Bayes estimator with a gamma prior under LLF demonstrates better performance with smaller mean squared errors across
all three sets of hyperparameters.

Hence, it can be concluded that the Bayes estimators for the gamma prior under the LINEX loss function with a positive loss

parameter outperform other estimation methods. Additionally, the stress-strength reliability) of the EED with EWD is investigated

using real data sets of breaking strength in carbon fibers with different gauge lengths. The findings reveal that the 10 mm length

carbon fibers exhibit greater strength compared to the 20 mm length fibers.
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