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Abstract: This project aims to study the parameters of the Deterministic SIR(Susceptible → Infected → Recovered) model of 

COVID-19 in a Bayesian MCMC framework. Several deterministic mathematical models are being developed everyday to 

forecast the spread of COVID-19 correctly. Here, I have tried to model and study the parameters of the SIR Infectious disease 

model using the Bayesian Framework and Markov-Chain Monte-Carlo (MCMC) techniques. I have used Bayesian Inference to 

predict the Basic Reproductive Rate ࢚ࡾ in real time using and following this, demonstrated the process of how the parameters of 

the SIR Model can be estimated using Bayesian Statistics and Markov-Chain Monte-Carlo Methods. 
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I. INTRODUCTION 

The first COVID-19 case was detected in November 2019 and since then, the world is in a turmoil. Scientists around the globe are 

continuously trying to come up with multiple deterministic as well as stochastic models to understand and predict the spread of this 

virus. Bayesian Analysis is a method of Statistical Inference that allows us to combine prior information about a population 

parameter with evidence from information contained in a sample to guide statistical inference process.  

In statistics, Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sampling from a probability 

distribution. By constructing a Markov chain that has the desired distribution as its equilibrium distribution, one can obtain a sample 

of the desired distribution by recording states from the chain. The more steps are included, the more closely the distribution of the 

sample matches the actual desired distribution. Various algorithms exist for constructing chains and in this paper, I have taken help 

of the Metropolis–Hastings algorithm. Taking help of the Bayesian Framework and the MCMC Techniques, I have tried to model 

the parameters of the SIR model for Infectious Diseases, which would assist us to correctly understand the spread of COVID-19, 

based on real time data. 

 

II. THE BAYESIAN FRAMEWORK 

The Bayesian Framework is set up by assuming a probability model for the observed data D given a ݌ × 1 vector of unknown 

parameters βሬ⃗ , which is  ܲ(ܦ|βሬ⃗ ) . Then it is assumed that  βሬ⃗   is randomly distributed from the prior distribution  ܲ(βሬ⃗ ) . The inference 

for  βሬ⃗   is based on the Posterior distribution ܲ൫βሬ⃗ หܦ൯.  
 

Using Bayes' Theorem, we have ܲ൫βሬ⃗ หܦ൯ =
ܲ൫ܦหβሬ⃗ ൯ܲ൫βሬ⃗ ൯ܲ(ܦ)

 

= 
௉ቀ஽ቚஒሬሬ⃗ ቁ௉ቀஒሬሬ⃗ ቁ∫ ௉ቀ஽ቚஒሬሬ⃗ ቁ௉ቀஒሬሬ⃗ ቁௗಈ ஒሬሬ⃗  ∝ ൯ߚ൯ܲ൫⃗ߚ൫⃗ܮ =  ൯     (1)ܦหߚ൫⃗ߨ

                                

where  ܮ൫βሬ⃗ ൯ is the Likelihood Function and  Ω  is the space of the parameters contained in  βሬ⃗ .  ∫ ܲ൫ܦหβሬ⃗ ൯ܲ൫βሬ⃗ ൯݀βሬ⃗ஐ   is known as the 

prior predictive distribution and it is a constant, which normalizes the posterior distribution  ܲ൫βሬ⃗ หܦ൯ .  π൫βሬ⃗ หܦ൯  is the unnormalized 

posterior distribution,  ܮ൫βሬ⃗ ൯ܲ൫βሬ⃗ ൯ . 
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III. BAYESIAN INFERENCE FOR DYNAMICAL SYSTEMS 

A common method for performing parameter estimation of Dynamical Systems is to use Bayesian Inference. Some key points about 

Dynamical Systems:     

 Assume that the dynamical system of interest can be described by the vector equation  

 ݔᇱ = (ݔ)݂ ݔ , (2)              = ݂ and (௞ݔ…,ଶݔ,ଵݔ) = ൫݂(ݔଵ) (ଶݔ)݂, ଴ݔ ൯, with the vector initial conditions(௞ݔ)݂…, =

(௞଴ݔ…,ଶ଴ݔ,ଵ଴ݔ) . 

 It is assumed that the unique solution vector (ݐ)ݔ of (2) exists and can be obtained either explicitly or by using numerical 

methods. 

 All the parameters in system are denoted by the vector βሬ⃗ . 

 If the initial conditions ݔଵ଴,ݔଶ଴,…ݔ௞଴, then they are also included in the vector βሬ⃗ . 

 An emphasis is put on the dependence of the unique solution x on the vectors βሬ⃗  and time ݐ and the unique solution vector will 

thus be denoted as ݔ൫βሬ⃗ ,  ൯ݐ
The Data: Suppose there are ݉ time series data sets. It is important to ensure the correct ODE model solution or combination of 

ODE Model solutions is fit to the ݆௧௛ time series data set. (݆ = 1,2,…݉) .Sometimes a data set is scaled differently than the model 

solutions or the data set can be described by a summation of the ODE model solutions. In order to include these situations, we can 

use a linear combination of the ODE model solutions αଵ௝ݔଵ൫βሬ⃗ ൯ݐ, + αଶ௝ݔଶ൫βሬ⃗ ൯ݐ, + ⋯ + α௞௝ݔଵ൫βሬ⃗ ൯. If the nonzero vector of constants ܽ௝ݐ,  need be estimated, then, let the nonzero vectors ܽ௝   , ݆ = 1,2,…݉ be contained in the vector 

ν =  

⎣⎢⎢
⎢⎢⎡ βሬܽ⃗ଵܽଶܽଷ⋮ܽ௠⎦⎥⎥

⎥⎥⎤     
In general, we will fit the function ܨ൫ݔଵ൫βሬ⃗ ௞൫βሬ⃗ݔ…,௜௝൯ݐ,  .௜௝൯,ܽଵ,…ܽ௠൯ to the ݆௧௛ data setݐ,

Distribution of Data over time: The distribution of the observations over time for each ݆௧௛ data set must be chosen before fitting 

system (1) to the data. The following portion will describe the Gaussian, Poisson, Negative Binomial and other distribution options.  

 

A. Gaussian Distribution 

Let ܺ be a random variable from the Gaussian Distribution with parameters μ and σଶ = 
ଵத > 0 and ܻ ∼ ܰ(μ,σଶ) . The PDF is given 

by  

௑݂(ݔ) =
ଵ஢√ଶ஠ ݁ି(ೣషಔ)మమಚమ  , ݔ  ∈ R                   (3) 

 

The mean E(ܺ) =  μ and the variance ܸܽݎ(ܺ) = σଶ =
ଵத. Assume that the ݆௧௛ time series data set is given by observations ܦ௝ =

{݀ଵ௝ ,݀ଶ௝ ,…݀௡ೕ௝ } with corresponding times ௝ܶ = ଵ௝ݐ} ଶ௝ݐ, ,…, ௡ೕ௝ݐ } and the probability of observing ݀௜௝  is  

݂൫݀௜௝൯ = ට தೕଶ஠݁ିதೕ൬೏೔ೕషಔ೔ೕ൰మమ                           (4) 

 

 where the mean ߤ௜௝ changes depending on time ݐ௜௝ and the variance 
ଵఛೕ is specific to the ݆௧௛ dataset. Given our assumption of fitting 

the function of the ODE model solutions and any necessary constants, ܨ൫ݔଵ൫βሬ⃗ ௞൫βሬ⃗ݔ,…,௜௝൯ݐ,  ௜௝൯,ܽଵ,ܽଶ,…ܽ௠൯ to the ݆௧௛ time seriesݐ,

data set, we set  

Eൣܦ௜௝൧ = μ௜௝ = ଵ൫βሬ⃗ݔ൫ܨ ௞൫βሬ⃗ݔ,…,௜௝൯ݐ,  ௜௝൯,ܽଵ,ܽଶ,…ܽ௠൯           (5)ݐ,

 

Equation (4) can be thought of as a link function that transforms mean of a distribution to a linear regression model. Equation (4) 

equated the mean of the Gaussian Distribution to the ODE model solutions. 
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B. Poisson Distribution 

 

Let ܺ be a random variable from the Poisson Distribution with parameter λ > 0,ܺ ∼ ܲ(λ) . The PMF of the discrete Poisson 

distribution is given by  

௑݂(ݔ) =
௘షಓ஛ೣ௫!

ݔ     ∈ Z ∩ ݔ ≥ 0        (6) 

The mean E(ܺ) =  λ and variance ܸܽݎ(ܺ) = λ. Assume that the ݆௧௛ time series data is given by observations ܦ௝ = {݀ଵ௝ ,…݀௡ೕ௝ }  with 

the corresponding times ௝ܶ = ଵ௝ݐ} ଶ௝ݐ, ௡ೕ௝ݐ…, } and the probability of observing ݀௜௝  is given by the Poisson Distribution  

݂൫݀௜௝൯ =
௘షഊ೔ೕቀఒ೔ೕቁ೏೔ೕௗ೔ೕ!           (7) 

where the mean ߣ௜௝ changes depending on time ݐ௜௝ and hence, the variance ߣ௜௝ also changes w.r.t time. Again, we will use equation (4) 

to equate the mean ܦൣܧ௜௝൧ =  .௜௝ to the ODE model solutionsߣ

 

C. Lognormal Distribution 

A random variable ܺ is said to be log-normally distributed if its natural logarithm is normally distributed. Let ܺ be a random 

variable from the Lognormal distribution with parameters μ ∈ (−∞,∞)  and σଶ ∈ (0,∞) . The PDF is given by  

௑݂(ݔ) =
ଵ௫஢√ଶ஠ ݁ି( ౢ౤(ೣ)షಔ)మమಚమ  , ݔ  ∈ (0,∞)        (8) 

The mean ܧ(ܺ) = ݁ஜାభమ஢మ and variance ܸܽݎ(ܺ) = ݁஢మାଶஜ൫݁஢మାଶஜ − 1൯. Assume that the ݆௧௛ time series data is given by 

observations ܦ௝ = {݀ଵ௝ ,…݀௡ೕೕ} with the corresponding times ௝ܶ = ଵ௝ݐ} ଶ௝ݐ, ௡ೕೕ} and the probability of observing ݀௜௝ݐ…,  is given by  

݂൫݀௜௝൯ =
ଵௗ೔ೕ஢ೕ√ଶ஠ ݁ି൬ౢ౤൬೏೔

ೕ൰షಔ೔ೕ൰మమಚೕమ  , ݀௜௝ ∈ (0,∞)         (9) 

 

where the mean ݁ஜ೔ೕାభమ஢ೕమ changes depending on time ݐ௜௝ and the variance ݁஢ೕమାଶஜ೔ೕ ቀ݁஢ೕమାଶஜ೔ೕ − 1ቁ also changes w.r.t. time. Again, we 

use Equation (4) to equate the mean ܦൣܧ௜௝൧ = μ௜௝ to the ODE model solutions. 

Likelihood Functions: We will consider the datasets to be independent from each other. With ݉ independent time series datasets, 

we will have m likelihood functions associated with them and the combined likelihood function is given by  ܮ൫θሬ⃗ ൯ = ଵ൫θሬ⃗ܮܥ ൯ܮଶ൫θሬ⃗ ൯…ܮ௠൫θሬ⃗ ൯        (10) 

where θሬ⃗  is the vector of parameters to estimate and C is any positive constant not dependent on θሬ⃗ , whose purpose is to simplify the 

likelihood function (clearing off the denominator for simplicity etc.). 

 

D. Gaussian Model for ݉ data sets and the Likelihood Function 

Assume that for ݆ = 1,2,…݉, the ݆௧௛ time series data is given by ܦ௝ = {݀ଵ௝ ,݀ଶ௝ ,…݀௡ೕ௝ } with corresponding times ௝ܶ = ଵ௝ݐ} ௡ೕ௝ݐ…, } and 

the probability density of observing ݀௜௝  is given by Equation (3). The probability density of the observed counts ܦ =  {௠ܦ…,ଶܦ,ଵܦ}

given parameters θሬ⃗  is given by  ܲ(ܦ|θ) = ෑෑටτ௝
2π௡ೕ

௜ୀଵ
௠
௝ୀଵ ݁ିதೕቀௗ೔ೕିஜ೔ೕቁమଶ  

 

= ቀ ଵଶ஠ቁ∑ ೙ೕమ೘ೕసభ
(τଵ)

೙భమ …(τ௠)
೙೘మ ݁ିభమ∑ தೕ ∑ ൬೏೔ೕషಔ೔ೕ൰మ೙ೕ೔సభ೘ೕసభ         (11) 
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where Equation (4) is used to equate the mean ߤ௜௝ to the ODE model solutions and ⃗ߠ = ൦  ଵ⋮߬௠൪. The Gaussian model is very beneficialߥ߬⃗

for fitting since even very poor initial guesses of the vector of parameters ⃗ߠ would still produce nonzero probability density. The 

combined likelihood function is given by  ܮ൫θሬ⃗ ൯ = ܥ ൬ 1

2π൰∑ ௡ೕଶ೘ೕసభ
(τଵ)

௡భଶ …(τ௠)
௡೘ଶ ݁ିଵଶ∑ தೕ∑ ൬೏೔ೕషಔ೔ೕ൰మ೙ೕ೔సభ೘ೕసభ  

= (τଵ)
೙భమ …(τ௠)

೙೘మ ݁ିభమ∑ தೕ ∑ ൬೏೔ೕషಔ೔ೕ൰మ೙ೕ೔సభ೘ೕసభ         (12) 

where ܥ = ቀ ଵଶ஠ቁି∑ ೙ೕమ೘ೕసభ
 simplifies the likelihood function. The value of θሬ⃗  that maximizes ܲ൫ܦหθሬ⃗ ൯ also maximizes ܮ൫θሬ⃗ ൯.  

 

E. Poisson Model for ݉ Data sets and the Likelihood Function 

Assume that for ݆ = 1,2,…݉, the ݆௧௛ time series data is given by ܦ௝ = {݀ଵ௝ ,݀ଶ௝ ,…݀௡ೕೕ} with corresponding times ௝ܶ =  and {௡ೕೕݐ…,ଵ௝ݐ}

the probability density of observing ݀௜௝  is given by Equation (6).The probability density of the observed counts ܦ =  {௠ܦ…,ଶܦ,ଵܦ}

given parameters θሬ⃗  is given by 

ܲ൫ܦหθሬ⃗ ൯ = ෑෑ݁ି஛೔ೕ൫λ௜௝൯ௗ೔ೕ݀௜௝ !
௡ೕ
௜ୀଵ

௠
௝ୀଵ  

=
ଵௗభభ!…ௗ೙భభ !

…
ଵௗభ೘!…ௗ೙೘೘!

݁ି∑ ∑ ஛೔ೕ೔సభೕ೙೘ೕసభ ∏ ቀ஛భೕቁ೏భೕ೘ೕసభ
…൬λ௡ೕೕ൰ௗ೙ೕೕ        (13) 

where Equation (4) is used to equate mean λ௜௝  to the ODE model solutions and θሬ⃗  = νሬ⃗ . The combined likelihood function ܮ൫θሬ⃗ ൯ is 

given by 

൫θሬ⃗ܮ  ൯ = ܥ 1݀ଵଵ! …݀௡భଵ !
…

1݀ଵ௠! …݀௡೘೘!
݁ି∑ ∑ ஛೔ೕ೔సభೕ೙೘ೕసభ ∏ ቀ஛భೕቁ೏భೕ೘ೕసభ

…൬λ௡ೕೕ൰ௗ೙ೕೕ   
= ݁ି∑ ∑ ஛೔ೕ೙ೕ೔సభ೘ೕసభ ∏ ቀ஛భೕቁ೏భೕ೘ೕసభ …ቀλ௡ೕ௝ ቁௗ೙ೕೕ         (14) 

where ܥ = ݀ଵଵ! …݀௡భଵ ! …݀ଵ௠! …݀௡೘௠ ! simplifies the Likelihood function. 

 

F. Lognormal model for $m$ data sets and the Likelihood Function 

Assume that for ݆ = 1,2,…݉, the ݆௧௛ time series data is given by ܦ௝ = {݀ଵ௝ ,݀ଶ௝ ,…݀௡ೕ௝ } with corresponding times ௝ܶ = ଵ௝ݐ} ௡ೕ௝ݐ…, } and 

the probability density of observing ݀௜௝  is given by Equation (8).The probability density of the observed counts ܦ =  {௠ܦ…,ଶܦ,ଵܦ}

given parameters θሬ⃗  is given by 

ܲ൫ܦหθሬ⃗ ൯ = ෑෑ 1݀௜௝σ௝√2π݁ିቀ୪୬ቀௗ೔
ೕቁିஜ೔ೕቁమଶ஢ೕమ௡ೕ

௜ୀଵ
௠
௝ୀଵ  

= ቀ ଵଶ஠ቁ∑ ೙ೕమ೘ೕసభ ቆ ଵௗ೔ೕ஢ೕቇ௡భ …൬ ଵௗ೙೘೘ ஢೘൰௡೘ ݁ିభమ∑ ∑ ൬ౢ౤൬೏೔ೕ൰షಔ೔ೕ൰మಚೕమ೙ೕ೔సభ೘ೕసభ
         (15) 

where Equation (4) is used to equate mean ߤ௜௝ to the ODE model solutions and ⃗ߠ = ൦  ௠൪ . Lognormal distribution is useful in fittingߪ⋮ଵߪߥ⃗

data when it is spread over a large range. 
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 The combined likelihood function is given by  

൫θሬ⃗ܮ ൯ = ܥ ൬ 1

2π൰∑ ௡ೕଶ೘ೕసభ ൭ 1݀௜௝σ௝൱௡భ …ቆ 1݀௡೘௠ σ௠ቇ௡೘ ݁ିଵଶ∑ ∑ ቀ୪୬ቀௗ೔ೕቁିஜ೔ೕቁమ஢ೕమ೙ೕ೔సభ೘ೕసభ
 

= ቆ ଵௗ೔ೕ஢ೕቇ௡భ …൬ ଵௗ೙೘೘ ஢೘൰௡೘ ݁ିభమ∑ ∑ ൬ౢ౤൬೏೔ೕ൰షಔ೔ೕ൰మಚೕమ೙ೕ೔సభ೘ೕసభ
        (16) 

where ܥ = ቀ ଵଶ஠ቁି∑ ೙ೕమ೘ೕసభ
 which is used to simplify the likelihood function. 

        

IV. ESTIMATING THE BASIC REPRODUCTIVE RATE (࢚ࡾ) IN REAL TIME (BAYESIAN APPROACH) 

In case of any infectious disease, a useful parameter to consider is ܴ௧, which is the Effective Reproductive Number or the number of 

people who get infected per infectious person at time ݐ. The most well-known version of this quantity is ܴ଴, which is the basic 

Reproduction. As pandemic progresses, increasing or decreasing restrictions reduce or increase ܴ௧ respectively. If ܴ௧ ≫ 1, then the 

pandemic will infect a large proportion of the population, if ܴ௧ < 1, then the pandemic will slow down quickly, before infecting 

many people. The lower the value of ܴ௧, the more manageable is the pandemic. 

Every day we learn how many more people have been infected by Covid 19. ܴ௧ today is related to ܴ௧ିଵ yesterday or ܴ௧ି௠ for any 

previous instance of time. By Bayes' Theorem, ܲ(ܴ௧|ܭ) =
௉(௄|ோ೟)௉(ோ೟)௉(௄)

        (17) 

This translates to the fact that having seen ܭ new cases, we believe the distribution of ܴ௧ is equal to the likelihood of seeing ܭ new 

cases given ܴ௧ times the prior beliefs of the value of ܲ(ܴ௧)  without data divided by the probability of seeing ܭ cases in general. So, 

for a single day, ܲ(ܴଵ|ܭଵ) ∝ (ଵܴ)ܲ(ଵ|ܴଵܭ)ܲ         (18) 

 

The likelihood function is a function that estimates the probability of ܭ new cases given a value of ܴ௧. Since we are trying to model 

the number of new arrivals over time, we choose the Poisson Distribution. Given an average λ number of cases per day, ܲ(ܭ|λ) =
௘షಓ஛಼௄!

        (19) 

The visualizations of the likelihood functions with some dummy data are given in Fig. 1 and Fig. 2 . 

 
Fig. 1 The likelihood function for a series of values of ܭ for varying ߣ 

 

 
Fig. 2 Likeliness of each ߣ for ܭ = 20 
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If we use the posterior probability of the previous period ܲ(ܴ௧ିଵ|ܭ௧ିଵ)  as the prior, ܲ(ܴ௧)  for the current period is given by ܲ(ܴ௧|ܭ௧) ∝ ܲ(ܴ௧ିଵ|ܭ௧ିଵ)ܲ(ܭ௧|ܴ௧)         (20) 

Iterating across all periods back till ݐ = 0, we get ܲ(ܴ௧|ܭ௧) ∝ ܲ(ܴ଴) ∏ ௧்ୀ଴(௧|ܴ௧ܭ)ܲ         (21) 

where ܲ(ܭ|ܴ)  is the likelihood function. With a uniform prior ܲ(ܴ଴) , for simplicity, this reduces to ܲ(ܴ௧|ܭ௧) ∝ ∏ ௧்ୀ଴(௧|ܴ௧ܭ)ܲ         (22) 

 
Fig. 3 The Likelihood of ܴ௧ given ܭ 

 

As we can see from the figure, for each day, we have independent guesses for ܴ௧. Our goal is to combine the information we have 

about previous days with the current day. To perform the Bayesian update, we multiply the likelihood by the prior, which is just the 

previous day's likelihood(ignoring our Gaussian update for simplicity).  

 
Fig. 4 For Day 1, our posterior matches Day 1's likelihood from above, as we have no prior information on this day. But when we 

update the prior using Day 2's information, the curve for Day 2 shifts left but not as much as above. 

 

This is because Bayesian update uses both days' information and effectively averages out the two.  

 
Fig. 5 As we are estimating the parameter ܴ௧, it is important that we see error surrounding this estimation. The HDI(Highest Density 

Interval), indicates which points of the distribution are most credible and which cover most of the distribution. 
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The HDI summarises the distribution by specifying an interval that spans most of the distribution such that any point inside the 

interval has a higher credibility than any point outside the interval. By performing simulations in a brute force way, we obtain the 

most likely values of ܴ௧ surrounded by the HDI. Now, we will apply all this to the US COVID-19 Data. 

 
Fig. 6 New York cases per day: Actual vs Smoothed 

 

The approach till now simply uses yesterday's posterior as today's prior. While this approach is very intuitive, it doesn't allow for the 

fact that the value of ܴ௧ has likely changed from that of yesterday. To allow for that change, we apply Gaussian Noise with some 

standard deviation σ. We are using maximum likelihood for our process of choosing the σ: We choose σ such that ܲ(ܭ|σ)  is 

maximised. Since σ is a fixed value, our approach would be to maximise ܭ over all values of σ. Since, ܲ(ܭ) = ଴ܭ)ܲ ∩ ଵܭ (௧ܭ)ܲ ௧), we need to findܭ∩…∩  and this is given by the denominator from Bayes' Rule ܲ(ܴ௧|ܭ௧) =
௉(௄೟|ோ೟)௉(ோ೟)௉(௄೟)         (23) 

and also, ܲ(ܭ௧|ܴ௧)ܲ(ܴ௧) = ௧ܭ)ܲ ∩ ܴ௧) , the joint distribution of ܭ௧ and ܴ௧. We now marginalise ܭ௧ over ܴ௧ to get  ܲ(ܭ௧) = ∑ ோ೟(௧ܴ)ܲ(௧|ܴ௧ܭ)ܲ         (24) 

Since we are looking for σ that maximizes ܲ(ܭ) , it is sufficient to maximize ∏ ܲ൫ܭ௧,௜൯௧,௜ , where ݐ is time and ݅ is each state. The 

error can be minimised by taking the log of all the values and adding them, instead of just multiplying them, as the values are small, 

Hence, maximizing this log likelihood will automatically maximise the likelihood, where, ܲ(ܭ௧|ܴ௧) =
஛ೖ೟௘షಓ௞೟!  and ܲ(ܴ௧) = ܲ(ܴ௧ିଵ|ܭ௧ିଵ) + ϵ,ϵ ∼ ܰ(0,σଶ)         (25) 

 

and ܲ(ܭ௧) = ∑ (௧|ܴ௧ܭ)ܲ {ܲ(ܴ௧ିଵ|ܭ௧ିଵ)ோ೟ + ϵ}  and we will be maximizing ∏ ܲ൫ܭ௧,௜൯௧,௜         (26) 

 

To implement this procedure, we use the following steps: 

 Calculate the value of λ, the expected arrival rate for each day. 

 Calculate each day's likelihood distribution over all ܴ௧ 
 Calculate the process matrix for the σ mentioned above 

 We choose our initial prior as Gamma with mean 7 based on information supplied by the CDC. 

 Repeat from Day 1 to the end, calculate the prior by applying Gaussian Noise to yesterday's prior, apply Bayes' rule and 

complete by dividing with the probability of the data.   
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Fig. 7 Every posterior distribution corresponding to every single day corresponding to the state of New York is plotted on the figure. 

The posteriors start with low confidence and progressively becomes narrower(more confident) near the true value of ܴ௧. 

 
Fig. 8 Estimating the effective Reproductive Rate $R_t$ in real time (Bayesian Approach) 

 

 
Fig. 9 Real time predicted values of ܴ௧, with the Highest Density Interval (HDI) for every state in the US. 
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V. SIR MODEL 

The origin of compartmental models, such as the SIR model, originated with the works of Kermack and McKendrik in 1927. The 

SIR Model is one of the simplest compartmental models and consists of 3 compartments: 

 S: The number of Susceptible Individuals. When a susceptible and an infectious individual come into infectious} contact, the 

susceptible individual contracts the disease and transitions into the infectious compartment 

 I: The number of Infected Individuals. The individuals are infected and are capable of spreading the infection to a susceptible 

group 

 R: The number of deceased or recovered individuals. These individuals have either been infected and completely recovered and 

entered the recovered compartment, or have died 

The dynamics of an epidemic are often much faster than the dynamics of birth and death, therefore, birth and death are omitted in 

simple compartmental models, like the SIR Model. The SIR system without the vital dynamics can be expressed by the following 

set of Ordinary Differential Equations:  

dS

dt
= −βܰܵܫ 

dI

dt
=
βܰܵܫ − γܫ 

dR

dt
= γܫ 

Thus, 
dS

dt
+

dI

dt
+

dR

dt
= 0 ⇒  ܵ (ݐ) + (ݐ)ܫ + (ݐ)ܴ =   .expressing mathematically the constancy of the population ܥ = ܰ

 

Fig. 10 A realization of the SIR Model, produced by Runge-Kutta numerical solution, with parameters ߣ =  0.2, 
ଵఓ = 10 days, ܰ =  1000 and (0)ܫ = 1 

 

Moreover, the dynamics of the infectious class depends on the basic reproduction number, defined earlier as ܴ଴ =
ஒஓ. If the 

reproduction number is too high, the probability of the pandemic is high too. If the reproduction number multiplied by the 

percentage of susceptible people is 1, it shows an equilibrium state and thus the number of infectious people is constant. 

Additionally, the recovery period is defined by ݐଵ =
ଵஓ and this describes the average days to recover from infection. The 

transmission period in the sense of the average days to transmit the infection to an un-infected person is defined to be ݐଶ =
ଵஒ. 

However, in a population with vital dynamics, new births can provide more susceptible individuals to a population, which may 

sustain the epidemic or allow new introductions to spread in the population. Taking the above vital dynamics into consideration, the 

SIR model can be re-formulated as 
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dS

dt
= μܰ − βܰܵܫ − νܵ 

dI

dt
=
βܰܵܫ − γܫ − νܫ 

dR

dt
= γܫ − νܴ 

where μ denotes the birth rate and ν denotes the death rate. To maintain a constant population, we assume μ =  ν is the natural 

mortality rate. We assume that disease spreads from an infected person ܫ to a susceptible person ܵ at rate β and that an infected 

person ܫ becomes a recovered person ܴ at rate γ, i.e.  ܵ + →ఉ ܫ ܫ +  ܴ→ఊ ܫ ܫ

VI. BAYESIAN INVERSION APPROACH FOR MODEL PARAMETER ESTIMATION 

We propose Bayesian inversion methods, in which probabilities are used as a general concept to represent the uncertainty in the 

model parameters in order to solve the backward/inverse problem of COVID-19, i.e., the problem of accurate estimation of the 

epidemiological model parameters. Bayesian inference in the context of the statistical inversion theory is based on Bayes’ Theorem 

and quantifies the uncertainty involved in the model parameters by defining a probability distribution over the possible values of the 

parameters and uses sample data to update this distribution. Bayesian analysis, in contrast to traditional inverse methods, is a robust 

inversion technique for determining parameters, yields the (a posteriori) probability distribution, and has the advantage of updating 

the prior knowledge about the unknown quantity using the measurement/observation data, giving confidence intervals for the 

unknowns instead of providing a single estimate. 

As the observations or measurements are subject to noise, and the observational noise i.e., error ϵ due to modelling and 

measurement is unbiased and ݅. ݅.݀, therefore it can be represented by a random variable as ܻ = ݂(ܳ) +  ϵ        (27) 

where ϵ is a zero-mean random variable and ܻ is a given random variable representing observed data for which we have a model ݂(ܳ)  dependent on a random variable Q with realizations ݍ = ܳ(ω)  representing the parameters to be estimated. We now assume a 

probability space (ω,ℱ,ܲ) , where ω is the sample space, ℱ is the σ − algebra of events and ܲ is a probability measure. 

Furthermore, we assume all random variables to be absolutely continuous. Now, Bayes' theorem in terms of probability densities 

can be written as π(ݕ|ݍ) =
஠బ(௤)஠(௬|௤)஠(௬)

        (28) 

where,  π(ݕ) = ∫ π଴(ݍ)π(ݍ|ݕ)dq
Rp         (29) 

where the unknown parameters ൫ݍଵ,ݍଶ,…ݍ௣൯ ∈ Rp is a realization of the random variable ܳ and the observed data ݕ is the 

realization of the random variable ܻ.Also, π଴(ݍ)  is the p.d.f of the prior, π(ݕ|ݍ)  is the ݌.݀.݂ of the posterior and π(ݍ|ݕ)  is the 

likelihood. π(ݕ|ݍ)  gives the posterior density and requires evaluation of the above integral. 

 

VII. MARKOV CHAIN MONTE-CARLO METHODS 

The Markov-Chain Monte-Carlo methods are a class of Monte-Carlo methods with the general idea of constructing Markov-Chains 

whose stationary distribution is the posterior density. The Metropolis-Hasting Algorithm is an MCMC algorithm to draw samples 

from a desired distribution by building a Markov-Chain of accepted values (out of proposed values) for the unknown parameter as a 

posteriori distribution. In this algorithm, the first state of the chain ݍ଴ is given and the new state, ݍ௞ , ݇ = 1,2,…ܰ of the chain is 

constructed based on the previous state of the chain ݍ௞ିଵ. A new value ݍ∗ is proposed using the proposal density function ܬ(ݍ|∗ݍ௞ିଵ) = ܰ൫ݍ௞ିଵ,σ௣ଶ൯ where σ௣ is the proposal covariance. Admissibility of this proposed value is tested by means of 

calculating the acceptance ratio α(ݍ|∗ݍ௞ିଵ) , defined by α(ݍ|∗ݍ௞ିଵ) = ݉݅݊ ቀ1,
஠(௤∗|௬)஠(௤ೖషభ|௬)

⋅ ௃(௤ೖషభ|௤∗)௃(௤∗|௤ೖషభ)
ቁ        (30) 

where π(ݕ|ݍ)  is the posterior distribution and ܬ is the proposal distribution. Applying Bayesian Inversion Approach for model 

parameter selection, we get α as α(ݍ|∗ݍ௞ିଵ) = ݉݅݊ ቀ1,
஠(௬|௤∗)஠బ(௤∗)஠(௬|௤ೖషభ)஠బ(௤ೖషభ)

⋅ ௃(௤ೖషభ|௤∗)௃(௤∗|௤ೖషభ)
ቁ        (31) 
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where ܬ(ݍ௞ିଵ|ݍ∗) = (௞ିଵݍ|∗ݍ)ܬ  for symmetric proposal functions and π଴(ݍ)  is a given prior distribution. Furthermore, π(ݍ|ݕ)  is 

the likelihood distribution, defined by π(ݍ|ݕ) = (σ௅ଶ,ݕ)ܰ =
ଵ൫ଶ஠஢ಽమ൯೙మ ݁ିௌ೜/ ଶ஢ಽమ         (32) 

where σ௅ is the likelihood covariance, ܵ௤ = ∑ ൫ݕ௜ − ௜݂(ݍ)൯ଶ௡௜ୀଵ  is the sum of squares error and ݂(ݍ)  denotes the parameter 

dependent model response. If the proposed value is admissible, it is accepted as ݍ௞, otherwise the old value is kept. 

 

VIII. DELAYED-REJECTION ADAPTIVE-METROPOLIS ALGORITHM (DRAM) 

Although searching for a good proposal value can be done manually through trial and error, the problem becomes intractable in 

higher dimensions of the parameter space. Thus, adaptive algorithms that find optimal proposal scales automatically are 

advantageous. The Delayed-Rejection-Adaptive-Metropolis(DRAM) is an efficient adaptive MCMC algorithm. It is based on the 

idea of two powerful ideas to modify the MCMC method - Adaptive Metropolis (AM) and Delayed-Rejection(DR), which are used 

as global and local adaptive algorithms respectively. AM finds an optimal proposal scale and updates the proposal covariance 

matrix, while DR updates the proposal value when ݍ∗ is rejected. The basic idea of the DR algorithm is that, if the proposal ݍ∗ is 
rejected, delayed rejection provides an alternative candidate ݍ∗∗ as a second stage move rather that just retaining the previous value ݍ௞ିଵ. This step can be done for one or many stages. Furthermore, the acceptance probability of the new candidates is also 

calculated. Therefore, in the DR process, the previous state of the chain is updated using the optimal parameter scale or proposal 

covariance matrix that has been calculated via the AM algorithm. The AM algorithm is a global adaptive strategy, where a recursive 

relation is used to update the proposal covariance matrix. In this algorithm, we take the Gaussian Proposal centred at the current 

state of the chain ݍ௞ and update the chain covariance matrix at the ݇௧௛ step using ௞ܸ = (௞ିଵݍ,…,ଵݍ,଴ݍ)௣Covݏ + ϵܫ௣        (33) 

where ݏ௣ is a design parameter and depends only on the dimension ݌ of the parameter space. From historical references and text, 

this parameter ݏ௣ = 2.38ଶ/  as the common choice for Gaussian targets and proposals, as it optimizes the mixing properties of the ݌

Metropolis-Hastings search in the case of Gaussians. ܫ௣ the p-dimensional identity matrix and ϵ ≥ 0 is a very small constant to 

ensure that ௞ܸ  is not singular. In most cases, ϵ can be set to zero. 

he adaptive metropolis algorithm employs the recursive relation  ௞ܸାଵ =
௞ିଵ௞ ௞ܸ +

௦೛௞ ቀ݇ݍ௞ିଵ௤ೖషభ೅ − (݇ + ௞்ݍ௞ݍ(1 +  ௞்ቁ        (34)ݍ௞ݍ

 

to update the proposal covariance matrix, where the sample mean ݍ௞ is calculated recursively by ݍ௞ = ௞ݍ +
௞௞ାଵ ൫ݍ௞ିଵ −  ௞൯        (35)ݍ

 

A second stage candidate ݍ∗∗ is chosen using the proposal function ܬଶ(ݍ|∗∗ݍ௞ିଵ,6ݍ ∗) = ௞ିଵ,γଶଶݍ)ܰ ௞ܸ)         (36) 

 

where ௞ܸ  is the covariance matrix produced by the adaptive algorithm (AM) as the covariance of the first stage and γଶ < 1 is a 

constant. The probability of accepting the second stage candidate, having started at ݍ௞ିଵ and rejected ݍ∗ is αଶ(ݍ|∗∗ݍ௞ିଵ,ݍ∗) = ݉݅݊ ൬1,
஠(௤∗∗|௬)௃(௤∗|௤∗∗)൫ଵି஑(௤∗|௤∗∗)൯஠(௤ೖషభ|௬)௃(௤∗|௤ೖషభ)൫ଵି஑(௤∗|௤ೖషభ)൯൰        (37) 

 

where α is the acceptance probability in the non-adaptive approach. The acceptance probability is computed so that reversibility of 

the posterior Markov Chain is preserved. 

 

IX. APPLICATION TO THE REAL-WORLD DATA (US) 

The United States COVID-19 dataset has been used to perform all simulations and analysis. The dataset is available at 

https://covidtracking.com/api/v1/states/daily.csv . MCMC simulations were performed using this dataset and the densities of the SIR 

model parameters corresponding to three states of the US are demonstrated below: 
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Fig. 11 The densities and the respective trace plots for the parameters of the SIR model corresponding to the state of Georgia 

 

 
Fig. 12 The densities and the respective trace plots for the parameters of the SIR model corresponding to the state of Arkansas 
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Fig. 13The densities and the respective trace plots for the parameters of the SIR model corresponding to the state of California 

 

X. TRANSMISSION RATE ઺ 

 
Fig. 14 MCMC Estimates of the COVID-19 Transmission Rate ߚ of some of the states in the US: Highest is Michigan with ߚ ≈ 0.64 
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XI. RECOVERY RATE ઻ 

 

 
Fig. 15 MCMC Estimates of the COVID-19 Removal Rate ߛ of some of the states in the US: Highest is Hawaii with ߛ ≈ 0.21  

 

XII. CONCLUDING REMARKS 

In this paper, I have tried to demonstrate how the deterministic modelling of the COVID-19 is performed based on real time data. I 

have used Python 3.8 with the package PyMC3 to carry out the simulations performed during the course of the project. I chose the 

MCMC algorithm to implement the statistical estimation and prediction because of the consideration on the prediction uncertainly. 

The spread dynamics of the COVID-19 virus is significantly complex and potential inaccuracy and incompleteness have also crept 

in in the process of collecting and storing the data. The data has been collected from the open-source project 

https://covidtracking.com/ . The aim of this paper was to demonstrate how the parameters of the SIR Model are distributed with 

respect to data obtained from a region. Similar densities and values are used when statisticians are modelling the spread of an 

infectious disease using the SIR Model. This paper also includes a brief Bayesian Analysis on the Basic Reproductive Rate ܴ௧ for 

the COVID-19 virus.  

However, a thing to note is that high dimension of the parameter space might affect the convergence of Markov Chain to the 

posterior density. But we can always construct more efficient algorithms. Although this type of methods somehow takes us away 

from our original purpose which was to improve upon an existing algorithm, they still make sense within this survey in that they 

allow for almost automated implementations. 

Based on the availability of computational power, several other Monte Carlo Techniques like the Hamiltonian Monte Carlo (HMC), 

scalable MCMC methods, where algorithms manage to handle large scale targets by breaking the problem into manageable or 

scalable pieces(divide and conquer & sub-sampling), parallelization schemes etc. can be applied to obtain better results. 
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