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Abstract: In this paper, we study the relationship between circular cliques and binary cyclic codes. We introduced the concept of 

binary cyclic codes in circular cliques. Every circular clique Kk/d clearly admits a (k,d)- vertices. We observed that a circular 

clique Kk/d with gcd(k, d) = 1 if d ≤ |i− j| ≤ k−d are Prime circular cliques.  

 Keywords: Clique number, Circular clique, adjacency matrix, cyclic codes, generator polynomial, generator matrix. 

 

I.      INTRODUCTION 

Circular Cliques form a natural superclass of perfect graphs, introduced by Zhu[4]  almost 20 years ago. Various papers have been 

written on the theory of circular cliques. Also graphs with circular adjacency matrices is discussed  . 

Graph coloring theory has a central position in discrete mathematics - for its own interest as well as for the large variety of 

applications, dating back to the famous four-color problem stated by Guthrie in 1852 Zhu[4]  . 

Circular cliques  have important applications to the theory of designs and error correcting codes. 

As generalization of circular cliques, Zhu [4] introduced the class of circular cliques based on a more general coloring concept 

introduced by Vince [10]. This variation of colorings is based on the observation that odd holes C2k+satisfy ω(C2k+1) = 2 and χ(C2k+1) 

= 3, whereas their chromatic number should be intuitively about 2, as only one vertex needs to receive the third color. Vince aimed 

at refining the usual coloring concept taking this intuition into account. He defined the star chromatic number χ ∗ (G) of a graph in 

such a way that indeed χ ∗ (C2k+) = 2+
ଵ୩ is satisfied for each odd hole, whereas χ ∗ (Kk) = k still holds for every complete graph on k 

vertices.  

The combinatorial concept being dual to colorings corresponds to cliques in a graph[8]. In a set of k pairwise adjacent vertices, 

called clique Kk, all k vertices have to be colored differently. Thus the size of a largest clique in G, the clique number ω(G), is a 

trivial lower bound on χ(G). This bound can be arbitrarily bad and is in general hard to evaluate as well.   From the definition, we 

immediately obtain χc(G) ≤ χ(G) because a usual k-coloring of G is (k,1)-circular coloring.   

Numerous works have been devoted to the circular-chromatic number and we refer to the two surveys by X. Zhu for a detailed 

overview [2]. 

In view of the max-min relation between clique and chromatic number and to obtain a lower bound on χc(G), Bondy and Hell [1] 
generalized cliques as follows. Let Kk/d with k ≥ 2d denote the graph with the k vertices 0, . . . , k−1 and edges i j if and only if d ≤ 
|i− j| ≤ k−d. Such graphs Kk/d are called circular cliques (note that they are also known as antiwebs in the literature, see [1]). A 

circular clique Kk/d with gcd(k, d) = 1 is said to be prime. Prime circular cliques include all cliques Kk = Kk/1 as well as all odd 

antiholes C2k+1= K2k+1/2 and all odd holes C2k+1= K2k+1/k, see Figure 1.1. 

          

II.      PRELIMINARIES 

Definition 2.1: A graph G is a pair G = (V,E) consisting of a finite set V and a set E of 2-element subsets of V. The elements of V 

are called vertices and the elements of E are called edges. Two vertices u and v of G are said to  E.be adjacent if there is an edge e 

= (u,v)  Two edges are said to be adjacent if they have a common vertex. 

Definition 2.2: An undirected graphs do not show the direction which must be taken between nodes. Instead, travel between nodes is 

allowed along an edge in either direction. There are no loops or multiple edges in undirected graphs. 

Definition 2.3: Circular clique is the  graph with vertex set and edges between elements at distance. It is denoted by Kk/d,  

Definition 2.4: Adjacency Matrix: The adjacency matrix of a directed graph X is the matrix (X) with rows and columns indexed by 

vertices of X. Each entry ij is equal to the number of times the arc (i, j) appears in X.  

The adjacency matrix of a circulant graph has a pleasing nature : each row is the cyclic shift of the preceding row. If (a1, a2, 

………… an) is the first row, then (an, a1, ………… an-1) is the second row (an-1, an, ………… an-2) is the third row and finally (a2, a3 

, ………, a1) is the nth row. 
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Definition 2.5: If F represents the binary field, then Fn the set of all n-tuples of F is an n-dimensional vector space over F. A k-

dimensional subspace of Fn is called an [n,k] binary linear code C. A basis of C consists of k linearly independent binary n-tuples. 

The matrix G formed by the basis vectors is called a generator matrix of C.The elements of C are called code words and are linear 

combinations of the rows of the generator matrix G. Since a vector space can have many basis, a code C has many generator 

matrices. 

Definition 2.6: Code 4.1: A code is a set X such that for all x ∈ X, x is a codeword. 

A binary code is a code over the alphabet {0, 1}.  

Examples of codes: C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100} C3 = {00000, 01101, 10111, 11011} 

Cyclic Code Definition 2.7:  A binary code is cyclic if it is a linear [n, k] code and if for every codeword (c1, c2, . . . , cn) ∈ C we also 

have that (cn, c1, . . . , cn−1) is again a codeword in C. 

Definition 2.8 : An error correcting code (ECC) is an encoding scheme that transmits messages as binary numbers, in such a way 

that the message can be recovered even if some bits are erroneously flipped[7].   

                      

III.      MAIN SECTION 

Let Kk/d with k ≥ 2d denote the graph with the k vertices 0, . . . , k−1 and edges i j if and only if d ≤ |i− j| ≤ k−d. Such graphs Kk/d are 

called circular cliques (note that they are also known as antiwebs in the literature, see [1]). A circular clique Kk/d with gcd(k, d) = 1 

is said to be prime. Prime circular. 

From[6]  If C is a binary cyclic code of length n, then C corresponds to a on A. Conversely if X=ω(G) ≤ ωc(G) coresponds clrcular 
cliques on G, then X corresponds to a cyclic code. 

Let C be a cyclic code of length n. If g(x) is its generator polynomial, then g(x)/xn –1.  

Let g(x) = g0 + g1x + g2x
2 + ……. + gn-kx

 n-k . To the kxn generator matrix G, adjoin the remaining n-k cyclic shifts to get the nxn 

matrix. Choose any row rj having its first element is 0. 

                                   A=൦݃0 ݃1 ݃ 2 ݃݊ − ݇ 0 0

0 ݃0 ݃ 1 ݃݊ − ݇ − 1 ݃݊ − ݇ 0

: ∷ : : :݃1 ݃2 ݃ 3 0 0 ݃0

൪ 
Let B be the nxn matrix formed with rj as the first row and remaining rows are the n-1 cyclic shifts of rj . Since each row of A is a 

row of B and vice versa, and that C consists of linear sums of rows of A, it can be generated by B. Now B is a cyclic n x n binary 

matrix with leading element 0, hence form the adjacency matrix of a circular cliques. 

Conversely, let there be a circular cliques X=(Kk/d). If A is the adjacency matrix of X, then A is a cyclic nxn matrix with leading 

element 0. Let C be the row space of A. The first row r1 corresponds to a polynomial k(x) of degree ≤ n-1. The remaining rows are 

xk(x), x2 k(x),………xn-1k(x). We can prove that C is a cyclic code. Let s(x)∈ C. Then s(x) is a linear combination of these 

polynomials 

 s(x) = a0k(x) +a1xk(x)+ a2 x
2 k(x) +………+ an-1 xn-1k(x).  

Then xs(x) = a0 xk(x) +a1 x
2k(x)+ ………+ an-1 k(x) (mod (xn -1)) = an-1k(x)+a0xk(x)+ ………+ an-2xn-1k(x)  

This means that the first cyclic shift of s(x) can be generated by the rows of A. Consequently the second cyclic shift and all the 

remaining cyclic shifts can be generated using the rows of A. Thus s(x) and all its cyclic shifts belong to C, hence C is a cyclic code.  

Here we find the generator polynomials of the cyclic codes, dimensions and error correcting codes in circular cliques. 

Example 3.1: Consider the circular cliques  X= Kk/d , gcd(k, d) = 1 

     X=( K7/1 ) , the adjacency matrix of X is 

⎣⎢⎢
⎢⎢⎢
⎡0 1 1 1 1 1 0

0 0 1 1 1 1 1

1 0 0 1 1 1 1

1 1 0 0 1 1 1

1 1 1 0 0 1 1

1 1 1 1 0 0 1

1 1 1 1 1 0 0⎦⎥⎥
⎥⎥⎥
⎤
 

 

 

Figure1.1, K7/1      
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The polynomial represented by X is k(x)=x+x2+x3+x4+x5+x6 

                                                                                                =x(1+x+x2+x3+x4+x5) 

                                                               =x(1+x3) (x3+x+1) 

We know that x7
 – 1 = (1 + x) (1 + x + x

3
 )( 1 + x

2
 + x

3
 ) 

Therefore gcd (k(x), x7 – 1) = x+1. Hence X corresponds to the cyclic code C =<x> . Since the degree of the generator polynomial 

k(x) is 3, dimension of the code is 6 and has no error correcting codes.  

Example 3.2:Consider the circular cliques X= Kk/d , gcd(k, d) =1 

X=(K7/2) , the adjacency matrix of X is 

 

            

⎣⎢⎢
⎢⎢⎢
⎡0 0 1 1 1 1 0

0 0 0 1 1 1 1

1 0 0 0 1 1 1

1 1 0 0 0 1 1

1 1 1 0 0 0 1

1 1 1 1 0 0 0

0 1 1 1 1 0 0⎦⎥⎥
⎥⎥⎥
⎤
        

Figure1.2, K7/2 

 

The polynomial represented by X is k(x)= x2+x3+x4+x5=x2(1+x)(1+x)2
 

Therefore gcd (k(x), x7 – 1) = x+1. Hence X corresponds to the cyclic code C =<x> . Since the degree of the generator polynomial 

k(x)  is 2, dimension of the code is 6 and has no error correcting codes.  

Example3.3:  Consider the circular cliques X= Kk/d , gcd(k, d) =1 

X=(K7/3) , the adjacency matrix of X is 

  

          

⎣⎢⎢
⎢⎢⎢
⎡0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1

1 0 0 0 0 0 1

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 1 1 0 0 0⎦⎥⎥
⎥⎥⎥
⎤
            

 

Figure1.3, K7/3 

                                                                                                                                                                         

The polynomial represented by X is k(x)= x3+x4=x3(x+1) 

Therefore gcd (k(x), x7 – 1) = x+1. Hence X corresponds to the cyclic code C =<x> . Since the degree of the generator polynomial 

k(x)  is 1, dimension of the code is 6 and has no error correcting codes.  

Example3.4:Consider the circular cliques X= Kk/d , gcd(k, d) =1  

X=(K11/1) , the adjacency matrix of X is 

  

⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡0 1 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1

1 1 1 1 0 1 1 1 1 1 1

1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 0⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤
                     

                                                                                                                 

Figure1.4, K11/1 
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The polynomial represented by X is k(x)=x+x2+x3+x4+x5+x6+x7+x8+x9+x10 

                                                                 =x(1+x+x2+x3+x4+x5+x6+x7+x8+x9) 

                                                                 =x8(x2+x)(x+1) 

Therefore gcd (k(x), x11 – 1) = x+1. Hence X corresponds to the cyclic code C =<x> . Since the degree of the generator polynomial 

k(x) is 1, dimension of the code is 10 and has no error correcting codes. 

 

IV.      CONCLUSION 

In this paper, we introduced the concept of binary cyclic codes in circular cliques. The circular cliques and a binary cyclic codes are 

presented and proved.  Every circular clique Kk/d clearly admits a (k,d)- vertices. We observed that a circular clique Kk/d with gcd(k, 

d) = 1 are Prime circular cliques. The degree of the generating polynomials are decreased. 

1) 1.K7/1,  K7/2 ,  K7/3……( k=0…..n-1 vertices)  gcd (k(x), x7 – 1) = x+1. Hence X corresponds to the  cyclic code C =<x+1> , the degree 

of the generator polynomial k(x) are 3,2 and 1, dimension of the code is 6 and has no error correcting codes. 

2) K11/1,  K11/2 ,  K11/3……( k=0…..n-1 vertices)  gcd (k(x), x11 – 1) = x+1. Hence X corresponds to the cyclic code C =<x> , the degree 

of the generator polynomial k(x) is 1, dimension of the code is 10 and has no error correcting codes.  

       We now seek a condition under which the cyclic code corresponding to one circular cliques becomes a subset of another. 
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