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Abstract: In the past three decades biological and chemical pollutants have become a serious environmental issue posing major 
threat to the society, industries and public sectors. Toxic contaminants are produced in most household, agricultural and 
industrial activities. In the past few years different advanced electrochemical oxidation technologies and low-carbon 
technologies are being used widely for preventing environmental pollution and remediation of the micropollutants particularly 
in waterbodies. In these technologies powerful oxidizing agents like hydroxyl radicals are formed electrochemically which 
degrade organic micropollutants till their mineralization. Fish serves as an effective bioindicator of aquatic health due to their 
higher trophic position in aquatic food chain and high sensitivity to pollutants. As fishes are consumed by humans globally as a 
major source of protein, it is also used to indicate the impact of aquatic pollution on human health. In this review we discuss the 
impact of micropollutants on the fish physiology and the advanced wastewater management techniques used for rapid removal 
of these pollutants from aquatic ecosystem. Here we discuss both advantages and disadvantages of different commonly used 
wastewater management techniques which would be beneficial to determine which technology would best suit one’s specific 
requirements without causing much harm to the environment, a step towards green and sustainable future. 
Keywords: Micropollutants, Organic micropollutants, Fish, bioindicator, Wastewater management technologies, Constructed 
wetlands 
 

I.  INTRODUCTION 
In the 21st century, there is extensive use of industrial chemicals in furniture and gadget making industries in order to acquire an 
improved functionality and long life-span of these equipment used in day-to-day life. Also, to protect crops and for their higher 
yields pesticides and insecticides are used widely to meet the market requirements. Chemicals are essentials in drug industries and 
in personal care items for ascertaining proper human and animal healthcare and improved human lifestyle [1–4]. Thus, these 
chemicals can be released into the environment during manufacture, use, disposal, and sometime accidentally [5–7]. The 1998 
Aarhus Protocol (amended in 2009) on Persistent Organic Pollutants (POPs) had designated certain POPs [aldrin, chlordane, 
chlordecone, dieldrin, endrin, hexabromobiphenyl, mirex ,toxaphene, Dichlorodiphenyltrichloroethane (DDT), heptachlor, 
polychlorinated biphenyls(PCBs), hexachlorobenzene, dioxins, furans, polycyclic aromatic hydrocarbons (PAHs) 
,hexachlorobenzene (HCB), hexachlorobutadiene, octabromodiphenyl ether, pentachlorobenzene, pentabromodiphenyl ether, 
perfluorooctane sulfonates, polychlorinated naphthalenes and short-chain chlorinated paraffins]  to have  high bioaccumulation 
potential causing toxicological impacts to both human beings and animals. Hence the protocol suggested either banning the 
production and use of some of these chemicals or reduce their atmospheric emission[8,9]. So, it is of utmost importance to mitigate 
their use in order to reduce environmental pollution. Every year, numerous new chemicals are introduced into the commercial 
market, and monitoring each one of them becomes a challenging task ,especially those that do not have a CAS number and are 
unregistered under the regulation named Registration, Evaluation, Authorization and restriction of Chemicals (REACH) of 
European chemical agency,2007. Wastewater Treatment Plants (WWTP) are one of the most important sources of these pollutants 
via which these chemicals are released [10], followed by industrial releases[11] and runoffs from agricultural lands [12].  
These pollutants ultimately can lead to surface water contamination and different aquatic matrix accumulation [13]. Various 
chemical toxicants mix to form a cocktail of environmental contaminants that might pose an increasing threat to humans and 
animals compared to an individual chemical contaminant[14,15].  
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Micropollutants, like certain pharmaceutical compounds and products used to maintain personal hygiene, have been detected in 
surface water, groundwater, wastewater plants, and natural water. Still, many of these micropollutants are not included in the 
priority list of water policy as it requires reliable source of scientific evidence regarding their toxicological potentials. 
Pharmaceuticals , the second most largest group of organic micropollutants mostly fall outside these environmental laws and 
policies[16–18]. Over 1000 prescribed pharmaceuticals and over 300 drugs requiring no prescription are in wide use and USA and 
might be released into the atmosphere during their production or use [19]. Also, micropollutants are prioritized in countries like the 
UK and USA based on individual research. Apart from limitations in instrumentations, the problem lies in identifying and 
quantifying these large numbers of micropollutants from a wide range of sources. The techniques for identifying and analysing  
micropollutants in nature are quite expensive and most research emphasizes on the pre-selected particular analytes but not on all the 
micropollutants found in all natural matrices [17]. 
The ecotoxicological threat of organic micropollutants is relatively a recent challenge for the world. However, increasing emphasis 
is given globally to understanding their fate[20]. If released into the environment continuously without regulation, they can pose 
environmental threat even in low concentration. They are bioactive even in low amounts and can cause detrimental effects on the 
environment by impairing the ecosystem’s functionality and can also be severe to  living organisms [21,22]. 
The impact of anthropogenic activities requires proper monitoring tools to help in the detection and depiction of the physical, 
chemical, and biological deterioration of the aquatic ecosystem. For detecting the load of contaminants in water, biota like fish, 
insects, frogs, molluscs, and plants prove to be potential bioindicators[23]. Fishes are more sensitive to different toxicants than other 
organisms and can be used conveniently for a wide range of toxicological assays to determine the health of aquatic 
ecosystem[24,25]. Fishes are the most diverse class of vertebrates in the aquatic ecosystem that make them an appropriate model to 
study aquatic toxicology[26] .Fishes are placed at the endpoint of the aquatic food chain and hence they bioaccumulate pollutants 
like heavy metals and pesticides to a greater extent and pass them to their consumers, including human beings, causing severe 
chronic diseases in humans. Fishes serve as an appropriate indicator of the ecological status of rivers as they have particular habitat 
requirements and shift habitat during different life stages like larva, juvenile, or adult [27]. They indicate the trophic status of the 
aquatic ecosystem as they are both primary and secondary consumers of the aquatic food chain[28]. As fish meat has high protein 
and mineral content, cardioprotective compounds, and low-fat content, it is considered a nutritious food. Fish muscle acts as the 
deposition site of organic micropollutants(PCBs, dioxins, PAHs, etc.), trace metals, and pesticides that threaten global food 
safety[29]. Consuming heavy metal contaminated fishes can severely impact human health. For instance, from 1953 to 1960, 
thousands of Japanese died consuming mercury contaminated fishes. Hence in the last few decades, there has been a global concern 
regarding presence of contaminants in seafood and freshwater  and marine fishes [27]. 
The main challenge of the ecotoxicological assays is to provide a detailed scenario of additive, combined, and antagonistic impacts 
of mixtures of chemical contaminants from different sources of pollution on the biota [30].Ecotoxicological tests are usually used to 
assess the impact of pollutants at both individual level, and how that can translate into population level, and their ecological 
implications [31].Parameters like reproductive ability, rates of survival or mortality, and development are important to study the 
impacts of ecotoxicology on the entire population rather than on an individual level[32]. Mathematical models are often used to 
predict toxicological impact at a population level based on the test results obtained at an individual level. Using the test results of the 
bioassays, these models can be used to simulate the effects of environmental contaminants in populations. For a better 
understanding of the impacts of the toxicants on the fish embryo, biochemical biomarkers play an important role. With the help of 
biomarkers, it is possible to detect toxicity at an early developmental stage of organisms exposed to xenobiotics and hence are 
regarded as a sublethal indicator of environmental pollution[33]. 
 

II.  FISH AS BIOINDICATOR SPECIES OF AQUATIC POLLUTION 
Sub-lethal effects of pollutants vary at various stages of biological organisation like cell, tissue, organ, individual, population, and 
community. The biomarker approach is used to investigate specific biochemical, physiological, morphological, and cellular 
reactions to the exposure of pollutants in a particular ecosystem [34].A bioindicator species is an individual or group of organisms 
representing the condition of the entire ecosystem. There are certain requirements for being a bioindicator with respect to the 
physical and chemical parameters of the environmental variation. The impact of these environmental variations are prominently 
marked in the bioindicator species and hence they represent the condition of its residing ecosystem[35]. Bioindicators are also often 
defined as organisms prominently reacting to the human-caused effects in their environment. Fishes are regarded as  useful 
bioindicators of water quality as they exhibit differential sensitivity towards pollution[36]. The integrity of the aquatic ecosystem 
can be well indicated by fishes from microhabitat to catchment areas as they have complex requirements of habitats[27].  
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They are beneficial in describing the natural features of the aquatic ecosystem[37]. Fishes can be used as an efficient biomonitor for 
evaluating metal load in waterbodies[38].Owing to the average size of fishes and their organs, a wide array of analytical assays can 
be carried out on them.  
Haematological, histological, biochemical, morphometric, genetic, and pathological tests can be appropriately carried out in fishes 
and thus fish model can be beneficial  in medical research[39].Fishes have always been used as an aquatic matrix to determine 
health of aquatic health as they absorb the chemicals directly from their ambient medium via dietary intake [40]. There are different 
chemical toxicants that biomagnifies in the aquatic food chain, and fish being top consumer in the aquatic food chain, the 
distribution and bioaccumulation of those chemicals is most prominently seen in them[41–43]. As bioaccumulation of 
micropollutants is high in fishes, it poses a severe risk to ,the piscivorous birds, mammals, including human beings .Hence 
monitoring the fish species is important to assess the level of bioaccumulation of pollutants in waterbodies and their effect on the 
overall health status of the aquatic ecosystem[44].  
Also, fishes are specific bioindicators of various environmental sections in relation to their natural environment and position in the 
food web.  
They show variable rates of bioaccumulation and biotransformation of xenobiotics [45]. The community structure of fishes depends 
on the aquatic ecosystem under investigation, and it is hard to find the same fish species at every site of study interest. To address 
this problem, scientists often conduct transplant experiments[46]. 

 
III.  IMPACT OF ORGANIC MICRO-POLLUTANTS ON THE PHYSIOLOGY OF FISHES 

Organic micropollutants are lipophilic and pose an ecological threat, causing endocrine disruptions and congenital disabilities and 
also negatively impacting the reproductive system[47,48]. Physicochemical parameters of water, like dissolved oxygen and 
temperature, correlate with the bioavailability of organic contaminants in fish species [49].  
Organochlorine pesticides (OCPs) are classes of synthetic pesticides used widely in chemical and agricultural industries. PCBs are 
widely used in electric capacitors as insulating fluid, in transformers in industries, as lubricating liquid, in hydraulic machines, etc. 
[50,51]. Both OCPs and PCBs are lipophilic and persistent in the ambient medium, which biomagnify through food chain and 
ultimately cause genotoxicity, neurotoxicity and toxicity in reproductive system, and even carcinogenesis in the aquatic species even 
in low concentrations [52,53].  
Reports of ECHA (European Chemical Agency) (ECHA, 2017) highlighted the toxicological impacts of PAHs like carcinogenesis, 
mutagenesis, high bioaccumulation potential, reproductive toxicity, etc.. The report stated that this group of micropollutants pose a 
severe risk to both  environment and human health.   
Fluoranthene and pyrene are the PAHs that are abundant from pyrogenic sources. They are very persistent in nature as they are not 
degraded and remain unaffected under other removal procedures except sedimentation [55]. These micropollutants are  indicators of 
anthropogenic activities like the combustion of fossil fuels, industrial and urban effluents etc.[56]. Owing to their severe 
toxicological impacts on the environment OCPs and PCBs are restricted from being produced or used on large scale. But in different 
developing countries like Brazil, on an irregular basis, these chemicals are used and deposited[57]. USEPA - United States 
Environmental Protection Agency, 2017 reported OCPs and PCBs as priority contaminants with well-recognized toxicological 
impacts[58].  
Table 1 summarizes the impact of different micropollutants on the morphology and physiology of different fish species exposed to 
variable environmental conditions. 
 
A.  Endocrine Disruption in Fishes 
Emerging pollutants like pharmaceutical products, caffeine, and UV filters arise from domestic, oil refineries, agricultural and 
industrial effluents. PAH was detected in fish bile earlier, and an increase in biological oxidative stress and liver damage was found 
in the study due to PAH accumulation [59].  
Fishes, if exposed to PAHs, can have endocrine disruptions as these chemicals alter the steroid levels in fishes. The level of 
vitellogenin in fishes not only depends on the Endocrine Disrupting Chemicals (EDCs), which directly bind with the estrogen 
receptors but also on exposure to the chemical pollutants there is the alteration in hormonal levels in the fish body. Drugs can even 
lead to liver injury in fish[60]. EDCs can also increase and decrease the production of steroid hormones such as estradiol and 11-
keto testosterone disrupting the equilibrium in fish physiology[48,61].  
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Table 1: Morphological and physiological impact of different micro pollutants on fish species 
Pollutants Fish Collection site/Type of study Health impacts References 

PCB 126 Japanese medaka (Oryzias 
latipes)  

Lab based dose study i. Depressed humoral immunity 
ii. Decreased Antibody Forming Cells (AFC) 
iii.Induced immunotoxicity 

[53] 

OCP, PCB and 
polybrominated diphenyl 
ethers (PBDEs) 

Male tilapia (Oreochromis 
niloticus) 

4 reservoirs on Iguaçu River, 
Southern Brazil 

i.. Altered CYP1A causing endocrine disruption 
ii.Vitellogenin gene induction 
iii. Incresed No. of eosinophils in testis 

[59] 

PAHs, OCPs, PCBs, 
heavymetals, Al,F e and 
Mn 

Rhamdia quelen Iguaçu and Jordão rivers, 
Southern Brazil 

i. Antioxidant system activation (reduced non-protein 
thiol range) 
ii.Long lab exposure increased embryo mortality rate 
iii. Increased SOD activity due to oxidative stress 
iv.Malformation of spine 

[62] 

16 PAHs and heavy 
metals 

Larval embryos of Rhamdia 
quelen 

Upper Iguaçu River, Southern 
Brazil 

i.. Skeletal defects like lordosis and scoliosis 
ii.Tail deformities 
iii.Significant rate of mortality 
iv.Decreased embryo to larva survival rate 
v. Defect in spine, cranium and thorax 
 

[63] 

Triclosan, triclocarban and 
their binary mixtures 

Embryo of Rhamdia quelen Collected from Panama fish 
farm (Paulo Lopes, SC, Brazil) 
followed by lab-based dose 
study 

i.Fin deformities 
ii.Decreased SOD activity 
iii. Increased AChE activity 

[64] 

PAHs,PCBs,OCPs,PBDEs
,phthalates and bisphenol-
A 

Salminus brasiliensis, 
Prochilodus lineatus, 
Rhamdia quelen, and 
Pseudoplatystoma corruscans 

AtubaRiver,Southern Brazil i.High mortality rate and pollutant sensitivity in S. 
brasiliensis and P. lineatus. 
ii. spinal torsions 
 iii.pericardial edema 
iv. abnormal barbel development of eye pigmentation 
vi. Cranial deformity 

[65] 

Pesticide residues Danio rerio(zebrafish) embryo Vacacaí river, SouthernBrazil i.Increased level of GSTand thiobarbituric acid reactive 
substance (TBARS) 
ii.Delay in hatching rate 
iii.Decreased heart rate 
iv.IncreasedAChE 

[66] 

Benzo[a]pyrene Zebrafish larvae(Danio rerio) Lab based dose study i.Increased mortality in high dose 
ii.Deformed tail 
iii.Deformed pectoral fin 
iv.Deformed jaw 
v.Defect in optic and otic vesicles 

[67] 

Pyrene Rockfish (Sebastiscus 
marmoratus) embryo 

Lab based dose study i.Impaired skeletal formation 
ii. Chondrocyte proliferation disrupted 
iii.Deformed lower jaw cartilage 

[68] 

2,3,7,8-
tetrachlorodibenzo-p-
dioxin (TCDD) 

Female rainbow trout 
(Oncorhynchus mykiss) 

Lab based dietary exposure i.Reduced survival rate 
ii.Poor survival of fry 
iii.Edema and developmental defects in fry 

[69] 

PAHs and heavy metals Aphanius fasciatus Tunisian coast i.Spinal anomalies 
ii.Skeletal deformities 
iii.Deformed mandibles 
iv.Deformed vertebrae and arcs 
 

[70] 

Mixture of fipronil and 
fungicides 
(pyraclostrobin and 
methyl- thiophanate) 

Adult zebrafish(Danio rerio) Lab based dose study i.Decreased non-protein thiol 
ii.Decreased catalase activity 
iii.Increase in SOD and catalase ratio 
iii.Locomotor impairments 
iv.Increased ROS and MDA in hepatic tissue 
v.Imbalance of antioxidants in brain 

[71] 

Fludioxonil and 
triadimefon mixture 

Zebrafish (Danio rerio) Lab based dose study i.Increased GST activity 
ii. Induced oxidative stress due to increase in ROS, T-
GSH and malondialdehyde(MDA) 
iv.Embryo apoptosis 

[72] 
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B.  Teratogenesis and Neurotoxicity  
Neurotoxicity is indicated by induced apoptosis and necrosis. Zebrafish serves as an appropriate model to predict teratogenesis and 
neurotoxicity in mammalian system. Atrazine, and TCDD are specifically  recognised as teratogenic compounds in fishes whereas 
2,4-dichlorophenoxyacetic acid (2,4-D), dieldrin, non- phenol, dieldrin and nonylphenol are neurotoxic causing catecholaminergic 
neuron toxicity in fish model[73]. Motor neuron functions like feeding, swimming, escaping from predators are affected by 2,4,-D 
sublethal exposure[74].It also causes apoptosis of brain cells, disrupted growth of motor neurons and decrease in motility and it is 
teratogenic to fishes[73]. Atrazine affects production of dopamine, functionality of motor neurons, causes brain cell death and 
developmental toxicity[75]. DDT increases motility, causes apoptosis of brain cells, loss in catecholaminergic neurons and is highly 
teratogenic in both medium and high exposure. Dieldrin causes tremors and loss of dopaminergic neurons and is little teratogenic in 
fishes[73] .Malathion causes significant toxicity at early developmental stages and apoptosis of brain cells (Lien et al., 1997; Cook 
et al., 2005) .TCDD exposure causes pericardial oedema, retarded growth, decelerated circulation, vascular endothelial cell toxicity, 
brain cell necrosis and apoptosis, shrinkage of brain, decreased heart rate and motility and is highly teratogenic[78,79]. 
 
C. Deformities 
Deformities are a major eco-physiological threat for individuals and can have severe adverse effects on the population of fish with 
respect to fitness, survival rate, and reproductive ability. There can be various morphological defects in fishes exposed to different 
environmental contaminants [67,80]. Defects in the spine, thorax, and cranium were recorded in R. quelen exposed to different type 
of organic micropollutants [62]. The proliferation of the cartilage cells was disrupted, resulting in skeletal defects in Sebastiscus 
marmoratus exposed to pyrene[68]. TCDD arising as a by-product of different industrial procedures like production of chlorinated 
insecticides and pesticides, and paper bleaching can lead to deformities of the spine and tail of various fish species [81]. When 
fishes are exposed to a combination of heavy metals, PAHs, estrogen and other  related compounds, they have a higher probability 
of developing spinal deformities [70]. 
 
D.  Biological Oxidative Stress 
Toxic biochemical effects of environmental contaminants are exerted by the production of Reactive Oxygen Species (ROS) like 
superoxide radicles. These radicals arise  as a by-product of xenobiotic redox cycling or due to the process of biotransformation. 
Hydroxyl radicle (OH) reacts the most among all other ROS, and its precursor is superoxide radicles [82]. Superoxide dismutase 
(SOD) is an antioxidant enzyme. It forms the first line of defence in the antioxidant system, acting as catalyst in the dismutation 
process of superoxide radicals resulting in the formation of hydrogen peroxide (H2O2). H2O2 on further metabolism resists the 
formation of OH radicals and thus prevents biological oxidative stress in organisms[83]. Several studies have been conducted on the 
role of xenobiotics in inducing biological oxidative stress in fish species, showing that exposure to xenobiotics induces increased 
production of SOD and ROS [72,84]. If the antioxidant system in the body of organisms is highly activated, there can be systemic 
impacts of toxicology, ultimately leading to chronic diseases.[85]. There is a prominent relationship among biological oxidative 
stress, skeletal deformities like lordosis and sclerosis, and peroxidation of lipids in fish species. Bone metabolism is significantly 
dependent on the lipid content in the skeletal tissues in fish, and this explains the spine defects in fishes vulnerable to peroxidation 
of lipids [86,87].Intracellular toxicants in fishes are eliminated by the activity of glutathione transferase (GST), and it is also 
responsible for the detoxification of the organic micropollutants in their ambient aquatic environment. Hence, GST can be used as 
an important biomonitoring tool to assess the health of the aquatic ecosystem [88].  
 
E. Inhibition of Acetylcholinesterase (AChE) activity 
AChE activity inhibition is a significant biomarker of carbamate and organophosphate exposure in fishes and can be used for 
monitoring status of fishery resources in waterbodies. If AChE inhibition is very high in muscles of fishes , then it can cause severe 
health risks to humans consuming them[89]. An dose based laboratory exposure to organic micropollutants like PCBs, pesticides, 
and OCPs showed decrease in the AChE activity in fish brain. Inhibition of AChE level can cause the cholinergic nerves to get 
excessively stimulated, ultimately resulting in lethargy in swimming, convulsions, spasms, and other behavioural changes [66]. 
 
F. Effect on Cardiac Development and Heart Rate 
Heart rate is a very important parameter in the toxicological embryo tests of fish. Exposure to herbicides and fungicides reduces the 
heart rate. Any injury in the heart leads to reduced blood transportation to the fish embryo, affecting energy transport and the overall 
embryo development[66,90]. 
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Organic micropollutant dioxin causes malformation of heart and defect in cardiac function. Fish embryos when exposed to TCDD 
results in reduced heart rate, decreased cardiac output and regurgitation of flow of blood at the atrioventricular valve[91]. Carbamate 
causes bradycardia and heart malformation in fish embryo[92,93].Nicotine exposure causes looped heart and pericardial oedema in 
fish embryo [94].  
 

IV.  WASTEWATER TREATMENT LEGISLATIONS AND GLOBAL WASTEWATER MANAGEMENT 
STRATEGIES 

The European Green Deal [95] aimed at a toxicant free environment with no environmental pollution and its broader goal is the 
protection of the health of both humans and the ecosystem. The European Green Deal aims to avoid the detrimental effects of 
chemical contaminants, including pharmaceutical toxicants, in air, water, or sediment. The Farm to Fork strategy [96] which has 
been adopted in the recent past, aims at the reduction of total EU sales of antimicrobial compounds used in animal farms and 
aquaculture farms by 50% (by the year 2030), ultimately cutting on this particular source of environmental pollution. Different other 
strategies and initiatives have been taken up throughout the globe with a common aim to reduce environmental pollution, which 
includes the 8th Environment Action Programme [97], the Biodiversity strategy [98], the Sustainability related chemical 
strategy[99], Circular economy action plan [100], etc. The environmental protection strategies emphasize the wholesome production 
and usage of natural resources, raw materials and chemicals which are considered as safe and sustainable and create negligible 
negative impacts on the environment. Transdisciplinary approaches are adopted all over the globe for improvising wastewater 
treatment techniques in Sewage Treatment Works (STW). European Union Strategic Approach was adopted in March 2019 by the 
European Commission to control pharmaceutical compounds in the environment. This approach addresses the environmental effects 
of all lifecycle stages of pharmaceutical products in both animals and humans including their designing, production, usage and 
disposal [101]. The Water Framework Directive 2000/60/EC is aimed at defining and prioritizing the environmental contaminants 
with high risk potential ( Directive 2000/60/EC,2000 ). Directive 2000/60/EC was further improvised by formulating 
Directive2008/105/EU (defined 33 environmental contaminants and standardized their environmental quality and created watchlist 
for 10 compounds),Directive 2013/39/EU(incorporated 17-alpha-ethinylestradiol, diclofenac, 17-beta – estradiol in the watchlist), 
Directive 2015/495/EU(added antibiotics namely erythromycin, azithromycin, estrone and clarithromycin to the watchlist), 
Directive 2018/840/EU(removed diclofenac and added ciprofloxacin and amoxicillin to the list) and finally Directive 2020/1161/EU 
(removed 17-alpha-ethinylestradiol, 17-beta-estradiol estrone and other antibiotics from the list except amoxicillin and 
ciprofloxacin)[103–106].European Union( Strategic Approach to Pharmaceuticals in the Environment and European One Health 
Action Plan against Antimicrobial Resistance ) following Decision 2020/1161/EU decided to incorporate certain sulphonamide 
antibiotic(sulfamethoxazole), diaminopyrimidine antibiotic (trimethoprim) and the antidepressant drug (venlafaxine), O-
desmethylvenlafaxine and ten pharmaceutical compounds of azole class into the watchlist (EU water legislation December 2020). 
Urban Wastewater Treatment Directive (2019) stated that this policy has helped in the reduction of pollutant load in water and 
hence has improved the overall water quality [108]. This 2019 directive has also raised concern regarding the emerging 
micropollutants( pharmaceutical products and microplastics), total energy expenditure in a wastewater treatment and associated 
management practices of sludge [109]. To address these and to reach UN Sustainable Development Goals there should be a revised 
and improvised version of the Urban Wastewater Treatment Directive in the upcoming years[110].  

 
V.  ORGANIC MICROPOLLUTANT REMOVAL TECHNIQUES 

Depending on the origin, waste water contains a complex mixture of organic and inorganic pollutants and if they are discharged into 
the environment without treatment, it creates huge adverse impact on the ecosystem. Based on the characteristics of waste water, 
different waste water treatment plants (WWTPs) have been selected to remove micro-pollutants such as pharmaceutical residues, 
personal care products, various household chemicals, and biocides/pesticides from the wastewater. But the chemicals which are used 
for these treatments may react to form new products which pose severe impact on the environment.  Hence, eco-friendly techniques 
are urgently required for wastewater treatment which would cause negligible negative impact on the environment  [18]. The 
advantages and disadvantages of major wastewater management technologies is depicted in Table 2. Hence there is a need for 
nature-based technologies with lower carbon emissions. New nature-based technologies like Constructed Wetlands(CWs), which is 
a plant-based processes having budget-friendly operational and maintenance cost and low energy requirement, are being sought after 
these days[111]. Anaerobic membrane bio reactors (AnMBR) and enzyme based technologies are eco-friendly technologies for 
wastewater treatments and efficiently remove pharmaceuticals, high strength organic contaminants in wastewater like dairy, sugar, 
and alcoholic products[112].  
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AnMBR is an integrated approach of anaerobic bioreactor and microfiltration techniques which has low energy demand and 
efficiently produces biogas and maintains the system’s energy neutrality [113].Only partial removal of micro pollutants and other 
emerging pollutants of global concern occur if only biological treatment is applied in wastewater. Hence oxidant or adsorbent 
techniques are highly suggested in water industries like activated carbon and ozonation [114]. Present lifecycle assessment 
framework studies for assessing the net environmental effectiveness of ozonation and granular activated carbon (GAC) filters for 
removing micro-pollutants have shown proven values of pollutant removal efficiency and toxicological potentials. The results from 
these studies further concluded that the advantages of  these innovative wastewater treatments were outweighed by increased direct 
effects and energy and resource requirements[115]. 
 
A. Ozonation 
Nowadays, advanced oxidation techniques are being used to reduce the concentration of micro-pollutants in wastewater, and among 
them, ozonation is one of the best processes.  In this process, oxidation of organic micro-pollutants present in wastewater occurs 
directly or through the formation of different OH radicles [116]. On-site synthetic air is used in large-scale wastewater management 
plants to generate O3, which is then scattered into oxidation reactors at 4-15mg/lit wastewater concentration. 5–60 g CO2-equiv./m3 
is the estimated carbon footprint of the ozonation process, depending on the sources of energy and operating conditions. The 
chemical reactions involved in the process of ozonation are usually non-selective. However, different studies showed that the 
reduction degree of electron-rich complexes is much higher than other compounds. Pharmaceutical products like diclofenac, sotalol, 
gemfibrozil and other organic micro-pollutants from the wastewater can be removed effectively by O3 [108]. Though O3 has very 
high reactivity, ozonation of wastewater does not result in the complete oxidation of the organic compounds to carbon-dioxide and 
water. There are chances of the production of transformation by-products that can be even more detrimental than the original 
toxicant [117]. It becomes hard to predict the ecotoxicological net result of ozonation technique in municipal wastewater 
management as the degradation of toxicants and production of detrimental by-products occur collaterally. Oxidation by-products 
that are generally unknown have potential toxicity in the ecosystem, like bromate formation in bromide rich wastewater. For better 
results, it is suggested that ozonation is followed by other biological treatments like sand filtration or adsorption techniques like 
GAC in order to remove the toxic transformation by-products[118]. The demerits of wastewater ozonation technique is its high 
operating and maintenance costs, poor reduction of COD and BOD and requirement of complex equipment and systems for 
running[119]. It is suggested to apply food-choice trials to understand the concept of ozonation in wastewater treatment[120]. 
Moreover, it complements currently used toxicological impact assessing tools in ecotoxicology studies. 
 
B.  Activated Carbon 
Activated carbon which is formed from carbonaceous materials like coal or husk of coconuts, is widely used to eliminate micro-
pollutants from wastewater. Activated carbon acts as an effective adsorption element after being activated chemically or thermally. 
The inner surface area of activated carbon measures 800–1800 m2/g and possesses hydrophobic surface features [121]. The toxicants 
in the wastewater, which are non-polar or have a positive charge are effectively removed by the activated carbon technique. These 
compounds include metoprolol, ibuprofen, atrazine etc. [108]. In advanced sewage treatment works (STW) conducted by the 
municipal corporations, activated carbon is used either in the powdered form, i.e., Powdered Activated Carbon (PAC), or in granule 
form, i.e., GAC. The particle size of PAC ranges between 50–100 µm, whereas for GAC, it is 0.5–4 mm. 10-20mg/lit is the 
concentration of PAC dose in wastewater treatment. After, the activated carbon adsorption, it is separated from the water body and 
is burnt together with the wastewater sludge. However, a continuous application is required for GAC in a fluidized bed reactor or in 
a fixed reactor. GAC doesn’t have longer adsorption capability after use; therefore, it is thermally regenerated and then partially 
used. As both PAC and GAC require only pumping or stirring, the on-site energy requirement for these processes is low. The 
highest amount of carbon is emitted during the production of activated carbon elements via the processes like extraction of raw 
materials, combustion, and carbon activation [122]. Carbon footprints used in this process are dependent on the utilization of raw 
materials. If coconut husk is used as the raw material, it ranges between 5 g CO2-eq per kg PAC; if coal or lignite is used as raw 
material, the same varies between 18 g CO2-eq per kg PAC [123].The carbon footprint of GAC is lower than that of PAC as in the 
GAC process, 90% of the already utilised adsorbent can be renewed and reused. The carbon intensity of the activated carbon 
treatment largely depends on the PAC doses and the bed life of GAC, respectively.  As per (European Commission, 2019) to 
produce goods required in construction industries like basins, pipes etc., 19-27% of total carbon footprint is required and depends on 
the particular design of the plant.  
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Table 2: Advantages and disadvantages of common wastewater treatment practices along with working principle 
Wastewater 
treatment 
methods 

 

Mechanism of action Pros Cons References 

Ozonation 
 

Wastewater oxidation using 
O3. OH radicals formed from 
O3 and degrade the micro-
pollutants. 
 

i. Negligible harmful wastes 
are generated 
ii. Requires only 15-20 mins 
of contact between ozone 
gas and wastewater 
iii. On-site generation of 
ozone, no danger associated 
with storage  
iv. Ozone eliminates colour 
and smell effectively 
 

i.Half-life is very short, only 20 mins 
ii. Produces harmful by-products. For, 
eg. It produces bromate from waste 
water rich in bromide 
iii. Reduction of high BOD and COD is 
not very efficient 
iv. Operation and maintenance are 
expensive 
v. For proper functioning requires 
complex instruments and a control unit 
vi. O3 can’t impact on salinity 
vii. High dose of O3 is required to 
resistant dyes 

[119,124,125
] 

Hydrogen 
peroxide 

Direct oxidation of 
wastewater components and 
thus reducing BOD, COD, or 
TOC 

i. Does not produce residual 
gas 
ii.H2O2 is a strong oxidizer 
iii. It doesn’t have a strong 
smell and isn’t an irritant 
iv. No sludge formation 

i. Requires high dose as it has 
deficient anti-microbial activity. 

 

[125,126] 

Fenton 
process 

Oxidating using H2O2-Fe(II) 
majorly; 4 steps namely 
oxidation, neutralization, 
flocculation and  
sedimentation 

i.No additional energy 
requirement for process 
activation 
ii. Cost- effective and easy 
to manage the process 
iii.Material transfer isn’t 
restricted; the process is 
homogenously catalytic 
iv. No need of catalysts 

i. Process is efficient only in a narrow 
range of pH 
ii. Can produce new contaminants by 
means of degradation compounds 

[127] 

Activated 
carbon 

Removes dyes by adsorption I. Able to remove a wide 
range of dyes 
ii. Low operational cost 
iii.Can be recycled 

i. Difficult to regenerate 
ii. Can be reused partially 

[128] 

Constructed 
wetlands 

Settlement of suspended 
particles, filtration, 
precipitation, adsorption, 
biotransformation, ion 
exchange, microbial 
breakdown and modification 
of contaminants, uptake by 
the plants, nutrient 
transformation by 
microorganisms and 
vegetation, and natural 
degradation of the pathogens 

i. Cost-effective 
ii.Low energy demand 
Facilitates water recycling 
iii.Provides habitat for 
aquatic organisms 
iv.Boosts tourism, sporting, 
and aesthetics of accessible 
open space 
v.Prevents flood caused by 
storm water 

 

i.With age, wetlands lose contaminant 
removal efficiency 
ii. Requires large land area 
iii.Less consistent performance than 
conventional wastewater treatments 
iv.Can’t be fully dried 
v. Plants can’t withstand being 
submerged 
 

[129,130] 
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C.  Fenton Process 
The Fenton process is widely used to remove organic contaminants from wastewater and ensure water safety effectively. Pollutants 
that are highly stable are efficiently removed by this process [131].  It is also used for disinfecting water [132]. The process showed 
maximum efficiency at pH 3 and was first time in-use  for oxidizing  maleic acid [126,127]. It consists of 4 major steps:  i. 
Oxidation ii. Neutralization iii. Flocculation IV. Sedimentation. However, pollutant removal occurs mainly during the oxidation and 
coagulation steps. The oxidation step includes the formation of coagulants and OH radicals [133] 
 
D.  Electrochemical Oxidation Process 
It is used in pilot and wastewater treatment plants [134]. This process is used for reduction of harmful effluents into the surface 
water to resist ecotoxicology in the recipients [135]. Here, anodic oxidation directly produces OH radicals, or these radicals are 
generated from the Fenton reagent, the second strongest oxidation agent.  The OH radicals maintain an optimum reduction potential 
(E=2.8 Volt) for micro-pollutants [136]. Electrochemical oxidation is applicable in various sewages and can mineralize the micro-
pollutants entirely [137]. As the electron flows directly via the anode, the OH radicals can mineralize directly. Anodic 
electrochemical oxidation can also be used effectively in removing derivatives of drugs [138]. 
 
E.  Hydrogen Peroxide (h2o2) Technique 
H2O2 effectively removes organic micro-pollutants, especially pharmaceutical compounds, leading to improved OH radical 
production [139]. UV method of wastewater treatment is often used along with this technique to achieve better mineralization of 
micro-pollutants [140]. 
 
F. Ultrasonic Irradiation 
It is a widely used pollutant-free technique to remove micro-pollutants like ibuprofen, ethyl-paraben, methyl-benzotriazole, etc. This 
technique uses chemical reactions, shock waves, and stress [141]. Ultrasound in 3-D longitudinal waves spreads in this process and 
the wavefront causes an increase and decrease in pressure after passing via a medium .This pressure fluctuation is mainly dependent 
on the sound wave intensity. There can be the formation of very tiny cavities as the fluid medium becomes discontinuous due to an 
excessive increase in pressure. As a result, the microscopic cavities formed are pulsed via the liquid medium resulting in 4000-
6000ºC and 300-500 bar temperature and wastewater pressure, respectively. Ultimately, this temperature extremes lead to micro-
pollutant degradation [126]. 
 
G. Microwave Technology 
The microwave technique is a molecular level heating technology and is used both in industries as well as for domestic purpose. 
Pollutants like azo dyes, different pesticides, and perfluoro-octanoic acid which are hard to degrade, are efficiently removed by 
potassium persulfate (oxidizing agent) in this technique. Potassium persulfate is used after being irradiated by the microwaves 
during the oxidation process. When combined with oxidation treatments, microwave technology can effectively degrade the micro-
pollutants. The driving force of this technology is temperature and pH. Microwave technology can also be used in combination with 
the Fenton process. In that case, the efficiency percentage of the process ranges between 40-60% depending on the Fenton dose. It 
has wide range of advantages, it causes reduction in reaction time, increases reaction’s selectivity, requires low activation energy, 
doesn’t require large sized equipment, reduces waste production, reactions are easy to control , increases yield of products and 
purifies them.[142–144]. 
 
H. Catalysis 
The catalytic process includes homogenous and heterogeneous catalysis and also bio-catalysis. Homogenous catalysis is very 
selective and deals with transition metal composites or specific organic elements with one or multiple reactants in a single phase. 
Heterogeneous catalysts do not mix well with the reactants and forms a different phase. The surface area of these catalysts is large, 
and the catalysis occurs in the pores.  The advantage of the heterogeneous catalysis process is that it is a green eco-friendly 
technology, can separate the catalyst easily from the products, treats organic wastewater effectively and is more cost-effective than 
the homogeneous catalysis. However, in many cases, the catalysts do not act selectively, which is its drawback [145,146]. The 
disadvantage of homogenous catalysis is that its operational cost is very high. Bio-catalysis can be defined as the use of natural 
substance (biocatalysts) which are proteinaceous compounds working specifically only on the predetermined substrates. Their main 
benefit is the fact that they are very selective in reaction.  
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However, their drawback is their high cost and extreme sensitivity to temperature, pH, concentration of product, and ionic 
strength[147]. Heterogeneous photocatalysis is eco-friendly technology which specifically removes organic micro-pollutants and 
Advanced Oxidation Processes (AOP) fall under this broad technique. There is wide range of advantages of photocatalysis process 
in removal of micropollutants from wastewater ,it is runned by a full renewable source of energy or sunlight, can occur under mild 
temperature and pressure, doesn’t cause secondary contamination and is cost effective etc.[148]. In heterogeneous photocatalysis, 
mainly titanium dioxide (TiO2) is used as it is chemically and photochemically stable. The only disadvantage of this technique is its 
high energy requirement ((3.0-3.2 eV) covering the UV electromagnetic spectrum. Diclofenac, ibuprofen, sulfamethoxazole, non-
ionic surfactants, plasticizers, insect repellents, fragrances, heavy metals, propranolol, carbamazepine, 17 alpha ethinylestradiol and 
17-beta-estradiol are some major micropollutants which are effectively removed by photocatalysis [148,149]. 
 
I. Constructed Wetlands 
Constructed wetlands are artificially built shallow basins containing gravels, sediments and plants that are tolerant to saturated 
ambient conditions. Different types of constructed wetlands are used in wastewater treatment such as surface flow wetlands, 
subsurface flow wetlands and a hybrid of these two types[150].  However, combining these two can also be integrated with other 
traditional wastewater treatment practices for more effective results [151,152]. Constructed wetland primarily depends on the 
prevailing environmental situations and their specificity for domestic, agricultural, storm water and coal mine effluent 
treatments[151].  These wetlands are specifically used for removing pollutant loads from both primary or secondary household 
sewage and agricultural effluents.  They are also used to treat effluents from active and dumped coal mines [153]. Currently, 
constructed wetlands are utilized to prevent floods in urban areas caused by storm water and this approach is being accepted 
globally [130]. Constructed wetlands have several advantages like high sustainability, low energy demand and much less attention 
and skill are needed for maintaining them. The design of these wetlands needs to be improved now and then to treat emerging 
pollutants like antibiotics, pharmaceutical products, and antibacterial resistant genome [154].  
Various units work interactively in a constructed wetland for wastewater treatment. The components include a water holding basin, 
filtering substrate, growth medium for residing organisms, microorganisms, naturally developing aquatic invertebrates and most 
importantly, dense vegetation. Each component of a constructed wetland along with their respective functions is depicted in Fig. 1. 
The working efficiency of these wetlands depends on the integrated functioning of all of its components and their proper 
maintenance [155]. 

 
                               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1: Components of constructed wetland with respective function of each 
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Fig 2 depicts water quality improvement through constructed wetlands involving several interrelated processes. These are - 
settlement of suspended particles, filtration, precipitation by exposing water to litter, adsorption, biotransformation, ion exchange on 
plant’s  and substrate’s  surfaces, microbial breakdown and modification of contaminants and their uptake by the plants, nutrient 
transformation by microorganisms and vegetation and finally the natural degradation of the pathogens [156].The mechanism of 
removal of contaminants within the constructed wetlands can occur individually, in sequence or simultaneously on each group of 
pollutants [157]. For example, Volatile Organic Compounds (VOC) present in the polluted groundwater are eliminated primarily by 
diffusion and volatilization. Other mechanisms like adsorption, photochemical oxidation, and biological reactions may also have a 
significant role. In a constructed wetland, physical reactions are responsible for the settling down, sedimentation and also 
volatilization of pollutants; whereas, gravitational settling down of pollutantants is responsible for elimination of solid suspensions 
[126]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2: Steps of wastewater treatment in constructed wetlands 
 

VI.  CONCLUDING REMARKS 
It is crucial to control the sources of pollution and perform regular environmental monitoring and assessment of the aquatic 
ecosystem keeping in mind the health of the endemic organisms specially. To achieve sustainable development goals, emphasizing 
the fourth phase of wastewater treatment is of utmost importance as traditional wastewater treatments cannot efficiently remove 
emerging micro-pollutants. So, it is a challenge for the researchers to gain detailed knowledge regarding different pollutants, 
including emerging ones, and to come up with strategies to remove their residues from water and ascertain the well-being of the 
environment in a wholesome manner. Bio-indication of aquatic ecosystem using fish will act as an effective environmental 
monitoring tool for pollution control and water body restoration and management. 
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