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Abstract: This paper is dedicated to the learning of bipolar vague topological spaces. In this paper we present the bipolar vague 
contra ࢻ generalized closed mappings and bipolar vague contra ࢻ generalized open mappings. Some of their belongings of 
bipolar vague contra ࢻ generalized closed mappings and bipolar vague contra ࢻ generalized open mappings are discussed.  
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I. INTRODUCTION 
Uncertain set was familiarized by L.A.Zadeh [12] in 1965. The thought of fuzzy topology was announced by C.L.Chang [3] in 1968. 
The generalized closed sets in general topology presented by N.Levine [9] in 1970. K.Atanassov [2] in 1986 announced the 
perception of intuitionistic fuzzy sets. The belief of vague set theory was familiarized by W.L.Gau and D.J.Buehrer [7] in 1993. 
D.Coker [6] in 1997 familiarized intuitionistic fuzzy topological spaces. Bipolar- valued fuzzy sets, which was announced by 
K.M.Lee [8] in 2000 is a postponement of fuzzy sets whose membership degree range is inflamed from the interval [0, 1] to [-1,1]. 
A creative class of generalized bipolar vague sets obtainable by S.Cicily Flora and I.Arockiarani [4] in 2016. We have presented 
bipolar vague ߙ generalized closed sets [10] in 2024. In this paper we familiarize bipolar vague contra ߙ generalized closed 
mappings and bipolar vague contra ߙ generalized open mappings and premeditated its basic properties. We deliver some 
characterizations of bipolar vague contra ߙ generalized closed mappings and bipolar vague contra ߙ generalized open mappings 
 

II. PRELIMINARIES 
At this point in this paper the bipolar vague topological spaces are designated by (G, B ఛܸ). Also, the bipolar vague interior, bipolar 
vague closure of a bipolar vague set F are denoted by BVInt(F) and BVCl(F). The complement of a bipolar vague set F is denoted 
by Fc and the empty set and whole sets are denoted by 0~ and  1~ individually. 
Definition 2.1: [8] Let G be the universe. Then a bipolar valued fuzzy sets, F on G is defined by positive membership function ߤிା, 
that is ߤிା: G→ [0,1], and a negative membership function ߤிି, that is  ߤிି: G→ [-1,0]. For the sake of simplicity, we shall use the 
symbol                                                      F = {݃,ߤிା(݃),ߤிି(g):݃ ∈  .{ܩ
Definition 2.2: [8] Let F and E be two bipolar valued fuzzy sets then their union, intersection and complement are defined as 
follows: 

(i) ߤி∪ாା = max {ߤிା(݃),ߤாା(݃)} 
(ii) ߤி∪ாି = min {ߤிି(݃),ߤாି(݃)} 
(iii) ߤி∩ாା = min {ߤிା(݃),ߤாା(݃)} 
(iv) ߤி∩ாି  = max {ߤிି(݃),ߤாି(݃)} 
(v) ߤி೎

ା (g) = 1-ߤிା(݃) and ߤி೎ି(g) = -1-ߤிି(݃) for all ݃ ∈  .ܩ
Definition 2.3: [7] A vague set F in the universe of discourse L is a pair of (ݐி, ி݂) where                     ݐி: L→[0,1], ி݂: L→[0,1] are 
the mapping such that ݐி + ி݂ ≤ 1 for all ݈ ∈ ி and ி݂ݐ The function .ܮ  are called true membership function and false membership 
function respectively. The interval [ݐி, 1 − ி݂] is called the vague value of l in F, and denoted by ߥி(݈), that is                                               
,(݈)ிݐ] = (݈)ிߥ 1− ݂(݈)]. 
Definition 2.4: [7] Let F be a non-empty set and the vague set F and E in the form                                                    F = 
{݃, ,(݃)ிݐ 1− ி݂(݃): g ∈ G }, E = {݃, ,(݃)ாݐ 1− ா݂(݃): g ∈ G }. Then 

(i) F ⊆ E if and only if  ݐி(݃)  ≤ −ா(݃) and 1ݐ   ி݂(݃) ≤   1 − ா݂(݃)  
(ii) F ∪ E = ൛max൫ ݐி(݃), ா(݃)൯ݐ , max ( 1− ி݂(݃), 1− ா݂(݃))/g ∈ G ൟ. 
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(iii) F ∩ E = ൛min൫ ݐி(݃), ா(݃)൯ݐ , min ( 1 − ி݂(݃), 1− ா݂(݃))/g ∈ G ൟ. 
(iv) Fc = {݃, ி݂(݃), 1− :ி(݃)ݐ g ∈ G }. 

Definition 2.5: [1] Let G be the universe of discourse. A bipolar-valued vague set F in G is an object having the form F = 
{g, ,(݃)ிାݐ] 1− ி݂

ା(݃)], [−1− ி݂
ି(݃), ிି(݃)]ݐ ∶ g ∈ G } where         [ݐிା, 1 − ி݂

ା] : G→[0,1] and [−1− ி݂
ି,  ிି] : G→[-1,0] are theݐ

mapping such that                            ݐிା(݃) + ி݂
ା(݃) ≤ 1 and -1≤ ிି+ ி݂ݐ

ି. The positive membership degree [ݐிା(݃), 1− ி݂
ା(݃)] 

denotes the satisfaction region of an element g to the property corresponding to a bipolar-valued set F and the negative membership 
degree [−1− ி݂

ି(݃),  ிି(݃)] denotes the satisfaction region of g to some implicit counter property of F. For a sake of simplicity, weݐ
shall use the notion of bipolar vague set ߥிା = [ݐிା, 1− ி݂

ା] and ߥிି = [−1− ி݂
ି,  .[ிିݐ

Definition 2.6: [5] A bipolar vague set F = [ߥிା, ிା = 0,              1ݐ ிା= 0 implies thatߥ ிି] of a set L withߥ − ி݂
ା= 0 and ߥிି= 0 implies 

that ݐிି = 0, −1− ி݂
ି = 0 for all g ∈ L is called zero bipolar vague set and it is denoted by 0. 

Definition 2.7: [5] A bipolar vague set F = [ߥிା , −ிା = 1,                        1ݐ ிା= 1 implies thatߥ ிି] of a set L withߥ ி݂
ା= 1 and ߥிି= -1 

implies that ݐிି = -1, −1− ி݂
ି = -1 for all g ∈ L is called unit bipolar vague set and it is denoted by 1. 

Definition 2.8: [4]  Let F = g, ,ிାݐ] 1 − ி݂
ା], [−1− ி݂

ି , ,ிି] and E = gݐ ,ாାݐ] 1− ா݂
ା], [−1− ா݂

ି,  ாି] be two bipolar vague sets thenݐ
their union, intersection and complement are defined as follows: 

(i) F ∪ E = {g, ி∪ாାݐ] (݃), 1 − ி݂∪ா
ା (݃)], [−1− ி݂∪ா

ି (݃), ி∪ாିݐ (݃)]/g ∈ G } where 
ி∪ாାݐ           (݃) = max {ݐிା(݃), ி∪ாିݐ ,{(݃)ாାݐ (݃) = min {ݐிି(݃),  ாି(݃)} andݐ
          1− ி݂∪ா

ା (݃) = max {1 − ி݂
ା(݃), 1− ா݂

ା(݃)}, 
        −1 − ி݂∪ா

ି (݃) = min {−1− ி݂
ି(݃),−1 − ா݂

ି(݃)}. 
(ii) F ∩ E = {g, ி∩ாାݐ] (݃), 1 − ி݂∩ா

ା (݃)], [−1− ி݂∩ா
ି (݃), ி∩ாିݐ (݃)]/g ∈ G } where 

ி∩ாାݐ           (݃) = min {ݐிା(݃), ி∩ாିݐ ,{(݃)ாାݐ (݃) = max {ݐிି(݃),  ாି(݃)} andݐ
          1− ி݂∩ா

ା (݃) = min {1− ி݂
ା(݃), 1 − ா݂

ା(݃)}, 
        −1− ி݂∪ா

ି (݃) = max {−1− ி݂
ି(݃),−1− ா݂

ି(݃)}. 
(iii) Fc = {g, [ ி݂

ା(݃), 1− ,[(݃)ிାݐ [−1− ,ிି(g)ݐ ி݂
ି(g)]/ g ∈ G}. 

Definition 2.9: [4] Let F and E be two bipolar vague sets defined over a universe of discourse G. We say that F ⊆ E if and only if 
−ாା(݃), 1ݐ ≥ (݃)ிାݐ ி݂

ା(݃) ≤ 1− ா݂
ା(݃) and ݐிି(݃) ≥ ݐாି(݃),             −1− ி݂

ି(݃) ≥ 1− ா݂
ି(݃) for all g ∈ G. 

Definition 2.10: [4] A bipolar vague topology (BVT) on a non-empty set G is a family B ఛܸ of bipolar vague set in G satisfying the 
following axioms: 

(i) 0~,1~ ∈ B ఛܸ 
(ii) ଵܷ ∩ ଶܷ ∈ B ఛܸ, for any ଵܷ, ଶܷ ∈ B ఛܸ 
(iii) ∪ ௜ܷ ∈ B ఛܸ, for any arbitrary family { ௜ܷ: ௜ܷ ∈ B ఛܸ, i ∈ I}. 
In this case the pair (G, B ఛܸ) is called a bipolar vague topological space and any bipolar vague set (BVS) in B ఛܸ is known as 

bipolar vague open set in G. The complement Fc of a bipolar vague open set (BVOS) F in a bipolar vague topological space (X, B ఛܸ) 
is called a bipolar vague closed set (BVCS) in G. 
Definition 2.11: [4] Let (F, B ఛܸ) be a bipolar vague topological space                                                                              F= g, ,ிାݐ] 1−
ி݂
ା], [−1 − ி݂

ି ,  ,ிି] be a bipolar vague set in G. Then the bipolar vague interior and bipolar vague closure of F are defined byݐ
 BVInt(F) = ∪ {U: U is a bipolar vague open set in F and U ⊆ F}, 

BVCl(F) = ∩ {I: I is a bipolar vague closed set in F and F⊆ I}. 
Note that BVCl(F) is a bipolar vague closed set and BVInt(F) is a bipolar vague open set in G. Further, 

(i) A is a bipolar vague closed set in G if and only if BVCl(F) = F, 
(ii) A is a bipolar vague open set in G if and only if BVInt(F) = F. 

Definition 2.12: [4] Let (G, B ఛܸ) be a bipolar vague topological space. A bipolar vague set F in          (G, B ఛܸ) is said to be a 
generalized bipolar vague closed set if BVCl(F) ⊆ U whenever F⊆ U and U is bipolar vague open. The complement of a 
generalized bipolar vague closed set is generalized bipolar vague open set. 
Definition 2.13: [4] Let (G, B ఛܸ) be a bipolar vague topological space and F be a bipolar vague set in G. Then the generalized 
bipolar vague closure and generalized bipolar vague interior of F are defined by, 

GBVCl(F) = ∩ {U: U is a generalized bipolar vague closed set in G and F⊆ U}, 
GBInt(F) = ∪ {U: U is a generalized bipolar vague open set in G and F ⊇ U}. 

Definition 2.14: [10] A bipolar vague set F of a bipolar vague topological space G, is said to be  
(i) a bipolar vague ߙ-open set if F ⊆ BVInt(BVCl(BVInt(F))) 
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(ii) a bipolar vague pre-open set if F ⊆ BVInt(BVCl(F)) 
(iii) a bipolar vague semi-open set if F ⊆ BVCl(BVInt(F)) 
(iv) a bipolar vague semi-ߙ-open set if F ⊆ BVCl(ߙBVInt(F)) 
(v) a bipolar vague regular-open set BVInt(BVCl(F)) = F 
(vi) a bipolar vague ߚ-open set F ⊆ BVCl(BVInt(BVCl(F))). 

Definition 2.15: [10] A bipolar vague set F of a bipolar vague topological space G, is said to be 
(i) a bipolar vague ߙ-closed set if BVCl(BVInt(BVCl(F))) ⊆ F 
(ii) a bipolar vague pre-closed set if BVCl(BVInt(F)) ⊆ F 
(iii) a bipolar vague semi-closed set if BVInt(BVCl(F)) ⊆ F 
(iv) a bipolar vague semi-ߙ-closed set if BVInt(ߙBVCl(F)) ⊆ F 
(v) a bipolar vague regular-closed set if BVCl(BVInt(F)) = F 
(vi) a bipolar vague ߚ-closed set if BVInt(BVCl(BVInt(F))) ⊆ F. 

Definition 2.16: [10] Let F be a bipolar vague set of a bipolar vague topological space (G, B ఛܸ). Then the bipolar vague ߙ interior 
and bipolar vague ߙ closure are defined as 
 B ఈܸInt(F) = ∪ {U: U is a bipolar vague ߙ-open set in G and U ⊆ F}, 
 B ఈܸCl(A) = ∩ {T: T is a bipolar vague ߙ-closed set in G and F⊆ T}. 
Definition 2.17: [10] A bipolar vague set F in a bipolar vague topological space G, is said to be a bipolar vague ߙ generalized closed 
set if B ఈܸCl(F) ⊆ L whenever A⊆ L and L is a bipolar vague open set in G. The complement Fc of a bipolar vague ߙ generalized 
closed set F is a bipolar vague ߙ generalized open set in G. 
Definition 2.18: [11] A bipolar vague topological space (G, B ఛܸ) is said to be bipolar vague                      ܽߙ ଵܶ/ଶ(B ఈܸ௔ ଵܶ/ଶ) space if 
every bipolar vague ߙ generalized closed set in G is a bipolar vague closed set in G. 
Definition 2.19: [11] A bipolar vague topological space (G, B ఛܸ) is said to be bipolar vague                      ܾߙ ଵܶ/ଶ(B ఈܸ௕ ଵܶ/ଶ) space if 
every bipolar vague ߙ generalized closed set in G is a bipolar vague generalized closed set in G. 
 

III. BIPOLAR VAGUE CONTRA ࢻ GENERALIZED CLOSED MAPPINGS IN TOPOLOGICAL SPACES 
In this sector, we present bipolar vague contra ߙ generalized closed mappings, bipolar vague contra ߙ generalized open mappings 
and study about of its belongings. 
Definition 3.1: Let ݂ be a mapping from a bipolar vague topological space (G, B ఛܸ) into a bipolar vague topological space (R, B ఙܸ). 
Then ݂ is said to be a bipolar vague contra closed mapping if for every bipolar vague closed set F in G, ݂(F) is a bipolar vague open 
set in R. 
Definition 3.2: Let ݂ be a mapping from a bipolar vague topological space (G, B ఛܸ) into a bipolar vague topological space (R, B ఙܸ). 
Then ݂ is said to be a bipolar vague contra ߙ-closed mapping if for every bipolar vague closed set F in G, ݂(F) is a bipolar vague ߙ-
open set in R. 
Definition 3.3: Let ݂ be a mapping from a bipolar vague topological space (G, B ఛܸ) into a bipolar vague topological space (R, B ఙܸ). 
Then ݂ is said to be a bipolar vague contra generalized closed mapping if for every bipolar vague closed set F in G, ݂(F) is a bipolar 
vague generalized open set in R. 
Definition 3.4: A mapping  : (G, B ఛܸ)  → (R, B ఙܸ) is called a bipolar vague contra ߙ generalized closed mapping if for every bipolar 
vague closed set F of (G, B ఛܸ), ݂(F) is a bipolar vague ߙ generalized open set in (R, B ఙܸ).       
Example 3.5: Let G = {e, f} and R = {s, t} and F = g, [0.4, 0.4] [-0.4, -0.4], [0.2, 0.3]                                 [-0.3, -0.2] and E = r, 
[0.2, 0.4] [-0.4, -0.2], [0.2, 0.2] [-0.2, -0.2].  Then ߬ = {0~, F, 1~}  and     ߪ = {0~, E, 1~} are bipolar vague topologies on G and R 
respectively. Define a mapping                                               ݂ : (G, B ఛܸ)  → (R, B ఙܸ) by f(e) = s and f(f) = t.  The bipolar vague set 
Fc = g, [0.6, 0.6]                              [-0.6, -0.6], [0.7, 0.8] [-0.8, -0.7] is a bipolar vague closed set in G. Now, ݂(Fc) = r, [0.6, 0.6]                              
[-0.6, -0.6], [0.7, 0.8] [-0.8, -0.7] is a bipolar vague ߙ generalized open set in R as ݂(Fc)∪ BVInt(BVCl(BVInt(݂(Fc)))) =  ݂(Fc) ∪ E 
= ݂(Fc) whenever ݂(Fc) ⊆ 1~.Therefore ݂ is a bipolar vague contra ߙ generalized closed mapping. 
Definition 3.6: A mapping  : (G, B ఛܸ)  → (R, B ఙܸ) is called a bipolar vague contra ߙ generalized open mapping if for every bipolar 
vague open set F of (G, B ఛܸ), ݂(F) is a bipolar vague ߙ generalized closed set in (R, B ఙܸ).    
Example 3.7: Let G = {e,f} and R = {s,t} and F = g, [0.3, 0.4] [-0.4, -0.3], [0.5, 0.5]                                 [-0.6, -0.6] and E = r, 
[0.1, 0.5] [-0.5, -0.1], [0.5, 0.5] [-0.6, -0.2].  Then ߬ = {0~, F, 1~}  and     ߪ = {0~, E, 1~} are bipolar vague topologies on G and R 
respectively. Define a mapping     ݂ : (G, B ఛܸ)  → (R, B ఙܸ) by f(e) = s and f(f) = t.  The bipolar vague set F = g, [0.3, 0.4]                          
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[-0.4, -0.3], [0.5, 0.5] [-0.6, -0.6] is a bipolar vague open set in G. Now, ݂(F) = r, [0.3, 0.4]                 [-0.4, -0.3], [0.5, 0.5] [-0.6, -
0.6] is a bipolar vague ߙ generalized closed set in R as ݂(F)∪ BVCl(BVInt(BVCl(݂(F)))) =  ݂(F) ∪ Ec = Ec ⊆ 1~whenever ݂(F) ⊆ 
1~.Therefore ݂ is a bipolar vague contra ߙ generalized open mapping. 
Proposition 3.8: Every bipolar vague contra closed mapping is a bipolar vague contra ߙ generalized closed mapping but not 
conversely in general. 
Proof: Let  : (G, B ఛܸ)  → (R, B ఙܸ) be a bipolar vague contra closed mapping. Let F be a bipolar vague closed set in G. Since ݂ is a 
bipolar vague contra closed mapping, ݂(F) is a bipolar vague open set in R. Since every bipolar vague open set is a bipolar vague ߙ 
generalized open set, ݂(F) is a bipolar vague ߙ generalized open set in R. Hence ݂ is a bipolar vague contra ߙ generalized closed 
mapping.     
Example 3.9: Let G = {e,f} and R = {s,t} and F = g, [0.6, 0.6] [-0.6, -0.6], [0.5, 0.8]                                 [-0.8, -0.5] and E = r, 
[0.5, 0.5] [-0.5, -0.5], [0.4, 0.4] [-0.4, -0.4].  Then ߬ = {0~, F, 1~}  and     ߪ = {0~, E, 1~} are bipolar vague topologies on G and R 
respectively. Define a mapping                                               ݂ : (G, B ఛܸ)  → (R, B ఙܸ) by f(e) = s and f(f) = t.  Then ݂ is a bipolar 
vague contra ߙ generalized closed mapping but not a bipolar vague contra closed mapping since D = g, [0.7, 0.7] [-0.7, -0.7], [0.6, 
0.9] [-0.9, -0.6] is a bipolar vague closed set in G but ݂(H) =  r, [0.7, 0.7] [-0.7, -0.7], [0.6, 0.9] [-0.9, -0.6]is not a bipolar vague 
open set in R as BVInt(݂(H)) = E ≠ ݂(H). 
Proposition 3.10: Every bipolar vague contra ߙ-closed mapping is a bipolar vague contra ߙ generalized closed mapping but not 
conversely in general. 
Proof: Let  : (G, B ఛܸ)  → (R, B ఙܸ) be a bipolar vague contra ߙ-closed mapping. Let F be a bipolar vague closed set in G.  Then by 
hypothesis, ݂(F) is a bipolar vague ߙ-open set in R. Since every bipolar vague ߙ-open set is a bipolar vague ߙ generalized open set, 
݂(F) is a bipolar vague ߙ generalized open set in R. Hence ݂ is a bipolar vague contra ߙ generalized closed mapping.  
 Example 3.11: Let G = {e,f} and R = {s,t} and F = g, [0.5, 0.5] [-0.5, -0.5], [0.5, 0.7]                                 [-0.7, -0.4] and E = r, 
[0.4, 0.4] [-0.4, -0.4], [0.3, 0.3] [-0.3, -0.3].  Then ߬ = {0~, F, 1~}  and     ߪ = {0~, E, 1~} are bipolar vague topologies on G and R 
respectively. Define a mapping                                               ݂ : (G, B ఛܸ)  → (R, B ఙܸ) by f(e) = s and f(f) = t.  Then ݂ is a bipolar 
vague contra ߙ generalized closed mapping but not a bipolar vague contra ߙ-closed mapping since H = g, [0.6, 0.6]                            
[-0.6, -0.6], [0.5, 0.8] [-0.8, -0.5] is a bipolar vague closed set in G but ݂(H) =  r, [0.6, 0.6]                            [-0.6, -0.6], [0.5, 0.8] 
[-0.8, -0.5] is not a bipolar vague ߙ-open set in R as BVInt(BVCl(BVInt(݂(H)))) = E ≠ ݂(H). 
The relations between various types of bipolar vague contra closed mappings are given in the following diagram: 

 
Proposition 3.12: A mapping ݂ : (G, B ఛܸ)  → (R, B ఙܸ) is a bipolar vague contra ߙ-closed mapping if and only if the image of each 
bipolar vague open set in G is a bipolar vague ߙ generalized closed set in R. 
Proof: Let F be a bipolar vague open set in G. This implies Fc is a bipolar vague closed set in G. Since ݂ is a bipolar vague contra ߙ 
generalized closed mapping, ݂(Fc) is a bipolar vague ߙ generalized open set in R. Since ݂(Fc) = (݂(F))c, ݂(F) is a bipolar vague ߙ 
generalized closed set in R. 
Proposition 3.13: Let  : (G, B ఛܸ)  → (R, B ఙܸ) be a bipolar vague contra ߙ generalized closed mapping, then ݂ is a bipolar vague 
contra closed mapping if R is a B ఈܸ௔ ଵܶ/ଶ space. 

Bipolar vague contra closed mapping 

Bipolar Vague Contra ࢻ 
Generalized Closed Mapping   

Bipolar vague contra ߙ-closed mapping   
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Proof: Let F be a bipolar vague closed set in G. Then ݂(F) is a bipolar vague ߙ generalized open set in R, by hypothesis. Since R is a 
B ఈܸ௔ ଵܶ/ଶ space, ݂(F) is a bipolar vague open set in R. Hence ݂ is a bipolar vague contra closed mapping. 
Proposition 3.14: Let  : (G, B ఛܸ)  → (R, B ఙܸ) be a bipolar vague contra ߙ generalized closed mapping. Then ݂ is a bipolar vague 
contra generalized closed mapping if R is a B ఈܸ௕ ଵܶ/ଶ space. 
Proof: Let F be a bipolar vague closed set in G. Then ݂(F) is a bipolar vague ߙ generalized open set in R, by hypothesis. Since R is a 
B ఈܸ௕ ଵܶ/ଶ space, ݂(F) is a bipolar vague generalized open set in R. Hence ݂ is a bipolar vague contra generalized closed mapping. 
Proposition 3.14: Let  : (G, B ఛܸ)  → (R, B ఙܸ) be a mapping from a bipolar vague topological space G into a bipolar vague 
topological space R. Then the following conditions are equivalent if R is a B ఈܸ௔ ଵܶ/ଶ space.  

(i) ݂ is a bipolar vague contra ߙ generalized closed mapping. 
(ii) If F is a bipolar vague open set in G, then ݂(F) is a bipolar vague ߙ generalized closed set in R. 
(iii) BVCl(BVInt(BVCl(݂(F)))) ⊆ ݂(F) for every bipolar vague set F in G. 

Proof: (i) ⟹ (ii) is obviously true. 
(ii) ⟹ (iii) Let F be any bipolar vague set in G. Then BVInt(F) is a bipolar vague open set in G. Thus ݂(BVInt(F)) is a bipolar 
vague ߙ generalized closed set in R. Since R is a B ఈܸ௔ ଵܶ/ଶ space, ݂(BVInt(F)) is a bipolar vague closed set in R. Therefore 
BVCl(݂(BVInt(F))) = ݂(BVInt(F)). This implies BVCl(BVInt(BVCl(݂(F)))) ⊆ ݂(F).  
(iii)  ⟹ (i) Let F be a bipolar vague closed set in G. Then its complement Fc is a bipolar vague open set in G. By hypothesis, 
BVCl(BVInt(BVCl(݂(Fc)))) ⊆ ݂(Fc). Hence ݂(Fc) is a bipolar vague ߙ-closed set in R. Since every bipolar vague ߙ-closed set is a 
bipolar vague ߙ generealized closed set, ݂(Fc) is a bipolar vague ߙ generalized closed set in G. Therefore ݂(F) is a bipolar vague ߙ 
generalized open set in G. Hence ݂ is a bipolar vague contra ߙ generalized closed mapping. 
Proposition 3.15: Let  : (G, B ఛܸ)  → (R, B ఙܸ) be a bipolar vague closed mapping and                                  ݃ : (R, B ఙܸ) → (C, B ఋܸ) 
be a bipolar vague contra ߙ generalized closed mapping. Then                             ݃ ∘ ݂ : (X, B ఛܸ)  → (C, B ఋܸ) is a bipolar vague 
contra ߙ generalized closed mapping. 
Proof: Let F be a bipolar vague closed set in G. Then ݂(F) is a bipolar vague closed set in R, by hypothesis. Since ݃ is a bipolar 
vague contra ߙ generalized closed mapping, ݃(݂(F)) is a bipolar vague ߙ generalized open set in C. Hence ݂ ∘ ݃ is a bipolar vague 
contra ߙ generalized closed mapping. 
Proposition 3.16: Let ݂ : (G, B ఛܸ)  → (R, B ఙܸ) be a bipolar vague contra ߙ generalized closed mapping and R is a B ఈܸ௕ ଵܶ/ଶ space, 
then ݂(F) is a bipolar vague generalized open set in R for every bipolar vague closed set F in G. 
Proof: Let  : (G, B ఛܸ)  → (R, B ఙܸ) be a mapping and let F be a bipolar vague closed set in G. Then by hypothesis ݂(F) is a bipolar 
vague ߙ generalized open set in R. Since R is a B ఈܸ௕ ଵܶ/ଶ space, ݂(F) is a bipolar vague generalized open set in R. 
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