

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: I Month of publication: January 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77025>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Candida Species as Opportunistic Pathogens: Epidemiology, Virulence, Laboratory Diagnosis, and Antifungal Resistance

Jyotika Gupta¹, Dr. Bhavini Shah^{2,3}, Ankita Murnal⁴

¹Student, Ahmedabad University

²Department of Microbiology, Neuberg Supratech Reference Laboratories, Ahmedabad, Gujarat, India

³Director Research & Academics, SBRI, Ahmedabad, Gujarat, India

⁴Research Associate, SBRI, Ahmedabad, Gujarat, India

Abstract: *Candida species are among the most common opportunistic fungal pathogens affecting humans, particularly immunocompromised individuals. While *Candida albicans* has historically been the predominant etiological agent of candidiasis, recent epidemiological trends indicate a significant rise in infections caused by non-albicans Candida species, many of which exhibit intrinsic or acquired resistance to commonly used antifungal agents. These yeasts, which normally exist as commensals within the human microbiota, can transition to pathogenic forms under favourable host or environmental conditions. This review provides a comprehensive overview of the clinical and epidemiological features of Candida infections, with emphasis on laboratory diagnosis, virulence mechanisms, and antifungal resistance. Conventional and advanced diagnostic methods, including culture-based techniques, phenotypic tests, and molecular assays, are critically discussed. The growing challenge of antifungal resistance, biofilm-associated infections, and emerging multidrug-resistant species such as *Candida auris* is also addressed. Understanding these evolving dynamics is essential for improving patient outcomes, guiding antifungal therapy, and informing public health interventions.*

Keywords: *Candida, candidiasis, antifungal resistance, laboratory diagnosis, non-albicans Candida*

I. INTRODUCTION

Candida species are ubiquitous yeasts that form part of the normal human microbiota, colonising the skin, gastrointestinal tract, and mucosal surfaces of most healthy individuals. Under physiological conditions, host immune mechanisms and microbial competition prevent uncontrolled fungal proliferation. However, disruption of host immunity or microbiota balance can allow Candida to shift from a commensal to a pathogenic state, resulting in infections ranging from superficial mucocutaneous candidiasis to invasive and life-threatening systemic disease [1,2]. Globally, candidiasis represents a major burden on healthcare systems, particularly among immunocompromised populations such as patients with HIV/AIDS, malignancies, organ transplants, and those receiving intensive care [7,40,48]. In recent years, the epidemiology of candidiasis has evolved, characterised by increasing isolation of non-albicans Candida (NAC) species and the emergence of multidrug-resistant strains [5,7,51]. These changes have significant implications for diagnosis, treatment, and infection control practices. This review aims to synthesise current knowledge on Candida infections, focusing on epidemiology, virulence factors, laboratory diagnosis, antifungal susceptibility, and resistance, with the ultimate goal of enhancing clinical decision-making and patient outcomes.

II. TAXONOMY AND BIOLOGICAL CHARACTERISTICS OF CANDIDA

Candida belongs to the Kingdom Fungi, Phylum Ascomycota, Class Saccharomycetes, Order Saccharomycetales, and Family Saccharomycetaceae. Approximately 200 Candida species have been described, although only a limited number are commonly implicated in human disease [26].

Importantly, the genus Candida is polyphyletic, meaning that its members do not share a single common evolutionary ancestor. Molecular phylogenetic analyses have demonstrated that species such as *C. glabrata*, *C. guilliermondii*, and *C. lusitaniae* are more closely related to other genera than to *C. albicans*, necessitating ongoing taxonomic reclassification [27,28]. Despite their evolutionary divergence, these species share a pathogenic lifestyle, likely resulting from convergent evolution that enables colonisation and invasion of similar ecological niches within the human host.

III. EPIDEMIOLOGY AND GLOBAL DISTRIBUTION

Candida infections are among the most common invasive fungal diseases worldwide, with candidemia being a leading cause of fungal bloodstream infections in hospitalised patients [7,40]. Surveillance studies from different geographical regions reveal marked variation in species distribution, influenced by healthcare practices, antifungal use, and patient demographics [39,45].

While *C. albicans* remains a major pathogen, a growing proportion of infections are attributed to NAC species such as *C. glabrata*, *C. parapsilosis*, *C. tropicalis*, *C. krusei*, and *C. auris* [41,42,44]. These species are frequently associated with antifungal resistance and poorer clinical outcomes. The emergence of *C. auris* as a global public health threat is particularly concerning due to its multidrug resistance, environmental persistence, and ability to cause hospital outbreaks [17,24,35].

IV. RISK FACTORS FOR CANDIDIASIS

Multiple host-related and healthcare-associated factors predispose individuals to Candida infections:

- 1) Immunosuppression and Neutropenia: Neutrophils play a critical role in fungal clearance; their depletion markedly increases susceptibility to invasive candidiasis [1,25].
- 2) HIV/AIDS: Oral and oesophageal candidiasis are common opportunistic infections in advanced HIV disease [2].
- 3) Cancer and Chemotherapy: Mucosal damage and immune suppression facilitate fungal translocation into the bloodstream [7].
- 4) Organ and Hematopoietic Stem Cell Transplantation: Long-term immunosuppressive therapy increases infection risk [1].
- 5) Broad-Spectrum Antibiotic Use: Disruption of bacterial flora promotes Candida overgrowth [50].
- 6) Indwelling Medical Devices: Catheters and prosthetic devices provide surfaces for biofilm formation [55].
- 7) Diabetes Mellitus: Hyperglycaemia enhances fungal growth and impairs immune responses [52].
- 8) Extremes of Age: Neonates and elderly individuals are particularly vulnerable due to immature or declining immunity [48].

V. VIRULENCE FACTORS OF CANDIDA SPECIES

Candida pathogenicity is mediated by a complex array of virulence determinants:

- 1) Morphological Plasticity: *Candida albicans* exhibits remarkable morphological flexibility, transitioning between yeast, pseudohyphal, and hyphal forms. Hyphae are particularly invasive and are associated with tissue penetration and immune evasion [25,27].
- 2) Adhesins and Invasins: Surface proteins facilitate adhesion to host tissues and abiotic surfaces, promoting colonisation and invasion [28].
- 3) Biofilm Formation: Biofilm formation on medical devices is a critical virulence trait, conferring protection against host immunity and antifungal agents. Biofilm-embedded cells can exhibit up to 1,000-fold increased resistance compared to planktonic cells [55].
- 4) Secreted Hydrolytic Enzymes: Candida secretes aspartyl proteases, phospholipases, lipases, and hemolysins that degrade host tissues and facilitate invasion [2,54].
- 5) Candidalysin: Candidalysin, a cytolytic peptide toxin produced by *C. albicans* hyphae, plays a key role in epithelial damage and immune activation during infection [25].

VI. LABORATORY DIAGNOSIS OF CANDIDA INFECTIONS

- 1) Culture-Based Methods: Sabouraud Dextrose Agar (SDA) remains the cornerstone for fungal isolation, supporting the growth of most Candida species [12–15]. Colonies typically appear smooth, creamy, and white to cream-coloured [8–11].
- 2) Chromogenic Media: CHROMagar Candida enables rapid presumptive identification based on species-specific colony pigmentation and is particularly useful for detecting mixed infections [18–23].
- 3) Microscopy and Phenotypic Tests: Gram staining reveals Gram-positive budding yeast cells with pseudohyphae or hyphae [29,30]. The germ tube test and chlamydospore formation are traditional methods for presumptive identification of *C. albicans*, though limitations exist due to overlap with other species [31–34].
- 4) Molecular Diagnostics: PCR-based assays, real-time PCR, and sequencing provide rapid, sensitive, and specific species identification, including detection of *C. auris* and resistant strains [35–37].

VII. ANTIFUNGAL SUSCEPTIBILITY AND RESISTANCE

Antifungal resistance has emerged as a major challenge in the management of candidiasis. Resistance mechanisms include target enzyme mutations, efflux pump overexpression, biofilm-associated resistance, and stress response adaptations [3,5,51].

Species such as *C. glabrata*, *C. krusei*, *C. parapsilosis*, and *C. auris* frequently exhibit reduced susceptibility to azoles and, in some cases, echinocandins [38,42,44]. Antifungal susceptibility testing using broth microdilution methods is essential to guide therapy and monitor resistance trends [56,57].

VIII. TREATMENT AND PREVENTION STRATEGIES

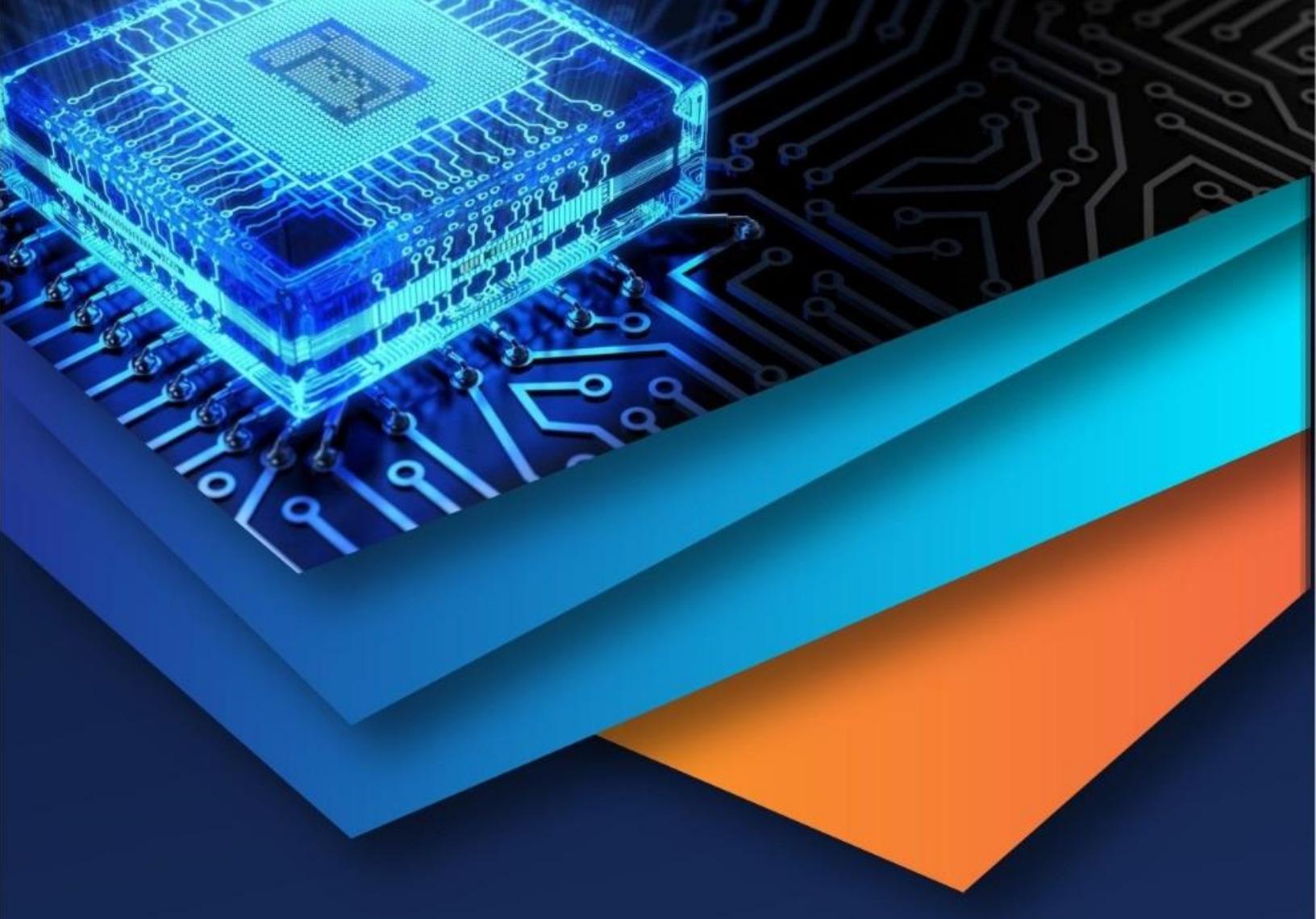
Treatment selection depends on species identification, infection severity, and patient factors. Echinocandins are often first-line therapy for invasive candidiasis, while azoles remain important for mucosal infections [54]. Combination therapy, antifungal stewardship, infection control measures, and novel approaches targeting biofilms or host immunity are increasingly being explored [1,55,59].

Preventive strategies include catheter management, antibiotic stewardship, surveillance programs, and patient education, particularly in high-risk populations [40,49].

IX. DISCUSSION

The increasing burden of *Candida* infections, driven by changing epidemiology and antifungal resistance, represents a significant challenge to modern healthcare. Advances in diagnostic technologies have improved detection and species identification, yet timely diagnosis remains difficult in many settings. The rise of multidrug-resistant species underscores the importance of integrated diagnostic, therapeutic, and preventive strategies. Continued research into *Candida* virulence, host-pathogen interactions, and novel antifungal agents is essential for improving patient outcomes.

X. CONCLUSION


Candida species remain among the most important opportunistic fungal pathogens worldwide. The shift towards non-albicans species, increasing antifungal resistance, and emergence of highly resistant pathogens such as *Candida auris* demand heightened vigilance and ongoing research. Accurate diagnosis, species-level identification, and antifungal susceptibility testing are central to effective management. Future advances in diagnostics, therapeutics, and prevention will be critical in addressing the evolving challenges posed by *Candida* infections.

REFERENCES

- [1] Optimising Outcomes in Immunocompromised Hosts: Understanding the Role of Immunotherapy in Invasive Fungal Diseases - Frontiers, accessed on March 24, 2025, <https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2015.01322/full>
- [2] Candida Pathogenicity and Interplay with the Immune System - PubMed, accessed on March 24, 2025, <https://pubmed.ncbi.nlm.nih.gov/34661898>
- [3] Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species - MDPI, accessed <https://www.mdpi.com/2073-4409/12/22/2655> on March 24, 2025,
- [4] Identification of Candida Species: Conventional Methods in the Era of Molecular Diagnosis - Remedy Publications LLC, accessed on March 24, 2025, <https://www.remedypublications.com/open-access/identification-of-candida-species-conventional-methods-in-the-era-of-molecular-diagnosis-775.pdf>
- [5] Candidiasis and Mechanisms of Antifungal Resistance - MDPI, accessed on March 24, 2025, <https://www.mdpi.com/2079-6382/9/6/312>
- [6] A study of *Candida albicans* and non-albicans *Candida* species isolated from various clinical samples and their antifungal susceptibility pattern - JMSR, accessed on March 24, 2025, <https://jmsronline.com/archive-article/Candida-albicans-non-albicans-Candida-species-isolated-from-various-clinical-samples>
- [7] Candida Bloodstream Infections: Changes in Epidemiology and Increase in Drug Resistance - PMC - PubMed Central, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC8236779/>
- [8] (a, b, c): Growth of *Candida* species on Sabouraud dextrose agar. - ResearchGate, accessed on March 24, 2025, https://www.researchgate.net/figure/a-b-c-Growth-of-Candida-species-on-Sabouraud-dextrose-agar_fig1_283789579
- [9] Colonies of *Candida albicans* cultured on Sabouraud dextrose agar at 37 °C for 24hrs., accessed on March 24, 2025 https://www.researchgate.net/figure/Colonies-of-Candida-albicans-cultured-on-Sabouraud-dextrose-agar-at-37-C-for-24hrs_fig1_342448742.
- [10] (a) *Candida* spp. the culture results on Sabouraud dextrose agar.... - ResearchGate, accessed on March 24, 2025, https://www.researchgate.net/figure/a-Candida-spp-culture-result-on-Sabouraud-dextrose-agar-b-Candida-albicans-100_fig1_346084711
- [11] Growth of *Candida albicans* on sabouraud dextrose agar A | Open-i, accessed on March 24, 2025 https://openi.ncbi.nlm.nih.gov/detailedresult?img=PMC4362108_SaudiMedJ-35-1210-g001&re_q=4
- [12] CM0041 Sabouraud Dextrose Agar - Oxoid Danmark - Product Detail, accessed on March 24, 2025 http://www.oxoid.com/dk/blue/prod_detail/prod_detail.asp?pr=CM0041&org=149&c=dk&lang=EN
- [13] Growth Media Type - Sabouraud Dextrose Agar (SDA) - Cherwell-labs.co.uk, accessed on March 24, 2025, <https://www.cherwell-labs.co.uk/en-gb/growth-media-type-sabouraud-dextrose-agar-sda>
- [14] Sabouraud agar - Wikipedia, accessed on March 24, 2025, https://en.wikipedia.org/wiki/Sabouraud_agar.
- [15] Sabouraud Dextrose Agar | Culture Media - Neogen, accessed on March 24, 2025, <https://www.neogen.com/categories/microbiology/sabouraud-dextrose-agar/>
- [16] Use of Chromogenic Tube and Methyl Blue- Sabouraud Agar for the Identification of *Candida* Albicans Strains, accessed on March 24, 2025, <https://www.med.kobe-u.ac.jp/journal/contents/47/161.pdf>

- [17] Identification of *C. auris* | *Candida auris* (*C. auris*) - CDC, accessed on March 24, 2025, <https://www.cdc.gov/candida-auris/hcp/laboratories/identification-of-c-auris.html>
- [18] CHROMagar Candida as the Sole Primary Medium for Isolation of Yeasts and as a Source Medium for the Rapid-Assimilation-of-Trehalose Test, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC1081275/>
- [19] Performance of Chromogenic Candida Agar and CHROMagar Candida in recovery and presumptive identification of mono fungal and poly fungall vaginal isolates | Medical Mycology | Oxford Academic, accessed on March 24, 2025, <https://academic.oup.com/mmy/article/48/1/29/1247981>
- [20] CHROMagar™ Candida, accessed on March 24, 2025, <https://www.chromagar.com/en/product/chromagar-candida/>
- [21] Performance of Chromogenic Candida Agar and CHROMagar Candida in recovery and presumptive identification omono fungal and poly fungall vaginal isolates - Oxford Academic, accessed on March 24, 2025, <https://academic.oup.com/mmy/article-pdf/48/1/29/4079390/48-1-29.pdf>
- [22] Direct Isolation of *Candida* spp. from Blood Cultures on the Chromogenic Medium CHROMagar Candida - ASM Journals, accessed on March 24, 2025, <https://journals.asm.org/doi/10.1128/jcm.41.6.2629-2632.2003>.
- [23] evaluation of diagnostic efficacy of chromagar candida for differentiation and identification of common candida species, accessed on March 24, 2025, https://www.chromagar.com/wpcontent/uploads/2021/11/1487840059Evaluation_of_Diagnostic_Efficacy_of_CHROMagar_Candida_for_Differentiation_and_Identification_of_Co_mmon_Candida_Species.pdf
- [24] Guidance for Detection of *C. auris* Colonization - CDC, accessed on March 24, 2025, <https://www.cdc.gov/candida-auris/hcp/laboratories/detection-colonization.html>
- [25] *Candida albicans* Yeast, Pseudohyphal, and Hyphal Morphogenesis Differentially Affects Immune Recognition - PMC, accessed <https://pmc.ncbi.nlm.nih.gov/articles/PMC5461353/>
- [26] *Candida albicans* - Wikipedia, https://en.wikipedia.org/wiki/Candida_albicans on accessed on March 24, 2025, 2025,
- [27] A Re-Evaluation of the Relationship between Morphology and Pathogenicity in *Candida* Species - MDPI, accessed on March 24, 2025, <https://www.mdpi.com/2309-608X/6/1/13>
- [28] Face/Off: The Interchangeable Side of *Candida Albicans* - Frontiers, accessed on March 24, 2025, <https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2019.00471/full>
- [29] Differentiation of *Candida albicans* from non-albicans yeast directly from blood cultures by Gram stain morphology ResearchGate, accessed on March 24, 2025, https://www.researchgate.net/publication/6381892_Differentiation_of_Candida_albicans_from_non-albicans_yeast_directly_from_blood_cultures_by_Gram_stain_morphology
- [30] Differentiation of *Candida albicans* from non-albicans yeast directly from blood cultures by Gram stain morphology - PubMed, accessed on March 24, 2025, <https://pubmed.ncbi.nlm.nih.gov/17447090/>
- [31] use of mueller-hinton broth and agar in the germ tube test - SciELO, accessed on March 24, 2025, <https://www.scielo.br/j/rimtsp/a/ShwLsPXBGpL7wVBDWqyMf5r/>
- [32] Utility of the Germ Tube Test for Direct Identification of *Candida albicans* from Positive Blood Culture Bottles - PMC, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC2566088/>
- [33] Tobacco agar: a new medium for chlamydosporulation in - *Candida albicans* and *Candida dubliniensis*, accessed on March 24, <https://academic.oup.com/mmy/article-pdf/43/5/473/4100633/43-5-473.pdf> 2025,
- [34] Differentiation of *Candida dubliniensis* from *Candida albicans* on Staib Agar and Caffeic Acid-Ferric Citrate Agar - PMC, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC87722/>
- [35] *Candida auris* Detection: Unraveling the Pros and Cons of PCR and Other Testing Methods, accessed on March 24, 2025, <https://www.biogx.com/candida-auris-detection-unraveling-the-pros-and-cons-of-pcr-and-other-testing-methods/>
- [36] Development of Novel Real-Time PCR Assays for Detection and Differentiation of Eleven Medically Important Aspergillus and *Candida* Species in Clinical Specimens - ASM Journals, accessed on March 24, 2025, <https://journals.asm.org/doi/10.1128/jcm.01344-06>.
- [37] Candidiasis Workup: Laboratory Studies, Imaging Studies, Procedures - Medscape Reference, accessed on March <https://emedicine.medscape.com/article/213853-workup> 24, 2025,
- [38] *Candida glabrata*: A Lot More Than Meets the Eye - PMC, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC6407134/>
- [39] Six-Year Retrospective Analysis of Epidemiology, Risk Factors, and Antifungal Susceptibilities of Candidiasis from a Tertiary Care Hospital in South China | Microbiology Spectrum - ASM Journals, accessed on March 24, 2025, <https://journals.asm.org/doi/10.1128/spectrum.00708-23>
- [40] Population-Based Active Surveillance for Culture-Confirmed Candidemia — Four Sites, United States, 2012–2016 | MMWR - CDC, accessed on March 24, 2025, <https://www.cdc.gov/mmwr/volumes/68/ss/ss6808a1.htm>
- [41] *Candida albicans* and *Candida glabrata*: global priority pathogens | Microbiology and Molecular Biology Reviews - ASM Journals, accessed on March 24, 2025, <https://journals.asm.org/doi/10.1128/mmbr.00021-23>
- [42] Global Prevalence of Antifungal-Resistant *Candida* parapsilosis: A Systematic Review and Meta-Analysis - PubMed Central, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC9416642/>
- [43] Global Prevalence of Antifungal-Resistant *Candida* parapsilosis: A Systematic Review and Meta-Analysis - PubMed, accessed <https://pubmed.ncbi.nlm.nih.gov/36006280/> on March 24, 2025,
- [44] *Candida krusei*, a Multidrug-Resistant Opportunistic Fungal Pathogen: Geographic and Temporal Trends from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC2238087/>
- [45] Epidemiology and Outcomes of Candidemia in 2019 Patients: Data from the Prospective Antifungal Therapy Alliance Registry - Oxford Academic, accessed on March 24, 2025, <https://academic.oup.com/cid/article/48/12/1695/320502>
- [46] The Prevalence of Non-albicans *Candida* and *Candida* Mixed-species in Vulvovaginal Candidiasis in Northeast Iran - IMR Press, accessed on March 24, 2025, <https://www.imrpress.com/journal/CEOG/51/3/10.31083/j.ceog5103077.htm>
- [47] Invasive *Candida* - Life Worldwide, accessed on March 24, 2025, <https://en.fungaleducation.org/invasive-candida/>
- [48] Global incidence and mortality of severe fungal disease - PubMed, accessed on March 24, 2025, <https://pubmed.ncbi.nlm.nih.gov/38224705/>
- [49] Data and Statistics on Candidemia | Candidiasis - CDC, accessed on March 24, 2025, <https://www.cdc.gov/candidiasis/data-research/facts-stats/index.html>

- [50] Candida - albicans and non-albicans Deranged Physiology, accessed on March 24, 2025, <https://derangedphysiology.com/main/required-reading/sepsis-and-infections/Chapter-315/candida-albicans-and-non-albicans>
- [51] Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment | The Journal of Infectious Diseases | Oxford Academic, accessed on March 24, 2025, https://academic.oup.com/jid/article/216/suppl_3/S445/4107052
- [52] Vulvovaginal candidiasis: species distribution of Candida and their antifungal susceptibility pattern - PMC, accessed <https://pmc.ncbi.nlm.nih.gov/articles/PMC6003188/> on March 24, 2025,
- [53] About Antimicrobial Resistance - CDC, accessed on March 24, 2025, <https://www.cdc.gov/antimicrobial-resistance/about/index.html>
- [54] Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents - PubMed Central, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC6038711/>
- [55] Candida Species Biofilms' Antifungal Resistance - MDPI, accessed on March 24, 2025, <https://www.mdpi.com/2309-608X/3/1/8>
- [56] Quality Control Limits for Broth Microdilution Susceptibility Tests of Ten Antifungal Agents, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC87406/>
- [57] Antifungal Susceptibility Testing: Current Approaches - PMC - PubMed Central, accessed on March 24, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC7194854/>
- [58] An Update on Candida tropicalis Based on Basic and Clinical Approaches - Frontiers, accessed on March 24, 2025, <https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2017.01927/full>
- [59] Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma, accessed on March 24, 2025, <https://journals.asm.org/doi/10.1128/aem.07235-11>

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)