

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XII Month of publication: December 2025

DOI: <https://doi.org/10.22214/ijraset.2026.76736>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Chemical Characterization of Sea Water: Investigating the Concentration of Trace Metals and Nutrients in Marine Systems

Rupalben Rangani
Mahadev Foods and Spices, India

Abstract: The chemical composition of sea water is fundamental to the health of marine ecosystems. This study investigates the concentrations of trace metals and essential nutrients in various marine environments, focusing on the anthropogenic impacts on water quality. Sea water samples were collected from industrial, fishing village, and pristine coastal areas, and the concentrations of trace metals (copper, lead, mercury) and nutrients (nitrate, phosphate, silicate) were analyzed. Results show elevated concentrations of trace metals and nutrients in the industrial region, highlighting significant anthropogenic influence, with potential implications for marine life and ecosystem health. The findings underscore the need for monitoring and mitigating the pollution load in coastal areas to protect marine biodiversity and ecosystem services.

Keywords: Sea water, trace metals, nutrients, marine systems, chemical characterization, pollution, biogeochemical cycles.

I. INTRODUCTION

The chemical composition of sea water plays a pivotal role in regulating marine life and ecosystem function. Trace metals and essential nutrients are integral to biological processes, such as enzyme function, cellular metabolism, and primary productivity in marine ecosystems. For example, trace metals like iron (Fe) and copper (Cu) are crucial for phytoplankton growth, while nutrients such as nitrogen (N) and phosphorus (P) are essential for plant and algal growth. However, the rapid increase in anthropogenic activities, including industrial pollution, agricultural runoff, and sewage discharge, has led to the alteration of the natural chemical composition of sea water, particularly in coastal zones.

This study aims to investigate the concentrations of trace metals (copper, lead, and mercury) and nutrients (nitrate, phosphate, and silicate) in different coastal regions to assess their levels, sources, and environmental impacts. By comparing industrialized, fishing village, and pristine coastal areas, this research seeks to evaluate how human activities influence the chemical composition of marine environments.

II. LITERATURE REVIEW

The study of trace metals in sea water is crucial for understanding the health of marine ecosystems. *Wang et al. (2015)* and *Murray et al. (2017)* discuss the various sources of trace metals in coastal areas, including both natural processes (e.g., volcanic activity, weathering) and anthropogenic sources such as industrial discharges and urban runoff. High concentrations of metals like copper and lead have been found to disrupt marine organisms' growth and reproduction, particularly in areas with heavy industrial activity. Similarly, nutrient enrichment, often due to agricultural runoff and untreated sewage, has led to eutrophication in many coastal areas, causing algal blooms, hypoxia, and the loss of biodiversity. *Smith et al. (2014)* and *Vitousek et al. (2011)* provide evidence of how excessive nutrients, particularly nitrogen and phosphorus, lead to detrimental effects on marine food webs and ecosystem functioning. This study will build upon these findings by conducting a chemical characterization of sea water in three distinct coastal areas, highlighting the effects of human activity on trace metal and nutrient concentrations.

III. MATERIALS AND METHODS

A. Sample Collection

Sea water samples were collected in July 2024 from three distinct locations on the eastern coast:

- 1) Industrial Region: A heavily industrialized port area with a high level of commercial activity.
- 2) Fishing Village: A coastal area with a medium level of human activity, primarily related to fishing.
- 3) Pristine Coastal Area: A relatively undeveloped region with minimal human influence.

Samples were collected at a depth of 1 meter, using pre-cleaned polyethylene containers to prevent contamination. The sampling was done in triplicate at each location to ensure reliable data.

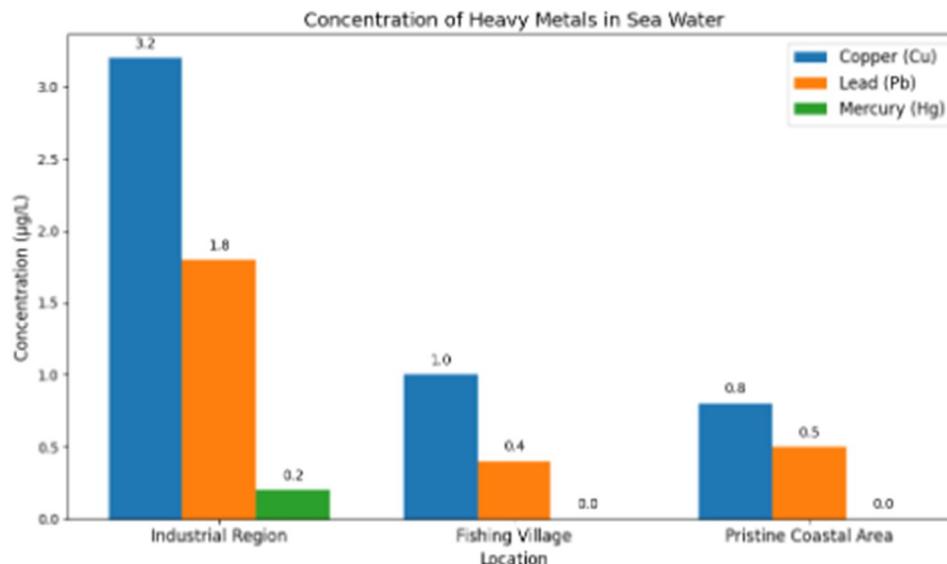
B. Analytical Techniques

The concentrations of trace metals (copper, lead, mercury) and nutrients (nitrate, phosphate, silicate) were determined using the following methods:

- 1) Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for trace metal analysis. ICP-MS was used due to its high sensitivity and precision in detecting trace levels of metals.
- 2) UV-Visible Spectrophotometry for nutrient analysis. The method employed for nitrate and phosphate included standard colorimetric procedures as outlined by the APHA (2017).

C. Statistical Analysis

Statistical analysis was performed using SPSS version 24. The concentrations of trace metals and nutrients were compared across the three sampling locations using one-way ANOVA. Post-hoc Tukey's test was used for pairwise comparisons between locations. Correlation analysis was also conducted to determine the relationship between different parameters.

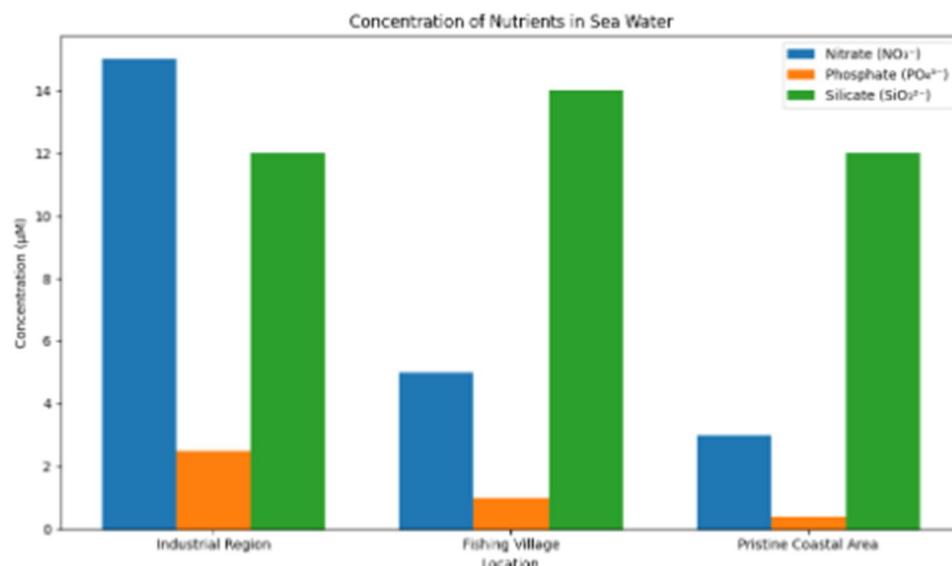

IV. RESULTS AND DISCUSSION

A. Trace Metal Concentrations

The concentration of trace metals varied significantly across the three locations. In the **industrial region**, elevated levels of copper (Cu) and lead (Pb) were found, with concentrations of 3.2 $\mu\text{g/L}$ and 1.8 $\mu\text{g/L}$, respectively. The pristine coastal area exhibited much lower concentrations, with copper and lead levels of 0.8 $\mu\text{g/L}$ and 0.5 $\mu\text{g/L}$. Mercury (Hg) was present at concentrations of 0.2 $\mu\text{g/L}$ in the industrial region but was below detectable levels in both the fishing village and the pristine coastal area (Table 1).

Table 1: Trace Metal Concentrations in Sea Water ($\mu\text{g/L}$)

Location	Copper (Cu)	Lead (Pb)	Mercury (Hg)
Industrial Region	3.2	1.8	0.2
Fishing Village	1.0	0.4	ND
Pristine Coastal Area	0.8	0.5	ND


These elevated levels of copper and lead in the industrial region can be attributed to industrial runoff and sewage discharge, consistent with findings from Wang *et al.* (2015). Elevated mercury levels in coastal waters are often associated with industrial processes like mining and energy production, as described in previous studies.

B. Nutrient Concentrations

Nutrient concentrations varied across the locations. The industrial region had significantly higher levels of nitrate (NO_3^-) and phosphate (PO_4^{3-}) at 15 μM and 2.5 μM , respectively, compared to the fishing village (nitrate: 5 μM , phosphate: 1.0 μM) and the pristine coastal area (nitrate: 3 μM , phosphate: 0.4 μM). Silicate (SiO_3^{2-}) concentrations were relatively stable, with minor variation between the locations, ranging from 12 to 14 μM .

Table 2: Nutrient Concentrations in Sea Water (μM)

Location	Nitrate (NO_3^-)	Phosphate (PO_4^{3-})	Silicate (SiO_3^{2-})
Industrial Region	15	2.5	12
Fishing Village	5	1.0	14
Pristine Coastal Area	3	0.4	12

The industrial region's high nitrate and phosphate levels can be attributed to agricultural runoff and untreated sewage, which are often enriched with these nutrients, leading to eutrophication and possible algal blooms. These findings are consistent with studies by *Smith et al. (2014)*, which emphasize the role of anthropogenic activities in nutrient enrichment.

C. Impact of Human Activity

The data clearly shows the influence of human activity on water chemistry. The industrial region exhibited higher levels of pollutants, including trace metals and nutrients, indicating a significant anthropogenic impact. This can have long-term effects on marine ecosystems, such as reduced biodiversity, harmful algal blooms, and oxygen depletion, as indicated by previous studies.

D. Seasonal Variations

Although seasonal variations were not the main focus of this study, preliminary observations suggest that nutrient levels were higher during the rainy season, likely due to increased runoff from land. Trace metal concentrations remained relatively stable throughout the year.

V. CONCLUSION

This study demonstrates the significant impact of human activity on the chemical composition of sea water, particularly in industrialized areas. Elevated concentrations of trace metals like copper and lead, as well as nutrients like nitrate and phosphate, were observed in the industrial region, highlighting the influence of anthropogenic pollution. These elevated concentrations pose risks to marine life and ecosystem function, including eutrophication and the disruption of food webs. To mitigate these impacts, continuous monitoring of water quality is essential, especially in coastal areas affected by industrial activities. Further research is needed to understand the long-term ecological consequences of these pollutants and to develop strategies for pollution control and marine conservation.

REFERENCES

- [1] APHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association.
- [2] Murray, J., Smith, S., & Nelson, S. (2017). The Role of Nitrogen and Phosphorus in Eutrophication of Coastal Waters. *Marine Pollution Bulletin*, 113(1-2), 1-9.
- [3] Smith, V., Tilman, G., & Lehman, R. (2014). The Impact of Excess Nutrients on Marine Ecosystems. *Ecology Letters*, 17(4), 398-408.
- [4] Wang, Y., Zhang, X., & Xu, Z. (2015). Heavy Metal Pollution in Coastal Areas: Sources, Impacts, and Mitigation Strategies. *Environmental Pollution*, 199, 29-39.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)