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Abstract: This paper focuses on advancing citywide cellular traffic prediction for enhancing the self-management and intelligent 
automation of future cellular networks. The proposed approach employs deep learning to model the complex dynamics of 
wireless traffic. By representing traffic data as images, the method effectively captures both spatial and temporal dependencies in 
cell traffic using densely connected convolutional neural networks. To refine this model, a parametric matrix-based fusion 
scheme is introduced, enabling the learning of influence degrees associated with spatial and temporal dependencies. 
Experimental results demonstrate a substantial improvement in prediction performance, measured by root mean square error 
(RMSE), compared to existing algorithms. The accuracy of predictions is further validated using datasets from Telecom Italia. 
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I. INTRODUCTION 
The integration of traffic prediction has been widely acknowledged for optimizing resource allocation, improving energy efficiency, 
and enabling intelligent cellular networks [1], [2]. Recent efforts have delved into exploring the dynamic characteristics of wireless 
traffic, including non-stationarity and seasonality [3], to achieve accurate predictions [4], [5]. Traditional approaches treat cellular 
traffic prediction as a time series analysis problem, relying on linear statistical models such as AutoRegressive Integrated Moving 
Average (ARIMA) and alpha-stable models. However, the complexity of cellular traffic, influenced by factors like user mobility, 
arrival patterns, and diverse user requirements, renders these linear models unsuitable for such applications [6]. 
To address the complex and nonlinear dependencies inherent in wireless traffic data, recent advancements in machine learning models 
[7] have emerged as formidable alternatives to classical statistical models for traffic prediction [8], [9]. For instance, [8] proposed a 
deep belief network-based prediction method to capture the long-term dependence of cellular traffic. Meanwhile, [9] aimed to exploit 
the spatial dependence of different cells through a strategy combining auto-encoder and Long Short-Term Memory (LSTM) network 
[10]. However, the learned features via auto-encoder may not fully characterize the spatial dependence of neighboring cells, and these 
methods predominantly focus on predicting traffic for a single cell. Furthermore, their application to citywide scale networks can be 
computationally expensive, requiring the simultaneous training of hundreds or even thousands of models. Motivated by these 
challenges, this letter introduces a novel method for citywide traffic prediction, leveraging the potent capabilities of deep 
convolutional neural networks (CNNs). Specifically, densely connected CNN [12], recognized as a leading deep learning architecture, 
is employed to collectively model the spatial and temporal dependence of traffic across different cells. The convolution operation 
naturally captures spatial dependence, while two CNNs address temporal dependencies (closeness and period), with their outcomes 
fused through a parametric-matrix-based scheme. Experimental results and comparisons affirm the effectiveness of the proposed 
method, demonstrating its superiority over existing traffic prediction methods. 

II. OBJECTIVES 
The objectives of the study on citywide cellular traffic prediction based on Densely Connected Convolutional Neural Networks 
(CNNs) can be outlined as follows: 
1) Modeling Nonlinear Dynamics: The primary objective is to develop a robust predictive model for citywide cellular traffic that 

can capture the nonlinear dynamics inherent in wireless traffic patterns. Unlike traditional linear models, the study aims to 
leverage the powerful capabilities of Densely Connected CNNs to handle the complexity of traffic data. 

2) Spatial and Temporal Dependence: The study seeks to address both spatial and temporal dependencies in cellular traffic. By 
treating traffic data as images, the spatial relationships between different cells are effectively captured using the convolutional 
operations of the CNN. Additionally, the model aims to account for temporal dependencies, including closeness and period, to 
enhance the accuracy of predictions. 
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3) Parametric Matrix Fusion: Introducing a parametric matrix-based fusion scheme, the research aims to refine the integration of 
spatial and temporal dependencies. This fusion scheme is designed to learn the influence degrees of spatial and temporal factors, 
contributing to a more comprehensive understanding of the complex interactions within citywide cellular traffic. 

4) Efficiency and Scalability: Considering the computational challenges associated with citywide scale networks, the study 
emphasizes the efficiency and scalability of the proposed method. Densely Connected CNNs are chosen for their advanced 
architecture, which allows for collective modeling without the need for training numerous individual models, addressing the 
computational expense. 

5) Performance Evaluation: The research aims to evaluate the prediction performance of the proposed method using metrics such as 
root mean square error (RMSE). Comparative analyses against existing algorithms and methods serve to validate the 
effectiveness and superiority of the Densely Connected CNN-based approach in citywide traffic prediction. 

6) Real-World Validation: To validate the practical applicability of the proposed method, the study employs real-world datasets, 
including those from Telecom Italia. This real-world validation ensures that the developed model can provide accurate 
predictions in diverse and dynamic urban environments. 

 
III. LIMITATIONS 

Citywide cellular traffic prediction using Densely Connected Convolutional Neural Networks (DC-CNN) faces several limitations. 
Firstly, the model's performance heavily relies on the availability and quality of input data, and any inaccuracies or gaps in the data 
may lead to suboptimal predictions. Additionally, the computational complexity of DC-CNNs can be high, posing challenges for real-
time prediction in large-scale urban environments. The model may struggle to adapt to dynamic and rapidly changing traffic patterns, 
as its training data might not fully capture the diversity of scenarios that can occur in a city. Furthermore, DC-CNNs may suffer from 
interpretability issues, making it challenging to understand the rationale behind specific predictions, which is crucial for gaining trust 
and acceptance in practical applications. Finally, the deployment of such models may require significant computational resources, 
limiting their feasibility in resource-constrained settings. 

IV. LITERATURE SURVEY 
The literature survey [1] conducted by Li et al. (2017) explores the intersection of cellular networks and artificial intelligence (AI) in 
the context of 5G technology. The authors delve into the concept of "Intelligent 5G" and provide a comprehensive overview of how 
the integration of AI techniques can enhance the capabilities and efficiency of cellular networks. The survey covers various aspects, 
including intelligent resource allocation, network optimization, and the application of machine learning algorithms in managing and 
improving 5G performance. The paper not only highlights the potential benefits of incorporating AI into cellular networks but also 
discusses the challenges and future research directions in this rapidly evolving field. Overall, the survey contributes valuable 
insights into the symbiotic relationship between 5G and artificial intelligence, shedding light on the promising opportunities and 
complexities associated with this convergence. 
Saxena, Sahu, and Han (2014) [2] present a literature survey in their work focused on "Traffic-aware energy optimization in green 
LTE cellular systems." The study investigates strategies to enhance energy efficiency in Long-Term Evolution (LTE) cellular 
networks with a particular emphasis on minimizing energy consumption while considering traffic patterns. The authors explore 
various approaches, such as dynamic traffic-aware base station sleep mode strategies and adaptive resource management, to 
optimize energy usage in LTE systems. By synthesizing existing research, the survey provides insights into the key challenges and 
potential solutions for achieving green communication in cellular networks. The emphasis on traffic awareness reflects a nuanced 
understanding of the dynamic nature of network demands, highlighting the need for adaptive and intelligent energy-saving 
mechanisms. This survey contributes to the broader discourse on sustainable and energy-efficient design principles for LTE cellular 
systems. 
D'Alconzo, Coluccia, Ricciato, and Romirer-Maierhofer (2009) [3] contribute to the literature with a distribution-based approach to 
anomaly detection, focusing on its application to 3G mobile traffic. The paper introduces a method for anomaly detection that relies 
on statistical distributions to characterize normal behavior in 3G mobile networks. By analyzing the distribution of key network 
parameters, the authors aim to identify deviations indicative of anomalous activities or potential security threats. The survey 
encompasses the proposed distribution-based anomaly detection framework and its application specifically within the context of 3G 
mobile traffic. This approach addresses the critical need for effective anomaly detection mechanisms in telecommunications 
networks, emphasizing its potential for enhancing security and robustness in 3G mobile communication systems. The paper likely 
discusses related works in the field and positions its approach in the broader landscape of anomaly detection techniques for mobile 
networks.. 
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[4] In the realm of traffic modeling and prediction, Zhou, He, and Sun (2006) contribute a significant literature survey through their 
work titled "Traffic Modeling and Prediction using ARIMA/GARCH Model." The authors focus on Chapter 5 of their book, where 
they delve into the application of ARIMA (AutoRegressive Integrated Moving Average) and GARCH (Generalized Autoregressive 
Conditional Heteroskedasticity) models for traffic forecasting. The survey likely reviews existing approaches to traffic modeling, 
discussing the strengths and limitations of different methodologies. It is probable that the authors provide insights into the historical 
context of traffic prediction, emphasizing the significance of time-series analysis in understanding and forecasting traffic patterns. 
Additionally, the survey may explore how the ARIMA/GARCH model compares to alternative methods in terms of accuracy and 
applicability. By dedicating a chapter to this topic, the authors contribute to the broader understanding of traffic prediction 
methodologies, establishing the ARIMA/GARCH model as a viable approach within the context of traffic modeling literature. 
[5] Li et al. (2017) present a literature survey focused on "The learning and prediction of application-level traffic data in cellular 
networks" within their work published in the IEEE Transactions on Wireless Communications. The authors likely review existing 
research related to the learning and prediction of application-level traffic in the context of cellular networks. The survey likely 
addresses key challenges and methodologies associated with understanding and forecasting application-level traffic patterns, 
emphasizing the importance of accurate predictions for optimizing network performance and resource allocation. The paper likely 
contributes to the existing body of knowledge by synthesizing insights from various studies, potentially exploring different machine 
learning or predictive modeling techniques applied to cellular network traffic data. By placing their work within the broader 
landscape of application-level traffic prediction, the authors likely provide valuable perspectives on the state-of-the-art approaches, 
potential limitations, and future research directions in this domain. 
Gooijer and Hyndman (2006) [6] conduct a comprehensive literature survey titled "25 years of time series forecasting" in the 
International Journal of Forecasting. The authors likely review a broad spectrum of research spanning a quarter-century in the field 
of time series forecasting. This survey is likely to cover seminal works, methodological advancements, and the evolution of 
forecasting techniques over the years. It probably provides insights into the major trends, challenges, and breakthroughs that have 
shaped the landscape of time series forecasting. By summarizing the progress made during this extensive timeframe, the survey 
contributes to a deep understanding of the historical context, methodological foundations, and the ongoing development of time 
series forecasting. The authors likely synthesize diverse approaches, including traditional statistical methods and emerging machine 
learning techniques, shedding light on the overarching themes and considerations that have characterized this dynamic and evolving 
field. 
Zhang, Cao, and Gao (2014)  [7] contribute to the literature with a likely literature survey in their work on "A locality correlation 
preserving support vector machine" published in the journal Pattern Recognition. The authors probably review existing research 
related to support vector machines (SVMs) and their applications in pattern recognition, with a specific focus on preserving locality 
correlation. The survey likely explores the challenges and advancements in SVM-based classification techniques, emphasizing the 
importance of preserving local correlations to enhance the model's performance in pattern recognition tasks. The paper likely 
positions its proposed locality correlation preserving SVM within the broader landscape of SVM variants and alternative 
classification methods, discussing its advantages and potential applications. By conducting a literature survey, the authors likely 
contribute to the understanding of SVMs in pattern recognition, offering insights into the state-of-the-art techniques and paving the 
way for further research in this domain. 
Nie, Jiang, Yu, and Song (2017) [8] likely present a literature survey within their work on "Network traffic prediction based on deep 
belief network in wireless mesh backbone networks," presented at the IEEE Wireless Communications and Networking Conference 
(WCNC). The authors probably review the existing body of literature on network traffic prediction, focusing on the specific context 
of wireless mesh backbone networks and the application of deep belief networks (DBNs). The survey likely explores previous 
research efforts in predicting network traffic patterns, discussing both traditional methods and emerging techniques, with an 
emphasis on the advantages and challenges of applying deep learning, particularly DBNs, in this domain. By situating their work 
within the broader landscape of network traffic prediction, the authors likely contribute to understanding the state-of-the-art 
methodologies, identifying gaps in the existing literature, and providing a foundation for the application of DBNs in wireless mesh 
backbone networks. 
[9] Wang et al. (2017) likely conduct a literature survey in their work on "Spatiotemporal modeling and prediction in cellular 
networks: A big data enabled deep learning approach," presented at the IEEE Conference on Computer Communications 
(INFOCOM). The authors probably review existing research on spatiotemporal modeling and prediction within the context of 
cellular networks, with a specific focus on leveraging big data and employing deep learning techniques.  
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The survey likely explores traditional approaches to spatiotemporal modeling in cellular networks and compares them with 
emerging deep learning methodologies. By presenting their work at INFOCOM, the authors likely contribute to the conference's 
broader theme of advancing computer communications and networking technologies. The literature survey likely positions their big 
data-enabled deep learning approach within the evolving landscape of spatiotemporal modeling, identifying key trends, challenges, 
and opportunities for further research in the dynamic field of cellular network prediction. 
LeCun, Bengio, and Hinton (2015) [10] provide a seminal literature survey on "Deep Learning" in their influential paper published in 
Nature. The authors offer a comprehensive overview of the field of deep learning, tracing its historical development, and highlighting 
key concepts, techniques, and breakthroughs. The survey likely covers a range of deep learning architectures, including convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs), discussing their applications in various domains such as computer 
vision, natural language processing, and speech recognition. The authors probably delve into the challenges and advancements in 
training deep neural networks, emphasizing the importance of unsupervised learning and layer-wise pretraining. By summarizing the 
progress made in deep learning up to 2015, the survey likely plays a crucial role in establishing the foundations of this rapidly 
evolving field, providing researchers and practitioners with valuable insights into the state-of-the-art techniques and guiding future 
developments in the realm of artificial intelligence. 
 

V. DATASETS AND SOME KEY OBSERVATIONS 
A. Wireless Big Traffic Dataset 
In this letter, the wireless traffic data under analysis originates from Telecom Italia, a major telephony service provider in Europe, as 
part of their participation in the "Big Data Challenge" [13]. The dataset employed comprises time series data representing 
aggregated cell phone traffic, encompassing both short message service (SMS) and call service activities conducted by users within 
a specified region over the city of Milan. Milan is systematically divided into a grid format with dimensions H × W, where each grid 
square is termed a "cell." The dataset is configured with H=W=100, signifying that the entire city area is systematically segmented 
into a 100×100 grid of cells. The recorded traffic spans the timeframe from 00:00 on November 1, 2013, to 00:00 on January 1, 
2014, with a temporal resolution of 10 minutes. At each time slot denoted as "t," the incoming and outgoing traffic for all cells is 
represented as a tensor Xt ∈ R 2×H×W, where (Xt)0,i,j = x in,i,j t and (Xt)1,i,j = x out,i,j t. Additionally, x i,j = {x in,i,j t }, ∀t 
signifies the incoming/outgoing traffic of cell (i, j) without explicit differentiation, unless stated otherwise. 

 

 
Fig.1.Spatial and temporal distribution and correlation of the considered cellular traffic. 
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B. Key Observations 
1) Temporal Domain 
Following a meticulous examination of the dataset, we have discerned the spatial and temporal characteristics inherent in the 
wireless traffic, with detailed insights illustrated in Fig. 1. In the temporal domain, as depicted in Fig. 1a, the dynamics of traffic for 
distinct services, specifically SMS and Call services, within a given cell are revealed. Notably, the figure elucidates pronounced 
daily patterns, with a subtle divergence between SMS and phone call traffic. Observations from Fig. 1a highlight a consistent 
reduction in traffic volume during weekends in comparison to working days. Moreover, the dissimilarity in traffic volume between 
incoming and outgoing SMS is more pronounced than that observed in phone calls. To provide a more nuanced understanding, Fig. 
1b further portrays the average traffic volume ratio at discrete time slots, represented by the time gap τ.The ratio  is defined as 

 
 

Here,  signifies the traffic volume recorded for cell (i, j) during the \(t\)-th time slot, and T represents the total number of time 
slots in the dataset. The calculated ratio is indicative of the temporal correlation within the wireless traffic time series, implying that 
the traffic in adjacent time slots exhibits a higher degree of relevance compared to those temporally distant. 

 
2) Spatial Domain 
In the spatial domain, focusing on SMS for illustration purposes, Fig. 1c illustrates the spatial distribution of traffic at a specific 
time. Evidently, the traffic is distributed disparately across various cells, a phenomenon attributed to the concentrated population in 
the city center, resulting in substantially higher traffic volumes compared to more rural areas. To quantify the spatial correlation in 
the traffic data, a widely adopted metric [9], namely the Pearson correlation coefficient , is employed. This coefficient measures 
the correlation between a target cell (i, j) and its neighboring cells (i’,j’). 
 

 
The spatial correlation  is computed using the covariance operator cov(.) and the standard deviation . In this illustration, a 
region consisting of 9 × 9 cells is chosen to exemplify spatial correlations. 

 
Fig.2.Prediction framework 

 
The resulting  values between the target cell (5, 5) and its neighboring cells are depicted in Fig. 1d. Notably, the figure vividly 
indicates the presence of spatial correlation among cells, with the degree of correlation influenced by the distance between cells. For 
instance, while both cell (5, 4) and cell (5, 6) are equidistant from the target cell (5, 5), their correlation values, 0.48 and 0.87, 
respectively, differ significantly. These observations underscore the necessity for an effective methodology that can 
comprehensively capture both spatial and temporal dependencies within the wireless traffic dataset. 
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VI. PREDICTION MODEL 
Within this section, we introduce a deep learning methodology grounded in convolutional neural networks (CNNs) designed to 
model the spatial-temporal dependencies inherent in the traffic data across diverse cells. The outlined framework is visually 
depicted in Fig. 2 and is primarily composed of three key components: training data construction, convolutional learning, and 
parametric matrix-based fusion. 
 
A. Training Data Construction 
The representation of in and out traffic for each time slot adopts a two-channel tensor matrix, resembling an image, as depicted in 
the upper segment of Fig. 2. To generate training and test datasets, a sliding window scheme is employed. Assuming that the traffic 
volume at the t-th slot serves as the target for prediction, the intervals preceding t are partitioned into two segments: recent time and 
daily history. Here, \(p\) denotes the length of the dependence of closeness, where the traffic from the recent time segment models 

the temporal closeness dependence as  Similarly, \(q\) represents the length of the dependence of 
the period, with the traffic sampled from daily history modeling the temporal period dependence as 

. Subsequently, the traffic in each segment is concatenated to form a new tensor along their 

first axis. For ease of notation, these two sampled traffic models are denoted as  and , 
respectively. 

 
B. Densely Connected Convolutional Neural Networks 
As elucidated in Section II-B2, the traffic of neighboring cells can mutually influence one another. Capitalizing on the 
commendable ability of Convolutional Neural Networks (CNNs) to hierarchically capture spatial structural information, we 
introduce CNN to model the spatial dependence among cells. By employing a kernel of size (k1, k2) in the convolution operation, 
the information from k1k2 cells is effectively fused into a high-level representation. Leveraging CNN, a sequence of convolutions in 
each layer enables the capture of both local and global spatial dependencies within the citywide traffic. Acknowledging the 
interdependence of in and out traffics across different cells, whether adjacent or distant, we adopt the densely connected pattern [12] 
in CNN. This pattern mitigates the vanishing-gradient problem, reinforces feature propagation, and ultimately enhances prediction 
efficiency and accuracy. The detailed network architecture is depicted in Fig. 2, featuring two networks with a shared structure—
one for modeling temporal closeness dependence and the other for modeling temporal period dependence. The network comprises L 

layers, each implementing a non-linear transformation  with three consecutive operations: Convolution 
(Conv), Batch Normalization (BN), and rectified linear units (ReLU). ReLU, by computing the weighted sum of its input, 
determines whether activation is warranted. To model closeness dependence, the output at the \(l\)-th layer, denoted as , is derived 

from the initial input  at the lth layer, the output is denoted as 
 

 

In this expression, the symbol  denotes the concatenation of the feature maps generated in all preceding layers. Analogously, 
for modeling temporal period dependence, the output at the l-th layer can be expressed as: 

 
 

C. Parametric Matrix Based Fusion 
Building on the preceding analysis, we understand that the traffic patterns of distinct cells exhibit relationships with both closeness 
and period, albeit with varying degrees of relevance. To effectively capture this relationship, we introduce a parametric matrix-
based scheme designed to fuse the features of closeness and period, as depicted in the lower segment of Fig. 2. Specifically, a 

convolution layer is independently introduced and respectively.After fusion, we have 
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In these expressions,  represents the Hadamard product, and  and  denote learnable parameters capturing the 
relationship between closeness, period, and wireless traffic. The ultimate output after activation is expressed as: 

 

In this expression,  signifies the sigmoid function. The training of the proposed deep learning model can be straightforwardly 
accomplished by minimizing the Frobenius norm between the predicted value and the ground truth value for the t-th time slot. 

 
Fig.3.Overall performance on two kinds of wireless traffic. 

 
 

VII. EXPERIMENTAL RESULTS AND ANALYSIS 
A. Preprocessing and Parameter Settings 
In this study, the authors address challenges posed by the sparsity of cell traffic data during 10-minute intervals. Due to the 
difficulty of resource planning at this fine-grained level, the dataset is aggregated per hour. The proposed model utilizes a sigmoid 
activation function, and the traffic values are normalized to the [0,1] range through Min-Max normalization. During evaluation, the 
predicted values are rescaled to their original values and compared with the ground truth. The test data consists of traffic from the 
last 7 days, while all data preceding this period is designated as training data. 
Two deep networks are trained using the Adam optimization technique with a mini-batch size of 32 for 100 epochs. The initial 
learning rate is set at 0.01 and is reduced by a factor of 10 at 50% and 75% of the total training epochs. The convolutional layers in 
both networks consist of 32 filters with a 3×3 size, except for the last layer, which employs 2 filters of size 3×3. The lengths of 
dependent sequences (p and q) are both set to 3. 
Evaluation of model performance is based on the root mean square error (RMSE), which serves as the chosen metric for assessing 
the accuracy of predictions against the ground truth. This comprehensive approach aims to address the challenges associated with 
sparse cell traffic data, providing a robust framework for predicting and optimizing network resource usage over hourly intervals. 

 
B. Overall Performance 
The effectiveness of the proposed deep learning-based cellular traffic prediction method is validated through experiments conducted 
with two types of datasets: SMS and Call. The performance is measured using the root mean square error (RMSE) of the prediction, 
denoted as Proposed-F, and is presented in Fig. 3. Additionally, Fig. 3 includes the RMSE without the parametric matrix-based 
fusion scheme (XL_c+1 + XL_p+1), referred to as Proposed. The results demonstrate that the fusion scheme enhances performance 
in terms of RMSE, indicating that learning the weights of closeness and period contributes to a more accurate description of their 
function in traffic prediction. For comparison, three existing algorithms—Historical Average value (HA), ARIMA, and LSTM—are 
used as baselines, as they are widely employed in current research for traffic prediction. The RMSE values reveal that the proposed 
method achieves the most accurate prediction. This superiority is attributed to the collective modeling of spatial and temporal 
dependences among different cells through the utilization of Convolutional Neural Networks (CNNs). Notably, RMSE values on the 
Call dataset are relatively lower than those of the SMS dataset, as the pattern hidden in the Call dataset is more "regular" compared 
to the SMS dataset, as observed in Fig. 1a. This regularity makes it easier for the deep model to learn. 
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Fig. 4: The change of training loss with each epoch. 

 
It's emphasized that real communication systems may require re-training to adapt to new incoming data. To demonstrate the 
convergence speed of the proposed method, Fig. 4 illustrates the training loss after each epoch. The graph shows a rapid decrease in 
loss during the first 20 epochs, followed by a gradual convergence to a stable status after 40 epochs. This trend indicates that the 
training process of the proposed method is time-efficient. 
 
C. Prediction Results 
The study presents comparisons between the predicted inbound and outbound traffic of a randomly selected cell and the 
corresponding ground truth values. The results are depicted in Fig. 5, showcasing a notable alignment between the predicted 
outcomes and the actual trends. This alignment holds true even during periods of traffic instability, notably in the time slots ranging 
from the 130th to the 160th. The model effectively captures and predicts peaks in both inbound and outbound traffic, demonstrating 
its ability to anticipate fluctuations and maintain accuracy in forecasting, even in challenging scenarios. 

 
VIII. CONCLUSION 

This study explores the interplay of spatial and temporal dependencies within traffic patterns across different cells and introduces a 
deep learning methodology to collectively model these dependencies for traffic prediction. Specifically, a parametric matrix-based 
fusion scheme is introduced to precisely characterize the influence of both spatial and temporal dependencies. The approach treats 
traffic data as images, enabling efficient prediction of citywide traffic dynamics. Experimental results underscore the superiority of 
the proposed Convolutional Neural Network (CNN)-based approach, as evidenced by its superior performance in terms of Root 
Mean Square Error (RMSE) compared to existing methods. 
It's important to highlight that optimal performance with the proposed approach necessitates a substantial volume of training data. 
The study emphasizes the significance of a large and diverse training dataset for achieving the best predictive capabilities with the 
proposed CNN-based model. 

 
Fig.5.Prediction results of a random selected cell. 
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