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Abstract: Maharashtra is a key contributor to India’s agricultural sector, with its productivity heavily influenced by climatic and
environmental factors. This study examines the relationship between crop yield, production, and critical variables such as
temperature, rainfall, irrigation, and nutrient consumption using data from 1966 to 2023. Correlations between yield,
production, and factors like weather, fertilizers, and soil nutrients are analyzed. SHAP (SHapley Additive exPlanations)
identifies the most influential factors, while the Apriori algorithm uncovers associations between agricultural attributes. For
forecasting, machine learning models—RFR (Random Forest Regressor), SVR (Support Vector Regressor), and GBR (Gradient
Boosting Regressor)—are compared, with GBR emerging as the best. STL (Seasonal and Trend decomposition using Loess) is
applied to GBR's time series data to reveal trends and seasonal patterns. This comprehensive approach provides actionable
insights for enhancing agricultural productivity and sustainability in Maharashtra.
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I. INTRODUCTION

Agriculture is the backbone of India’s economy, providing livelihoods to millions and ensuring food security. Maharashtra, one of
the country’s key agricultural states, showcases a mix of fertile plains, semi-arid regions, and coastal belts, supporting diverse crops
like sugarcane, cotton, and pulses. However, the sector remains highly vulnerable to climate variability, with erratic rainfall, rising
temperatures, and frequent droughts posing major challenges. Regions like Marathwada and Vidarbha have experienced extreme
heat, with temperatures soaring past 50°C in May 2023, impacting soil health and water availability. While climate change threatens
agricultural stability, it also drives innovation, encouraging the adoption of climate-resilient crops, precision farming, and advanced
irrigation techniques to sustain productivity in the face of growing uncertainties.

Fig.1 District-wise socioeconomic vulnerability in Maharashtra (Source: Deccan Herald)

Fig. 1 shows that 77% of Maharashtra's cropped area is vulnerable to climate change, according to a study based on data from 44
indicators related to climatic and socio-economic factors.
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Using data from 1966 to 2023, this study applies correlation and STL decomposition, and the Apriori algorithm to identify key
trends and associations in agriculture. It also evaluates forecasting models like RFR, SVR, and GBR to determine their accuracy in
predicting crop yield and production. By comparing their performance, the study offers insights into the most effective methods for
agricultural forecasting under changing climatic conditions.

Il. RELATED WORK
Paper [1], titled "Rainfall Prediction for Enhancing Crop-Yield based on Machine Learning Techniques” employs a Multilayer
Perceptron (MLP) to predict crop yield using rainfall data from 1901 to 2002, with the dataset split into 60%-40% for training and
evaluation, assessed via MSE and NMSE.
The study's merits include its ability to capture nonlinear relationships in climate data and its emphasis on data preprocessing for
effective feature extraction. However, it has notable demerits, such as the limited dataset, which ends in 2002, making predictions
less relevant for current climate trends, and the lack of comparison with other advanced ML models like Random Forest or
XGBoost, which could have provided a more comprehensive analysis.
Paper [2], titled "A Creative Use of Machine Learning for Crop Prediction and Analysis" employs SVM, Random Forest, and
Decision Trees to analyze seasonal crop growth trends using a dataset of over 25,000 records. The study's merits include the use of a
large dataset, which enhances training generalization, and the application of Exploratory Data Analysis (EDA) to understand data
distributions. However, it has notable demerits, such as the absence of discussion on hyperparameter tuning and the lack of
justification for why Random Forest outperformed the other models, leaving room for further clarification and optimization.
Paper [3], titled "Influence of Causal Inference for Crop Prediction” integrates Random Forest (RF) with Bayesian Inference to
enhance causal relationship modeling in agricultural yield predictions, achieving an impressive 97.2% accuracy. The study's merits
include the use of a causal inference framework, which improves interpretability, and the high accuracy, which underscores the
model's reliability. However, it has notable demerits, such as the limited dataset size (2200 rows), which reduces the model's
generalizability, and the absence of testing with deep learning methods, which could have provided additional insights into
performance and scalability.
Paper [4], titled "A Case Study on the Application of Machine Learning to the Process of Crop Forecasting” compares SVM,
Decision Tree, and Random Forest for crop forecasting using Maharashtra state data, with Random Forest achieving 97% accuracy.
The study's merits include the use of real-world agricultural data and the provision of fertilizer recommendations, adding practical
value. However, it has notable demerits, such as the lack of real-time weather integration, which limits dynamic adaptability, and
the reliance on historical data, which may restrict the model's ability to address current or future agricultural challenges effectively.
Paper [5], titled "Climate Forecasting: Long Short-Term Memory Model using Global Temperature Data" employs LSTM networks
to forecast global climate trends using temperature datasets, achieving 96.16% accuracy. The study's merits include the model's
ability to effectively capture long-term dependencies in climate trends and the use of standard error metrics such as MAE, RMSE,
and MAPE for evaluation. However, it has notable demerits, including high computational costs and the omission of external
climate factors like greenhouse gas emissions, which could enhance the model's comprehensiveness and relevance to real-world
climate dynamics.
Our study is important because it gives a clear, district-wise picture of how climate change is affecting farming in Maharashtra—
something that hasn’t been done in this detail before. While most research looks at state-level trends, this study breaks it down by
crop, district, and weather patterns, making it useful for both farmers and decision-makers. It also combines advanced tools from
data science, like machine learning models (GBR, SVR, RFR), pattern mining (Apriori), and STL analysis to study seasonal trends
and compare real data with forecasts. This kind of detailed checking is rare in farm research. Most studies look only at the past, but
this one looks ahead to help prevent future problems, making it a smart and forward-thinking approach.

IHLMETHODOLOGY
To analyze the impact of NPK fertilizers and weather on yield and production, correlation is used. SHAP helps explain the
importance of features and how each parameter influences yield.
Apriori identifies associations between climatic parameters, fertilizers, and yield. For robust non-linear regression models, SVR,
RFR, and GBR are employed to predict yield. Finally, STL decomposes the GBR forecasted data to understand its trend,
seasonality, and residual components.
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Fig.2 Block Diagram

Fig. 2 outlines the methodology used to analyze and forecast the impact of climatic and agricultural factors on crop yield and
production. The study begins with data collection from the International Crops Research Institute for the Semi-Arid Tropics
(ICRISAT), focusing on Maharashtra’s agricultural and environmental data, including yield, production, area, rainfall, temperature,
NPK fertilizer consumption.

Exploratory Data Analysis (EDA) is performed to identify trends and relationships [6]. Correlation between yield and production
with climatic features is derived. SHAP is a game-theoretic approach to explain the output of any machine learning model. It is used
to find the top 10 most influential factors for each crop’s yield and production. The Apriori algorithm is used to uncover
associations between key attributes, helping to identify influential factors in agricultural productivity. For forecasting, predictive
models like Random Forest (RFR) and Support Vector Regressor (SVR) capture complex relationships, while Gradient Boosting
(GBR) enhances accuracy by optimizing weak models. The performance of these models is compared to determine the most
effective approach for estimating future agricultural trends, and Seasonal-Trend Decomposition using Loess (STL) captures
seasonal variations. This methodology offers a structured framework for understanding past patterns and making informed decisions
about future agricultural planning.

IV.IMPLEMENTATION
A. Data Collection & Preprocessing
The dataset used in this study was obtained from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
[7], containing aggregate and crop-specific data for multiple districts in Maharashtra from 1966 onwards.
The aggregate dataset includes Year, State Name, and Dist Name for location and time tracking, along with Area, Production, and
Yield for agricultural output. It covers Irrigated Area for water use and climate factors like Annual Rainfall, Min/Max temperature,
Precipitation, and Evapotranspiration. Fertilizer details include Nitrogen, Phosphate, Potash, NPK composition, and application
rates under NCA and GCA. Land-use metrics encompass Total Area, Forest, Barren Land, Non-Agricultural Land, Cultivable
Waste, Pastures, Fallow Areas, and Cropping Intensity.
The crop dataset tracks Year and Dist Name along with major crops such as Rice, Wheat, Sorghum, Pearl Millet, and Maize, pulses
like Chickpea, Pigeonpea, and Minor Pulses, oilseeds including Groundnut, Sesamum, and Total Oilseeds, and cash crops like
Sugarcane and Cotton. It also includes Fruits and Vegetables for horticulture trends, Potash and Total Fertilizer Use, and climate
factors like Min/Max Temp, Precipitation, and Evapotranspiration.
To handle missing values in the dataset, forward fill (ffill) imputation is applied to maintain temporal consistency across the time
series.

B. Statistical Modeling & Pattern Analysis

To understand the relationships between agricultural factors, correlation analysis was applied to determine the strength and direction
of associations between target attributes and Yield and Production. SHAP [8] was then used to assess how different attributes
influence the two target variables, Yield and Production, providing a more granular understanding of feature importance and their
impact on the predictions. To uncover hidden associations, the Apriori algorithm [9] was applied to identify frequent itemsets
between Area, Irrigation, and Nutrient Consumption with Yield and Production.
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Continuous data was binarized, and association rules were generated with minimum support (0.3) and confidence (0.5). These
relationships were visualized through directed graphs, providing insights into key agricultural dependencies.

C. Regression Models

Predictive models were developed for Yield and Production, considering Year, Area, Irrigation, Nitrogen and Phosphate
Consumption, Temperature, and Rainfall. The models were trained on data from all the districts to capture regional variations.

For Random Forest Regressor (RFR) [10][11], the aggregate data model uses a broader range of n_estimators (100, 200, 300, 500)
and min_samples_split (2, 5, 10) compared to the crop data model, which has n_estimators limited to 100, 200, and 300 and
min_samples_split to 2 and 5. Support Vector Regressor (SVR) [12][13] differs significantly: for crop data, it includes svr__C (1 to
1000), svr__epsilon (0.001 to 0.5), and svr__gamma options, whereas for aggregate data, the grid is smaller, with C (1, 10, 100),
epsilon (0.1, 0.2, 0.5), and only linear and rbf kernels. Gradient Boosting Regressor (GBR) [14][15] uses identical hyperparameters
across both datasets, including n_estimators (100, 200, 300), learning_rate (0.01, 0.05, 0.1), and max_depth (3, 5).

D. Model Evaluation & Forecasting

All models were evaluated based on R? and RMSE [16] to determine the most reliable forecasting approach. The best-performing
models were used to generate long-term agricultural projections up to 2040, supporting data-driven decision-making for sustainable
agricultural planning.

E. STL Decomposition for Trend Comparison

STL [17] decomposition was employed to compare the trend of the forecasted values with the actual data values obtained in the
dataset. By decomposing variables such as Yield and Production into trend, seasonal, and residual components, we validated the
accuracy of the model’s predictions and identified temporal patterns impacting agricultural outcomes.

V. RESULTS
A. Correlation
1) Aggregate Dataset
The correlation analysis for the aggregate Yield data reveals a positive correlation with Nitrogen Consumption (tons) and a negative
correlation with Minimum Temperature (°C). For Production, there is a positive correlation with Total Consumption (tons) and a
negative correlation with Minimum Temperature (°C).

2) Crop Dataset
TABLE |. CORRELATION OF CROP YIELDS WITH CLIMATIC FACTORS AND FERTILIZER USE

Crop Strongest Positive Correlation Value Strongest Negative Correlation Value
Rice Precipitation 0.498 Max Temperature -0.407
Wheat Nitrogen per HA of NCA 0.556 Nitrogen Share in NPK -0.229
Sorghum Nitrogen per HA of NCA 0.124 Precipitation -0.556
Pearl Millet Irrigated Area 0.257 Precipitation -0.148
Maize Nitrogen per HA of NCA 0.484 Max Temperature -0.030
Chickpea Phosphate per HA of GCA 0.493 Nitrogen Share in NPK -0.303
Pigeonpea Phosphate per HA of GCA 0.492 Potash Share in NPK -0.161
Minor Pulses Nitrogen per HA of NCA 0.258 Potash Share in NPK -0.106
Groundnut Phosphate per HA of GCA 0.337 Max Temperature -0.465
Sesamum Phosphate per HA of GCA 0.392 Max Temperature -0.397
Oilseeds Nitrogen per HA of NCA 0.454 Max Temperature -0.060
Sugarcane Phosphate per HA of GCA 0.394 Max Temperature -0.391
Cotton Phosphate per HA of GCA 0.336 Max Temperature -0.046
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Overall, Table I shows that nitrogen and phosphate usage generally support crop yields, while extreme temperatures and imbalanced
fertilizer shares often suppress them.

B. SHAP (SHapley Additive Explanations)

SHAP is a model-agnostic technique based on game theory that explains the contribution of each feature to a model’s prediction. It
assigns Shapley values to input features, indicating their impact (positive or negative) on the output.

1) Aggregate Dataset

Top 10 Features Influencing Production

NITROGEN CONSUMPTION (tons)
Area -

TOTAL CONSUMPTION (tons) 1
GROSS CROPPED AREA (1000 ha)
POTASH CONSUMPTION (tons) 4
FOREST AREA (1000 ha)

Irrigated Area

Max Temp (Centigrate) -

CROPING INTENSITY (Percent)

Precipitation (mm)

0 2'5 Sb 7|5 160 12IS
Fig.3 Top 10 features influencing Production

The most important factors for Production have been found as shown in Fig. 3. The x-axis represents the magnitude of feature
impact, where larger values indicate that these features play a stronger role in influencing the model’s production predictions. It
shows that features such as Nitrogen Consumption (tons) and Area have the most significant impact, as indicated by their longer
bars.

2) Crop Dataset

Top 10 Features Influencing Rice Production

Precipitation (mm)

Irrigated Area

Annual Rainfall

Min Temp (Centigrate) 4

POTASH SHARE IN NPK (Percent)

Features

Max Temp (Centigrate)

NITROGEN PER HA OF NCA (Kg per ha)
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NITROGEN SHARE IN NPK (Percent)

PHOSPHATE SHARE IN NPK (Percent) 4
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SHAP Value (Importance)

Fig.4 Top 10 features influencing Rice Production

Fig. 4 depicts that Precipitation (mm) and Irrigated Area have the most significant impact on Rice Production. Similarly, this has
been done for the other crops as listed in the implementation part.
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C. Apriori Algorithm
The Apriori algorithm is used in data mining to identify frequent itemsets and generate association rules from transactional data. It

works by iteratively finding subsets of items that frequently occur together, based on a minimum support threshold. The Association
Rules Graph visualizes these rules, where nodes represent items (like temperature categories) and edges represent associations
between them, with edge weights indicating the confidence level of the rule. In this graph, temperature categories (e.g., Min
Temp_Medium, Max Temp_High) are connected based on their co-occurrence patterns in rice production data, helping to identify
relationships between different temperature conditions and their impact on production.

1) Aggregate Dataset
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Flg 5 Apriori Rules for Yield

Fig. 5 shows the association and relationships between the variables for the target variable Yield. It depicts that nitrogen
consumption boosts yield (0.75) but reduces potash use (-0.68), highlighting the need for balanced fertilization. Phosphate
consumption positively impacts yield (0.75) with no direct link to other nutrients, indicating an independent effect. Higher potash
use is linked to lower yields (-0.76) and is negatively associated with nitrogen use (-0.68). The combined effect of nitrogen and
phosphate consumption has the strongest impact on yield (0.77), emphasizing their synergistic importance, while potash may hinder

yield, illustrating the complexity of fertilizer management.
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Fig.6 Apriori Rules for Production

Fig. 6 shows the association and relationships between the variables for the target variable Production. It depicts that nitrogen
consumption (0.78) significantly boosts production, while phosphate (-0.78) and potash (-0.77) have negative impacts, likely due to
over-application or imbalances. Gross cropped area (0.71) positively affects production, as more cultivated land typically increases
output. The combination of nitrogen and potash (0.81) shows the strongest positive impact on production, highlighting their
combined importance. Overall, production is influenced by fertilizer use and cultivated area, with nitrogen and the nitrogen-potash

combination having positive effects, while phosphate and potash alone show negative correlations.
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2) Crop Dataset
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Fig.7 Apriori Rules for Rice Production

Fig. 7 shows the association and relationships between the variables for the target variable Rice Production. It depicts that low
minimum temperatures (1.00) have a very strong negative impact on rice production, with medium minimum temperatures (0.93)
also hindering yields. High maximum temperatures (0.84) are more detrimental than medium ones (0.76), and overall, maximum
temperatures strongly affect production (0.82). Low rainfall (0.84) is closely linked to low rice production and unfavorable
temperature conditions. In summary, rice production is highly sensitive to low temperatures and requires sufficient rainfall.

nned_High
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= RICE YIELD Sinned_High
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tttttt
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Fig.8 Apriori Rules for Ahmednagar District
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The Apriori rules analysis for the Ahmednagar district in Fig. 8, as above, reveals a strong interdependence between crop yields and
rainfall, highlighting precipitation as a key factor influencing agricultural outcomes. High rice yields are frequently associated with
high sorghum vyields (confidence 89%, lift 1.42), indicating shared favorable conditions such as adequate rainfall and suitable soil
quality. Conversely, low wheat yields consistently predict low cotton yields (confidence 83%, lift 1.64) and are linked to both low
rice yields and poor precipitation (confidence 100%, lift 1.82), suggesting that wheat performance serves as an indicator of
widespread agricultural stress, often due to drought. Groundnut yields are especially sensitive to rainfall, with low yields always
corresponding to low precipitation levels (confidence 100%, lift 1.65). Overall, the district exhibits high vulnerability to climatic
factors, as multiple major crops experience simultaneous yield declines during poor rainfall years, emphasizing the need for
strategies focused on water management and climate resilience.

Similarly apriori analysis done on the remaining 20 districts of Maharashtra reveals critical agricultural patterns driven by climate
change. Rising maximum and minimum temperatures across all districts indicate intensifying heat stress, significantly impacting
wheat and pulses, which are highly sensitive to temperature fluctuations. The increasing frequency of extreme heat events could
lead to reduced grain filling periods, lower yields, and greater vulnerability to pests and diseases. Rainfall fluctuations are a major
concern, with districts like Jalgaon and Satara experiencing sharp declines, while others face erratic precipitation patterns, leading to
alternating drought and flood cycles. Such inconsistencies disrupt sowing schedules, delay crop maturity, and result in uneven soil
moisture retention, affecting long-term productivity. A steady decline in irrigated area across several districts is shifting dependency
toward rainfall, posing risks to water-intensive crops like rice and sugarcane. Reduced irrigation access in districts such as
Ahmednagar, Aurangabad, and Amravati is already contributing to declining rice and wheat production, further exacerbated by
rising temperatures. Fertilizer usage trends show declining nitrogen and phosphate application in multiple regions, which could lead
to soil nutrient depletion, reduced crop resilience, and a long-term decline in agricultural output. The depletion of essential soil
nutrients without adequate replenishment could reduce productivity, particularly in regions that already suffer from lower organic
matter content. Maize production, however, shows fluctuations, with some districts like Akola recording increased yields, possibly
due to its better adaptation to variable rainfall patterns. Meanwhile, sugarcane and cotton remain stable, with sugarcane exhibiting
resilience to shifting climate conditions, and cotton benefiting from its drought-resistant properties, allowing it to sustain yields even
in water-scarce districts.

These findings highlight a critical need for improved irrigation infrastructure, adaptive crop management strategies, and balanced
fertilizer application to sustain long-term agricultural productivity. Without proactive interventions, the increasing unpredictability
of climate factors could lead to heightened risks for staple crops, potentially threatening food security and farmer livelihoods in the
region.

D. Time Series Forecasting Using Regression: Support Vector, Random Forest, and Gradient Boosting

TABLE Il. Comparison Of Forecasting Algorithms

Aggregate data Crop data
RFR SVR GBR RFR SVR GBR

R? MSE R? MSE R? MSE R? MSE R? MSE R? MSE

Ahmednagar .939 B6.42 .990 D9.32 .988 5.14 972 1.35 .992 1.39 .978 .42
Akola .943 11.21 .989 51.08 .982 B.72 .970 0.69 .970 5.30 .983 8.12
Amarawati 927 14.33 .993 b7.68 .964 7.06 .953 4.71 .986 9.20 979 0.28
Beed .909 B6.96 .990 D6.18 .957 2.00 .969 9.05 .970 4.31 .967 4.04
Bhandara .900 D5.38 991 P7.73 .949 B.72 .954 7.54 .944 7.77 951 5.77
Buldhana .943 B8.75 991 B5.51 .958 0.31 .966 9.60 .969 5.44 972 5.18
Chandrapur .934 D2.70 .993 b1.73 .967 8.83 .965 8.23 .967 4.28 972 4.92
Dhule 931 D1.47 .994 b0.82 .958 10.7 .983 0.73 .987 6.10 .988 0.22
Jalgaon .935 [2.98 .985 23.15 ].966 5.69 .966 7.03 .986 0.38 973 3.22
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Kolhapur .926 P6.53  1.987 15.14  |.957 B.06 .978 4.66 .959 /.95 .950 B.76
Nagpur .928 D0.54  1.989 b4.46  |.972 b.90 972 2.52 972 5.64 .965 .46
Nanded .909 P1.52  1.988 B7.51  |.963 7.82 .959 3.06 .968 3.94 .970 9.08
Nashik 922 B2.58  1.990 14.08 |.972 b.55 974 14.8 .958 1.95 .962 1.23
Osmanabad .938 P5.43  1.990 D1.85  |.975 b.82 .953 9.08 973 9.07 .976 4.02
Parbhani .934 b3.12  1.992 b9.75  |.954 4.18 .981 3.28 .986 5.33 .987 0.50
Pune .904 b7.07  1.985 05.92 |.945 9.73 971 5.64 .982 3.16 .984 0.43
Sangli 922 PDO7.0  1.987 16.06  |.962 /.81 973 9.26 .983 8.92 .987 4.32
Satara .932 81.01  1.992 b6.83  P.96 D.47 .958 4.14 .969 /.96 .952 0.16
Solapur 919 12.82  1.985 65.94 .954 2.76 975 3.43 975 0.26 .985 0.27
Yeotmal 922 b8.13  1.988 B2.27  |.974 /.66 961 7.04 977 7.99 .966 4.96

Table 11 shows that GBR (Gradient Boosting Regressor) emerges as the best-performing model for both Aggregate and Crop data
due to its optimal balance between high explanatory power (R?) and low prediction error (RMSE).

For Aggregate data, while SVR (Support Vector Regressor) occasionally achieves marginally higher R2 values (e.g., 0.990
compared to GBR’s 0.988 in Ahmednagar), GBR demonstrates significantly lower RMSE values (e.g., 15.14 vs. SVR’s 799.32),
highlighting its superior practical accuracy and reliability. Similarly, for Crop data, GBR consistently outperforms both RFR
(Random Forest Regressor) and SVR, achieving the highest R? values (e.g., 0.978 in Ahmednagar) and the lowest RMSE values
(e.g., 9.42) across most regions.

GBR’s consistent performance underscores its robustness and generalization across diverse datasets, making it the preferred choice
for accurate and reliable agricultural yield and production forecasting.

TABLE I1l. FORECASTED VALUES FOR YIELD, PRODUCTION, AND AREA

District Major Crop Year yield (Kg per ha) roduction (tons) Area (1000 ha)
2030 766.76 215.99 281.00
Rice
Bhand . 2035 1585.15 448.99 283.00
andara (85.5% of total production)
2040 1127.00 325.99 289.00
2030 665.00 173.05 260.00
Sorghum
Nanded (42.7% of total production) 2035 408.00 116.95 287.00
2040 845.99 254.01 300.00
2030 8721.07 133.99 15.01
Sugarcane
Solapur (48.4% of total production) 2035 8447.17 185.04 21.98
2040 8715.37 176.00 19.98
2030 315.00 24.00 75.00
Oilseeds
N . 2035 330.00 21.99 65.99
agpur (29.2% of total production)
2040 231.01 15.00 67.00
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Table 111 shows the forecasted values for Yield, Production, and Area for selected districts and their major crops in 2030, 2035, and
2040. The districts are chosen based on the highest percentage contribution of a specific crop to total production. The forecasted
values are obtained using the Gradient Boosting Regressor (GBR) model.

The table indicates an overall increasing trend in Area for most districts, suggesting potential expansion of cultivation. However,
Yield and Production show fluctuations, highlighting the influence of various environmental and agronomic factors. In Bhandara,
Rice Yield and Production peaked in 2035 before slightly declining in 2040. Nanded’s Sorghum shows a dip in 2035 but recovers
by 2040. Solapur’s Sugarcane maintains a high Yield with minor variations in Production, while Nagpur’s Oilseed Production
exhibits a gradual decline, possibly due to environmental constraints. These trends highlight the dynamic nature of agricultural
patterns.

TABLE IV. Fertilizer And Climate Factor Risk Analysis For Districts

L Max | Min N . .
- . . Precipitation Irrigation | Nitrogen | Phosphate | Potash |Overall Climate
District Rainfall Risk Risk Te_mp Te_mp Risk Risk Risk Risk Risk
Risk | Risk
Ahmednagar Declining Declining | Rising | Rising | Declining | Stable Stable Declining High
Akola Incr_eas_lrlg Stable Rising | Rising | Stable |Declining| Declining | Stable Medium
Variability
Nashik Declining Declining | Rising | Rising | Stable | Declining Stable Stable Medium
Increasing - - - - .
Pune Variability Stable Rising | Rising | Declining | Stable Declining | Stable Medium
Jalgaon Declining Declining | Rising | Rising | Declining | Declining Stable Stable High
Kolhapur Incr_eas_lrlg Stable Rising | Rising | Stable Stable Stable Stable Low
Variability
Satara Declining Declining | Rising | Rising | Stable Stable Stable Stable Medium
Solapur Declining Declining | Rising | Rising | Declining | Stable Stable Declining High
Increasing - - -
Nagpur Variability Stable Rising | Rising | Stable |Declining Stable Stable Low
Amrawati Declining Declining | Rising | Rising | Declining | Declining Stable Declining High
Nanded Declining Declining | Rising | Rising | Declining | Declining | Declining | Stable High
Osmanabad Declining Declining | Rising | Rising | Declining | Declining Stable Declining High
Buldhana Incr_eas_lrlg Stable Rising | Rising | Stable Stable Stable Stable Medium
Variability
Chandrapur Declining Declining | Rising | Rising | Declining | Stable Stable Declining High
Beed Declining Declining | Rising | Rising | Declining | Declining Stable Declining High
Yeotmal Incr_eas_lrlg Stable Rising | Rising | Stable Stable Stable Stable Medium
Variability

Table IV shows that most districts face declining rainfall, increasing drought risk, while Akola, Pune, and Kolhapur face flood risks
due to rainfall variability. Rising temperatures across all districts intensify heat stress on crops. High-risk districts like Ahmednagar
and Solapur show declining irrigation, worsening climate vulnerability. Stable irrigation in Nagpur, Kolhapur, and others helps
reduce this risk. Fertilizer use, especially nitrogen and phosphate, is falling in many areas, impacting soil fertility. Overall, high-risk
districts include Ahmednagar and Aurangabad, while Kolhapur and Nagpur are low-risk.
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E. STL (Seasonal and Trend decomposition using Loess)

STL (Seasonal and Trend decomposition using Loess) is a time series decomposition method that separates data into three
components: Seasonal, Trend, and Residual. It helps identify underlying patterns, such as long-term trends and recurring seasonal
effects, in time series data.

When applied to GBR's forecasted data, STL decomposes the predictions into these components. If the original data shows an
upward trend, GBR's predictions will also reflect this pattern, as GBR captures the underlying relationships in the data. By
analyzing the Trend component from STL, we can confirm that GBR's predictions align with the original data's trend, ensuring the

model's accuracy and reliability.
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Fig. 9 shows the STL decomposition of current maize production, showcasing a significant upward trend in recent years with
noticeable seasonality and fluctuations. The decomposition separates the observed production into its trend, seasonal, and residual
components, providing insights into the underlying patterns and potential future production. Fig. 10 validates the result, and the
forecast follows the upward trend with minimal residual.

VI.CONCLUSION
This study analyzed the impact of climatic and agricultural factors on crop yield and production using two datasets: an aggregate
dataset and a crop-specific dataset. SHAP is applied to find the most influential features per attribute, highlighting importance. The
Apriori algorithm identified key associations between attributes.
For Yield, there is a positive correlation with Nitrogen Consumption (tons) and a negative correlation with Minimum Temperature
(Celsius). For Production, it is positively correlated with Total Consumption (tons) and negatively correlated with Minimum
Temperature (Celsius).
Regression models, including RFR, SVR, and GBR, were employed to predict future values, with GBR emerging as the most
effective across both datasets, and GBR's predictions align with the original data's trend, ensuring the model's accuracy and
reliability. For the Aggregate dataset, the R? scores were 0.927 for RFR, 0.989 for SVR, and 0.963 for GBR, while the RMSE values
were 378 for RFR, 573.33 for SVR, and 17.16 for GBR. For the Crop dataset, the R? scores were 0.967 for RFR, 0.976 for SVR,
and 0.974 for GBR, with RMSE values of 21.23 for RFR, 72.23 for SVR, and 17.5 for GBR. GBR is the best model overall because
it consistently achieves the lowest RMSE while maintaining high R2 scores across both datasets.
By applying STL (Seasonal and Trend decomposition using Loess) to GBR's predictions, the data is decomposed into trend,
seasonal, and residual components. The alignment with the trend shows accuracy and reliability, ensuring that GBR's forecasts are
consistent with historical patterns and capable of providing meaningful insights for future agricultural planning. The study presents
a comprehensive evaluation of agricultural trends across 20 districts in Maharashtra, revealing mounting climate-related risks and
production stress. The analysis identifies declining crop yields, climate variability, soil fertility concerns, and irrigation challenges
that have begun to reshape the agricultural landscape of the region.
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These insights offer critical guidance for stakeholders seeking to ensure long-term agricultural sustainability. One of the most
prominent trends observed is the consistent decline in rice and wheat production across several districts, including Ahmednagar,
Aurangabad, Amravati, Jalgaon, and Solapur. This reduction appears to stem from rising temperatures, unpredictable rainfall, and a
steady decrease in irrigated land. These crops, especially wheat, are highly sensitive to heat stress and require stable water
availability, making them particularly vulnerable to the current climate conditions. In contrast, maize shows a more complex pattern.
While some districts report a decline, others show increased production. This inconsistency may be due to maize’s greater resilience
to varying rainfall patterns, suggesting that it may be a more adaptable cereal crop in the context of climate change. Sugarcane and
cotton, in comparison, demonstrate relatively greater resilience. Cotton's inherent drought resistance makes it less dependent on
consistent irrigation, allowing it to thrive even in water-scarce regions. Sugarcane, though water-intensive, has maintained a more
stable output, though it remains at risk if irrigation continues to decline.

Climate trends across the districts show a troubling rise in both maximum and minimum temperatures. This temperature increase
exacerbates heat stress and directly affects yields, especially for temperature-sensitive crops like wheat. In parallel, rainfall patterns
have become increasingly erratic. Districts such as Jalgaon and Satara face sharp rainfall declines, while others like Akola, Pune,
and Kolhapur are experiencing irregular cycles of drought and flooding. This climate unpredictability disrupts planting and
harvesting schedules and threatens to destabilize annual crop output. The situation is further aggravated by the ongoing reduction in
irrigation coverage, especially in districts such as Ahmednagar, Solapur, Aurangabad, and Amravati. As more land becomes reliant
on rainfall, water-intensive crops face heightened production risks. Simultaneously, the use of fertilizers—particularly nitrogen,
phosphate, and potash—has been decreasing in several districts. This decline may be attributed to shifts in farming practices, rising
costs, or underlying soil health problems, which could contribute to long-term reductions in yield due to nutrient deficiencies. Based
on the combined effect of these variables, districts have been classified into different risk categories. High-risk districts include
Ahmednagar, Aurangabad, Jalgaon, Solapur, Amravati, Nanded, Osmanabad, Chandrapur, Beed, and Gadchiroli. These areas suffer
from a convergence of declining rice and wheat yields, increasing temperatures, reduced irrigation, and rainfall inconsistency.
Medium-risk districts such as Akola, Nashik, Pune, Satara, Wardha, Latur, Buldhana, and Yavatmal experience moderate but
growing impacts from climate variability, though some of them maintain relatively better irrigation or soil health. Kolhapur and
Nagpur emerge as low-risk districts, with more stable climate trends, irrigation availability, and crop production. This study
reinforces that climate change is no longer a distant threat—it is already affecting agricultural systems in tangible ways. Without
timely interventions, the situation will worsen, particularly for smallholder farmers who lack access to adaptive technologies or
data-driven support systems. The analysis highlights the urgent need for better water management, widespread adoption of climate-
resilient crop varieties, and investment in precision agriculture. Monitoring soil health and managing fertilizer use effectively are
equally critical to preserving long-term productivity. The findings of this study are valuable for a broad range of stakeholders.
Farmers and agricultural cooperatives can use these insights to adjust their cropping strategies, adopt efficient irrigation practices,
and anticipate yield risks based on district-specific climate patterns. In many high-risk regions, farmers may benefit from
transitioning to less water-intensive crops or introducing drought-tolerant varieties. For policymakers and government agencies, the
results offer a roadmap for designing proactive agricultural policies. These could include targeted subsidies, improved irrigation
infrastructure, climate-smart extension services, and early warning systems for extreme weather. Most importantly, this research
underscores the need to shift from reactive to preventive agricultural planning to secure food and economic security for rural
communities.
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