

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74682

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Cognition in Code: Towards Humanized Intelligence in Computing Need Improvement

Suganthi D¹, Sudharshini C², Atchaya S³, Kaviya Priya S⁴
Department of Computer Science with Cognitive Systems, PSGR Krishnammal College for Women

Abstract: Although artificial intelligence has evolved rapidly in recent years, many types of systems exhibit limitations in efficiently mimicking the subtlety of human cognition. The overwhelming majority of models are strong pattern recognizers in structured environments, but suffer from a failure to account for contextual awareness, empathy as a situational response, and adaptability for human-like interaction. This paper describes a framework for humanized intelligence, while also presenting a system that combines natural language processing, context modelling, continual learning, and feedback adaptation in a unified architecture. In order for machines to be designed for human purposes contextual awareness and human-centered machine responses must be maximized. This framework for humanized intelligence represents progress towards the use of adaptive learning for application in intelligent assistants, healthcare, education, and other important areas, while addressing limitations, ethical implications, and future research.

Keywords: Humanized Intelligence, Cognitive Computing, Context Aware Systems, Adaptive Learning, Natural Language Processing.

I. INTRODUCTION

The function of artificial intelligence in contemporary computing has shifted beyond simply solving problems and processing data. With the emergence of conversational agents, virtual agents, and decision-support systems, the importance of more human-like engagement has risen. Traditional AI operates in well-understood and enforced rule- or probabilistic (statistical)-learning limits yet seldom comprehends the user's intent, emotional state, or context beyond the moment of engagement.

A. Objective of the Study

This work proposes the inclusion of humanized intelligence in computing. Humanized intelligence moves beyond rule-based and pure statistical models that exhibit contextual learning, adaptive reasoning, and commitment to improvements from user feedback. The purpose of the research is to develop a structured framework across dozens of criteria that can be added or removed but retains the flexibility and reality of humanized responses fused with a level of perception and decision-making. The result of this exploratory research is to provide a simplified model that demonstrates the framework developed and also provides author familiarity paired with theoretical and practical contributions to address usability in AI or machine efficiency and human-like cognition.

II. RELATED WORK / LITERATURE REVIEW

The research on cognitive computing has a long history that is premised on earlier approaches to cognition that relied on symbolic reasoning to afford them decentralized reasoning, as well as on connectionist models. While earlier symbolic AI systems took advantage of hard-coded rules, they often did not allow for any adaptability beyond the rules they were designed with. Recently, some progress in natural language processing (e.g., transformer-based models) have afforded systems with more potential for sophisticated language understanding and intent detection, as well as text and dialogue generation.

A. Applications and Limitations

In conversational agents as an example of applied cognitive computing, an earlier effort by IBM Watson demonstrated the ways that cognitive computing could be able to rapidly apply some logic to the model, as well as that it could provide natural language abilities that were based on information retrieval. More recently in work on dialogue systems, researchers have stressed the potential of memory-augmented networks and continual learning to overcome known issues around forgetting, and long-term adaptability. Researchers have been more vigilant than ever in calling for fairness, transparency, and ethical considerations to be considered if conversations with conversational agents around any biases or inappropriate responses are anticipated long-term.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

III. PROPOSED FRAMEWORK / METHODOLOGY

The framework defined in this report presents a schema that is both modular but and cohesive, for integrating humanized intelligence within computational systems. The framework begins with the basis step in processing raw data, structured as user input in the form of text, speech or through sensor data, that is subsequently cleaned, tokenized and further represented as structured features for processing. The cognitive layer comprises of a context manager that manages both short and long-term/contextual memory to create continuity during the interaction.

It also contains a perception modeling component that will analyze the input, in order to detect user intents, entities, and emotions. It has a reasoning component that generates a contextual response based on a hybrid decision-making modeling, that combines a set of machine learning policies with a set of symbolic rules. The response generation modelling then generates responses based on politeness ability, empathy ability, and contextual appropriateness, to create more of a human-state communication. Lastly, a key feature of this model is its adaptive feedback mechanism to enrich the interaction. User input, through explicit ratings or implicit usage feeds back into the system to create interactive feedback response enrichment within the system.

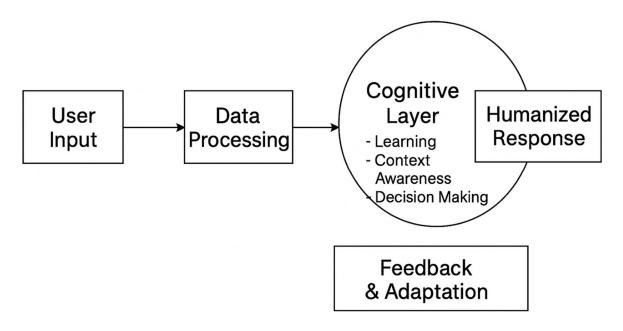


Figure 1: Framework for Humanized Intelligence in Computing

IV. **RESULTS & DISCUSSION**

Although this is a conceptual study, the framework can be evaluated using anticipated implications from previously documented empirical studies. Any system using context with a feedback loop is expected to yield higher completion rates, user satisfaction scores, and adaptation levels than traditional stateless systems. For example, context-aware systems should achieve coherence across the sessions in conversational contexts and be more empathetic and adaptable in determining user needs and yielding new instructions from the user with minimal re-training.

Visualization

Performance improvement can be visualized in Figure 2. It compares a traditional system to a context-aware system across user interactions. The graph indicates the traditional system experiences some, albeit marginal, improvement over time, while the context-aware system clearly moves with a positive slope indicative of improved adaptive learning. This performance improvement is an important component of the presentation, but also to be discussed are the ethical and practical considerations.

For example, implementing these systems raises considerations about the data being used in relation to privacy, bias control, and the calculus between increased computational costs related to accuracy and response time.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

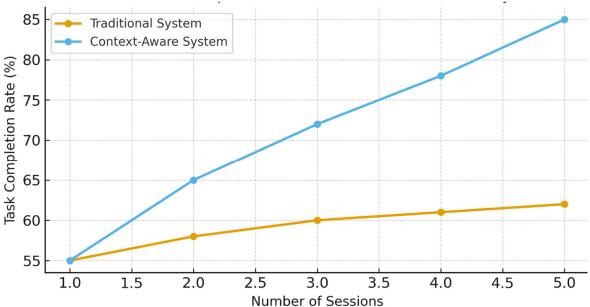


Figure 2: Task Completion Rates between Traditional and Context-Aware Systems.

V. CONCLUSION & FUTURE WORK

In this article, a simplified yet holistic framework for constructing computing systems based on humanized intelligence was presented. By combining natural language processing, context modeling, reasoning, and feedback adaptation, the framework describes a path toward a machine that is able to respond to human users in a more natural and meaningful manner. Future work will continue to explore hybrid reasoning models that combine symbolic knowledge with neural adaptability, helping further extend the framework toward multimodal cognition that incorporates text, speech, and vision.

Further work will also be necessary to confront challenges including positive functioning across languages, stronger explainability modules, and more extensive user studies to validate the framework across a broader range of users. These programs of work in the arena of humanized intelligence will promote computing systems closer to the richness and adaptability of human cognition.

REFERENCES

- [1] Russell, S., & Norvig, P. (2016). Artificial intelligence: A modern approach. Pearson Education.
- [2] Rafsanjani, H. N. (2023). Towards human-centered AI in adaptability and context awareness. *Information Systems and e-Business Management*. https://doi.org/10.1007/s10257-023-00649-4
- [3] Santos, A., Silva, R., & Pereira, L. (2025). Context-aware systems architecture in Industry 4.0. Applied Sciences, 15(4), 1120. https://doi.org/10.3390/app15041120
- [4] Kapetanidou, I. A., Tzortzis, I., & Papadopoulos, G. (2025). Cognitive computing continuum: State-of-the-art review. Springer Journal of Intelligent Information Systems. https://doi.org/10.1007/s10844-025-00981-7
- [5] Dong, P., Liu, Y., & Zhang, W. (2022). Edge semantic cognitive intelligence for 6G networks. arXiv preprint arXiv:2209.10234.
- [6] Elnagar, S., Al-Khafaji, A., & Jaber, A. (2023). What is cognitive computing? An architecture and state of the art. arXiv preprint arXiv:2303.04587.
- [7] Gripsy, J. V., Kowsalya, R., Thendral, T., Sheeba, L. (2025). Integrating AI and Blockchain for Cybersecurity Insurance in Risk Management for Predictive Analytics in Insurance. In Cybersecurity Insurance Frameworks and Innovations in the AI Era (pp. 349–376). IGI Global. https://doi.org/10.4018/979-8-3373-1977-3.ch012
- [8] Gripsy, J. V., Sowmya, M., Sharmila Banu, N., Senthilkumaran, B. (2025). Qualitative Research Methods for Professional Competencies in Educational Leadership. In Leadership in Higher Education: A Global Perspective (pp. 1–20). IGI Global. https://doi.org/10.4018/979-8-3373-1882-0.ch013
- [9] Gripsy, J. V., Sheeba, L., Kumar, D., Lukose, B. (2025). Eco-Intelligent 6G Deployment: A Data-Driven Multi-Objective Framework for Sustainable Impact Analysis and Optimization. In 6G Wireless Communications and Mobile Computing (pp. 1–20). IGI Global DOI: 10.4018/979-8-3373-2220-9.ch008
- [10] Gripsy, J. V., Selvakumari, S. N. A., Senthil Kumaran, B. (2025). Transforming Student Engagement Through AI, AR, VR, and Chatbots in Education. In Emerging Technologies in Education (pp. 1–20). IGI Global. https://doi.org/10.4018/979-8-3373-1882-0.ch015
- [11] Gripsy, J. V., Hameed, S. S., Begam, M. J. (2024). Drowsiness Detection in Drivers: A Machine Learning Approach Using Hough Circle Classification Algorithm for Eye Retina Images. In Applied Data Science and Smart Systems (pp. 202–208). CRC Press. https://doi.org/10.1201/9781003471059-28
- [12] Gripsy, J. V., Mehala, M. (2020). Voice Based Medicine Reminder Alert Application for Elder People. International Journal of Recent Technology and Engineering, 8(6), 2284–2288. https://doi.org/10.35940/ijrte.F7731.038620

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

- [13] Gripsy, J. V., & Kanchana, K. R. (2020). Secure Hybrid Routing To Thwart Sequential Attacks in Mobile Ad-Hoc Networks. Journal of Advanced Research in Dynamical and Control Systems, 12(4), 451–459. https://doi.org/10.5373/JARDCS/V12I4/20201458
- [14] J. Viji Gripsy, "Biological software for recognition of specific regions in organisms," Bioscience Biotechnology Research Communications, vol. 13, no. 1, pp. —, Mar. 2020. doi: 10.21786/bbrc/13.1/54.
- [15] J. Viji Gripsy and A. Jayanthiladevi, "Energy hole minimization in wireless mobile ad hoc networks using enhanced expectation-maximization," in Proc. 2023 9th Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), Mar. 2023, pp. 1012–1019. doi: 10.1109/ICACCS57279.2023.10112728
- [16] J. Viji Gripsy and A. Jayanthiladevi, "Energy optimization and dynamic adaptive secure routing for MANET and sensor network in IoT," in Proc. 2023 7th Int. Conf. Comput. Methodol. Commun. (ICCMC), Feb. 2023, pp. 1283–1290. doi: 10.1109/iccmc56507.2023.10083519.
- [17] S. Karpagavalli, J. V. Gripsy, and K. Nandhini, "WITHDRAWN: Speech assistive Tamil learning mobile applications for learning disability children," Materials Today: Proceedings, Feb. 2021. doi: 10.1016/j.matpr.2021.01.050.
- [18] J. Viji Gripsy, "Trust-based secure route discovery method for enhancing security in mobile ad-hoc networks," Int. J. Sci., Eng. Technol., vol. 13, no. 1, Jan. 2025. doi: 10.61463/ijset.vol.13.issue1.147.
- [19] J. Viji Gripsy, N. A. Selvakumari, L. Sheeba, and B. Senthil Kumaran, "Transforming student engagement through AI, AR, VR, and chatbots in education," in Chatbots in Educational Leadership and Management, Feb. 2025, pp. 73–100. doi: 10.4018/979-8-3693-8734-4.ch004.
- [20] A. S. Vijendran and J. V. Gripsy, "Enhanced secure multipath routing scheme in mobile ad hoc and sensor networks," in Proc. 2nd Int. Conf. Current Trends Eng. Technol. (ICCTET), Jul. 2014. doi: 10.1109/icctet.2014.6966289.
- [21] K. V. Greeshma and J. V. Gripsy, "RadientFusion-XR: A hybrid LBP-HOG model for COVID-19 detection using machine learning," Biotechnol. Appl. Biochem., Jul. 2025. doi: 10.1002/bab.70020.
- [22] T. Divya and J. V. Gripsy, "Lung disease classification using deep learning 1-D convolutional neural network," Int. J. Data Min., Model. Manage., 2025. doi: 10.1504/ijdmmm.2025.10066898.
- [23] J. Viji Gripsy, "Hybrid deep learning framework for crop yield prediction and weather impact analysis," Int. J. Res. Appl. Sci. Eng. Technol., Aug. 2025. doi: 10.22214/ijraset.2025.73800.
- [24] J. Viji Gripsy and K. R. Kanchana, "Relaxed hybrid routing to prevent consecutive attacks in mobile ad-hoc networks," Int. J. Internet Protocol Technol., vol. 16, no. 2, 2023. doi: 10.1504/ijipt.2023.131292.
- [25] J. Viji Gripsy, M. Sowmya, N. Sharmila Banu, D. Kumar, and B. Senthilkumaran, "Qualitative research methods for professional competencies in educational leadership," in Research Methods for Educational Leadership and Management, May 2025, pp. 213–236. doi: 10.4018/979-8-3693-9425-0.ch009.
- [26] J. Viji Gripsy and A. Jayanthiladevi, "Optimizing secure routing for mobile ad-hoc and WSN in IoT through dynamic adaption and energy efficiency," in Intelligent Wireless Sensor Networks and the Internet of Things, May 2024, pp. 45–65. doi: 10.1201/9781003474524-3.
- [27] A. S. Vijendran and J. Viji Gripsy, "RECT zone based location-aided routing for mobile ad hoc and sensor networks," Asian J. Sci. Res., vol. 7, no. 4, pp. 472–481, Sep. 2014. doi: 10.3923/ajsr.2014.472.481.
- [28] T. Divya and J. Viji Gripsy, "Machine learning algorithm for lung cancer classification using ADASYN with standard random forest," Int. J. Data Min. Bioinformatics, 2025. doi: 10.1504/ijdmb.2025.10065391.
- [29] J. Viji Gripsy and T. Divya, "Lung cancer prediction using combination of oversampling with standard random forest algorithm for imbalanced dataset," in Algorithms for Intelligent Systems, 2024. doi: 10.1007/978-981-97-3191-6_1.
- [30] J. Viji Gripsy and K. R. Kanchana, "Relaxed hybrid routing to prevent consecutive attacks in mobile ad-hoc networks," Int. J. Internet Protocol Technol., vol. 16, no. 2, 2023. doi: 10.1504/jijpt.2023.10056776.
- [31] J. V. Gripsy, N. A. Selvakumari, S. S. Hameed, and M. J. Begam, "Drowsiness detection in drivers: A machine learning approach using Hough circle classification algorithm for eye retina images," in Applied Data Science and Smart Systems, Jun. 2024, pp. 202–208. doi: 10.1201/9781003471059-28.
- [32] A. S. Vijendran and J. Viji Gripsy, "Performance evaluation of ASMR with QRS and RZLSR routing scheme in mobile ad-hoc and sensor networks," Int. J. Future Gener. Commun. Netw., vol. 7, no. 6, Dec. 2014. doi: 10.14257/ijfgcn.2014.7.6.05.
- [33] J. Viji Gripsy, R. Kowsalya, T. Thendral, A. SenthilKumar, J. T. Mesia Dhas, and L. Sheeba, "Integrating AI and blockchain for cybersecurity insurance in risk management for predictive analytics in insurance," in Harnessing Data Science for Sustainable Insurance, Jul. 2025. doi: 10.4018/979-8-3373-1882-0.ch013.
- [34] R. Kowsalya, J. Viji Gripsy, C. V. Banupriya, and R. Sathya, "Social impact of technology for sustainable development: A digital distraction detection approach," in Lecture Notes in Networks and Systems, 2025, pp. 245–256. doi: 10.1007/978-981-96-6063-6_22.
- [35] J. Viji Gripsy and M. Sasikala, "Nature-inspired optimized artificial bee colony for decision making in energy-efficient wireless sensor networks," in Advances in Computational Intelligence and Robotics, May 2024, pp. 89–104. doi: 10.4018/979-8-3693-2073-0.ch006.
- [36] J. Viji Gripsy and A. S. Kavitha, "Survey on environmental issues of green computing," Indian J. Appl. Res., vol. 4, no. 2, pp. 156–160, Oct. 2011. doi: 10.15373/2249555x/feb2014/34.
- [37] K. V. Greeshma and J. Viji Gripsy, "A review on classification and retrieval of biomedical images using artificial intelligence," in Internet of Things, 2021, pp. 23–38. doi: 10.1007/978-3-030-75220-0_3.
- [38] J. Viji Gripsy, M. Sasikala, and R. Maneendhar, "Classification of cyber attacks in Internet of Medical Things using particle swarm optimization with support vector machine," in Lecture Notes in Networks and Systems, 2024, pp. 301–315. doi: 10.1007/978-3-031-61929-8_26.
- [39] J. Viji Gripsy, B. Lukose, L. Sheeba, J. T. M. Dhas, R. Jayasree, and N. V. Brindha, "Enhancing cybersecurity insurance through AI and blockchain for proactive risk management," in Advances in Computational Intelligence and Robotics, May 2025, pp. 349–376. doi: 10.4018/979-8-3373-1977-3.ch012.
- [40] M. Mehala and J. V. Gripsy, "Voice based medicine remainder alert application for elder people," Int. J. Recent Technol. Eng. (IJRTE), vol. 8, no. 6, Mar. 2020, PP: 2284-2289 doi: 10.35940/ijrte.f7731.038620.
- [41] J. Viji Gripsy, "A hybrid RFR-BiLSTM framework for social media engagement and web traffic prediction," Int. J. Sci. Res. Comput. Sci., Eng. Inf. Technol., Volume 11, Issue 4, Aug. 2025. doi: 10.32628/cseit25111691.
- [42] G. Bharathi, R. N. M. Vidhya, J. V. Gripsy, J. Mythili, and D. Suganthi, "DRBRO-Dynamic reinforcement based route optimization for efficient route discovery in mobile ad-hoc networks," Int. J. Res. Publ. Rev., vol. 6, Issue 2, Feb. 2025, pp 1804-1806. doi: 10.55248/gengpi.6.0225.0768.

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)