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Abstract: This paper compares the Mean Square Error (MSE) and Least Square Error (LSE) loss functions when modeling a 

noisy sine wave. Utilizing a simple linear regression model implemented in Python on Google Colab, a sine curve corrupted by 

Gaussian noise is generated. Two models are then fit, one optimizing MSE and the other LSE. Their performance is evaluated 

using Mean Absolute Error (MAE) and R-squared (R²) metrics. The experimental results offer insights into the efficiency and 

effectiveness of each loss function in capturing underlying trends within noisy data. 

 

I. INTRODUCTION 

Loss functions are the cornerstone of machine learning and statistical modeling. They serve as the quantitative bridge between 

predicted outputs and observed outcomes by guiding the optimization process. In regression tasks, the choice of a loss function 

significantly impacts both model convergence and accuracy. Among the most commonly employed loss functions are Mean Square 

Error (MSE) and Least Square Error (LSE). 

MSE computes the average of the squared differences between predictions and actual values. Its differentiability and convexity 

simplify the optimization landscape, enabling the the effective application of gradient-based methods, advantages that are 

particularly useful in regression tasks (Bishop 249). While LSE is often used interchangeably with MSE, in this study we define 

LSE explicitly as the aggregate of squared errors. This explicit distinction allows us to explore how error scaling influences both the 

optimization process and convergence behavior. 

In modeling a noisy sine curve, a function with inherent periodicity and nonlinearity, I simulate realistic conditions where data is 

affected by noise. Supplementary performance metrics such as Mean Absolute Error (MAE) and the coefficient of determination 

(R²) are also examined to provide a balanced view of accuracy and goodness-of-fit. 

 

II. LITERATURE REVIEW 

The study of loss functions has been central to the development of machine learning, with early foundational works establishing the 

theoretical basis for their use. In his seminal text, Pattern Recognition and Machine Learning, Bishop explores quadratic loss 

functions in depth. He demonstrates that the Mean Square Error (MSE) penalizes larger deviations more severely than smaller ones 

due to the squaring of error terms and that its differentiable and convex nature is pivotal in ensuring the convergence of gradient-

based optimization methods (Bishop 249). This work laid the groundwork for understanding why quadratic losses, such as MSE, are 

widely adopted in regression tasks. 

Expanding on these early insights, Hastie, Tibshirani, and Friedman provide a detailed treatment of loss functions in The Elements 

of Statistical Learning. Their analysis contrasts the benefits of averaging errors, as in MSE, with the properties of unaveraged losses, 

such as the Least Square Error (LSE). They argue that averaging leads to more stable gradient updates and improves the reliability 

of convergence, especially in the presence of noise. Conversely, LSE, which sums the squared differences without averaging, is 

more sensitive to the scale of the errors, potentially leading to higher variance in the optimization process. This distinction becomes 

particularly significant when dealing with datasets that exhibit a wide range of error magnitudes, thereby affecting model stability 

and convergence rates (Hastie, Tibshirani, and Friedman 367). 

With the advent of deep learning, the importance of loss function selection has been revisited in more complex settings. In Deep 

Learning, Goodfellow, Bengio, and Courville discuss how different loss functions impact the training dynamics of neural networks. 

They note that while MSE is generally favored due to its smooth error landscape, alternative loss functions or modified versions 

thereof may offer advantages in scenarios characterized by high variability or non-linear relationships in data. Their work highlights 

that the choice of loss function can influence not only convergence speed but also the quality of the solution found, emphasizing the 

practical considerations that must be addressed when designing learning algorithms (Goodfellow, Bengio, and Courville 102). 
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Empirical research using modern machine learning frameworks further corroborates these theoretical insights. Studies leveraging 

libraries such as PyTorch and scikit-learn have shown that while MSE typically provides robust and stable convergence, LSE’s lack 

of averaging can result in more volatile gradient updates. For instance, evaluations conducted on various regression tasks reveal that 

the unscaled nature of LSE may lead to exaggerated error contributions, particularly in datasets with significant noise. This practical 

evidence underlines the necessity of careful loss function selection and parameter tuning in applied machine learning, as 

documented by resources like the scikit-learn documentation, which provides guidelines on error metrics and optimization practices 

(Scikit-learn 2021). 

The literature reflects a comprehensive evolution of loss function theory—from early mathematical formulations to modern 

empirical validations. The comparative analysis of MSE and LSE encapsulates a broader discussion about error scaling, gradient 

stability, and convergence behavior, making it a critical topic for both theoretical exploration and practical implementation in 

machine learning. The ongoing dialogue between theoretical insights and empirical findings continues to shape best practices in 

model training and optimization. 

 

III. METHODOLOGY 

In this study, II adopt a systematic approach to compare the performance of Mean Square Error (MSE) and Least Square Error 

(LSE) loss functions using a controlled experimental setup. The methodology is divided into several key stages: data generation, 

model architecture design, loss function specification, optimization strategy, and performance evaluation. Each stage is carefully 

constructed to isolate the effects of the loss function on the learning process. 

 

A. Data Generation 

The data generation process is designed to simulate real-world conditions where measurements are often affected by noise. II begin 

by generating a sine wave defined by the function 

y=sin (x) 

over the interval [0,2π]. The independent variable x is sampled uniformly using NumPy's linspace function, generating 1000 equally 

spaced points across the interval. The corresponding sine values are computed using NumPy’s sin function. To mimic measurement 

errors and inherent data variability, Gaussian noise with a mean of 0 and a standard deviation chosen based on experimental needs 

(e.g., σ=0.1) is added to these sine values. This noise injection is achieved via NumPy’s random.normal function. The result is a 

synthetic dataset that retains the underlying periodic structure of the sine function while incorporating realistic imperfections. 

 

B. Model Architecture 

To isolate the effect of the loss functions, I Iemployed a simple linear regression model implemented in PyTorch. The model 

comprises a single linear layer, instantiated using PyTorch’s nn.Linear module. Although a linear model is inherently limited in 

capturing non-linear dynamics, such as those in a sine wave, it provides a controlled environment that minimizes confounding 

factors. By keeping the model architecture simple, II ensured that differences in performance can be more directly attributed to the 

behavior of the loss functions rather than the complexity of the model. Both models, one using MSE and the other using LSE, share 

an identical architecture, ensuring a fair comparison. 

 

C. Loss Functions and Optimization 

Two distinct loss functions are defined for the comparative study. The first loss function, MSE, is calculated as the average of the 

squared differences between the predicted values and the true values. This averaging process tends to smooth the gradient updates 

and contribute to stable convergence during training. The second loss function, LSE, is computed as the sum of the squared 

differences without averaging. This unscaled aggregation can lead to larger gradient magnitudes, particularly in the presence of 

noise, and may affect the convergence rate and stability of the optimization process. 

Both models are trained using Stochastic Gradient Descent (SGD) as the optimization algorithm. A learning rate of 0.01 is 

employed, and training is carried out over 1000 epochs. During training, the loss is evaluated at each epoch to monitor the 

convergence behavior of the models.  

This setup, with fixed hyperparameters and a controlled environment, allows us to isolate the influence of the loss function 

formulation on the training dynamics. 
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D. Evaluation Metrics 

To comprehensively assess model performance, Iemploy several evaluation metrics. In addition to the loss value observed during 

training, the models are evaluated using the Mean Absolute Error (MAE) and the coefficient of determination (R-squared). MAE 

measures the average absolute difference between the predicted and true values, providing an intuitive sense of the model’s 

prediction accuracy. The R² metric quantifies the proportion of variance in the dependent variable that is predictable from the 

independent variable, thus serving as an indicator of the model’s goodness-of-fit. These metrics are computed using standard 

functions available in scikit-learn, which have been validated in numerous studies (Scikit-learn 2021). 

Overall, the methodology is designed to offer a clear and controlled comparison of MSE and LSE loss functions. By systematically 

varying only the loss function while keeping all other factors constant, Ican directly observe the impact of error scaling on the 

optimization process and the resultant model performance. 

 

IV. EXPERIMENT SETUP AND DISCUSSION 

My myexperiments were conducted in a controlled environment using Google Colab, which provided a consistent runtime equipped 

with an NVIDIA GPU. This environment ensured that all experiments were executed under identical conditions, with Python 3.8 

and PyTorch 1.8.0 serving as my myprimary development frameworks. To maintain reproducibility, IIset fixed random seeds for 

both NumPy and PyTorch, guaranteeing consistent dataset generation and model initialization across multiple runs. 

 

A. Data Preparation and Splitting 

I Igenerated a synthetic dataset by uniformly sampling 1000 data points in the interval [0,2π]. For each point, the sine function 

y=sin (x) was computed, and Gaussian noise (mean = 0, standard deviation = 0.1) was added to simulate measurement errors and 

real-world variability. This noise injection was performed using NumPy’s random.normal function, producing a noisy sine wave 

that retains the inherent periodicity of the underlying function. The complete dataset was then split into training and testing subsets 

using an 80-20 ratio, ensuring that a substantial portion of data was available for model learning while preserving an unbiased test 

set for evaluation (Scikit-learn 2021). 

 

B. Model Architecture and Initialization 

To isolate the influence of loss function choice on model performance, I Iadopted a simple linear regression model consisting of a 

single linear layer, implemented via PyTorch’s nn.Linear module. Although such a linear model is limited in its capacity to capture 

the non-linear dynamics of a sine function, its simplicity minimizes confounding variables, allowing me to focus on the behavior of 

the loss functions. Both the MSE-based and LSE-based models were initialized with identical weights and biases. This consistent 

initialization ensured that any observed differences in performance were attributable solely to the choice of loss function rather than 

differences in initial parameter settings. 

 

C. Training Process 

Both models were trained using Stochastic Gradient Descent (SGD) with a fixed learning rate of 0.01 over 1000 epochs. The choice 

of SGD was motivated by its straightforward implementation and well-understood dynamics in simple regression contexts. During 

training, I Irecorded the loss at every epoch to monitor convergence behavior closely. With MSE, the loss function computes the 

average of the squared errors, leading to smoother gradient updates and more stable convergence. In contrast, LSE calculates the 

sum of squared errors without averaging, resulting in larger gradient magnitudes that can introduce more variability in the 

optimization process. This difference in gradient scaling was a central focus of my experimental analysis. 

 

D. Evaluation Metrics and Performance Analysis 

To evaluate model performance comprehensively, I I employed two additional metrics: Mean Absolute Error (MAE) and the 

coefficient of determination (R²). MAE quantifies the average absolute difference between predicted and true values, providing an 

intuitive measure of prediction accuracy. Meanwhile, R² assesses the proportion of variance in the observed data that is captured by 

the model, serving as an indicator of overall goodness-of-fit. These metrics were computed on the test dataset to ensure that my 

evaluation reflected the models’ generalization capabilities. Throughout the training process, the MSE model consistently achieved 

lower MAE and higher R² scores compared to the LSE model, suggesting that the averaging inherent in MSE contributes to more 

reliable and stable performance in the presence of noise. 
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V. DISCUSSION OF EXPERIMENTAL RESULTS 

The deeper analysis of my experimental setup reveals several important insights: 

1) Convergence Behavior: The MSE model, by averaging the squared errors, produced smoother gradient updates that facilitated a 

more stable convergence process. In contrast, the LSE model's unaveraged approach amplified the gradient magnitudes, making 

the optimization more sensitive to noise and outliers. This often resulted in erratic training loss behavior and slower, less stable 

convergence. 

2) Sensitivity to Noise: The sensitivity of LSE to the scale of errors was evident in the higher loss values and greater fluctuations 

during training. This sensitivity likely contributed to the inferior performance metrics (higher MAE and lower R2R^2R2) 

observed for the LSE model on the test set. 

3) Model Simplicity and Isolation of Variables: By employing a simple linear model, I was I able to directly attribute the 

differences in performance to the loss function choice. This controlled experimental setup reinforces the notion that even subtle 

differences in loss formulation can have significant impacts on model behavior, especially in noisy environments. 

These observations are consistent with theoretical expectations and prior literature, which emphasize the advantages of averaging in 

mitigating gradient instability (Bishop 249; Hastie, Tibshirani, and Friedman 367; Goodfellow, Bengio, and Courville 102). 

 
Figure 2 (Comparison of MSE and LSE on Noisy Sine Curve) 

 

Metrics MSE Model  LSE Model  

Final Loss  0.1938 48.9643 

MAE  0.3985 0.6194 

R² Score  0.5892 -.0.0251 

 

A. Conclusion 

The experimental results clearly demonstrate that the choice of loss function can have a significant impact on model performance, 

particularly in noisy environments. The MSE-based model achieved a final loss of 0.1938, an MAE of 0.3985, and an R² score of 

0.5892. These metrics indicate a relatively stable convergence and a better fit to the noisy sine curve. In contrast, the LSE-based 

model, with a final loss of 48.9643, an MAE of 0.6194, and an R² score of -0.0251, exhibited unstable training dynamics and poor 

predictive performance. The averaging mechanism inherent in MSE appears to smooth out gradient fluctuations, thereby enhancing 

 

B. Limitations 

While the results provide valuable insights into the comparative performance of MSE and LSE, several limitations must be 

acknowledged: 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue II Feb 2025- Available at www.ijraset.com 

     

 1522 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

1) Model Complexity: The study utilized a simple linear regression model to isolate the effects of the loss functions. However, the 

linear model is inherently limited in its capacity to capture non-linear relationships, such as those present in the sine function. 

This choice may have restricted the potential performance of both loss functions. 

2) Dataset Characteristics: The synthetic dataset, although designed to mimic real-world noise through Gaussian perturbations, 

represents only a narrow range of potential noise distributions and scales. The findings may not generalize to datasets with 

different noise characteristics or more complex underlying functions. 

3) Optimization Constraints: The experiments were conducted using a fixed learning rate and a specific number of epochs. 

Different hyperparameter settings or alternative optimization strategies could potentially alter the convergence dynamics and 

performance metrics of both loss functions. 

 

VI. FUTURE SCOPE 

Future research should explore the application of these loss functions in more complex, non-linear models such as neural networks, 

which are better equipped to capture intricate data relationships. Additionally, extending the analysis to diverse noise profiles and 

real-world datasets could provide deeper insights into the robustness of each loss function under varying conditions. Investigating 

advanced optimization techniques and adaptive learning rate strategies might further elucidate whether the performance 

discrepancies observed persist across different training paradigms. Moreover, incorporating regularization methods or developing 

hybrid loss functions that blend the advantages of both MSE and LSE could lead to improved model stability and accuracy in noisy 

environments. These avenues of exploration will not only refine our understanding of loss function behavior but also enhance 

practical applications in machine learning. 
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