
 

14 II February 2026

https://doi.org/10.22214/ijraset.2026.77386



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 14 Issue II Feb 2026- Available at www.ijraset.com 
     

432 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

Comparative Analysis of Pretrained Models in 
Prefix-Based Image Captioning Tasks under 

Limited Training Conditions 
 

Sumedha Arya 
 

Abstract: Image captioning task requires effective combination of visual feature extraction and natural language generation. 
This study compares four pre-trained models such as Vision Transformer (ViT-B/16), ResNet-18, VGG-16, and DenseNet-121 
when applied as frozen feature extractors in a prefix-based captioning framework using a partially trainable BERT-base-
uncased text encoder. Experiments were conducted on a 32,000-image subset of the MS COCO 2017 captions dataset (28,000 
training, 4,000 validation) under a limited training environment. Performance was evaluated using training cross-entropy loss. 
Results show DenseNet-121 achieved the lowest final loss (0.2894), followed by VGG-16 (0.3198), ResNet-18 (0.3935), and ViT-
B/16 (0.7002). DenseNet-121 demonstrated superior feature richness and fastest generalization, while ViT exhibited slowest 
convergence. These findings suggest that, under resource-constrained scenarios with frozen backbones, DenseNet-121 is the 
most effective choice among the evaluated architectures. 
Keywords: Image Captioning, Prefix-Based Captioning, Frozen Vision Backbone, DenseNet 121, Vision Transformer. 
 

I. INTRODUCTION 
A single image may also contain information that can be in a large amount. Every day, a huge number of images are generated on 
social media platforms and various other sources. Deep learning makes it possible to automatically label images, which can reduce 
or even eliminate the need for human involvement in this task [1]. This helps save time and effort. 
One of the main challenges today is the large volume of images and related text available online. Another challenge is that image 
data changes frequently and often contain noise. Because of this, most raw data cannot be directly used for image captioning models 
and must be cleaned before use [2]. In general, image captioning is defined as an automatic generation of a meaningful sentence to 
describe what is happening in an image. To train an image captioning model, a large dataset with accurately labeled images is 
required. Image captioning is a difficult task because the model must first understand the image and then generate a correct 
sentence. It needs to extract useful features from the image and convert those features into natural language. 
Although image captioning has improved a lot, still large computational resources are required, along with large datasets, and long 
training times. Also, there is still limited understanding of how well different pre-trained image models perform when they are kept 
completely frozen and only small additional layers are trained under very limited training conditions. 
To address this, our work focusses on four popular pre-trained vision models—ViT-B/16, ResNet-18, VGG-16, and DenseNet-
121—by using them as frozen feature extractors in a simple prefix-based image captioning model. The image features are converted 
into a single prefix token and passed to a partially trainable BERT text encoder. The main goal of this study is to find out which 
frozen vision model learns fastest and achieves the lowest training loss under strict limitations. The detailed results and their 
implications are discussed in the upcoming sections. 
 

II. REVIEW OF THE LITERATURE 
Most existing image captioning techniques are dependent on deep learning models such as Recurrent Neural Networks (RNNs) 
trained using Maximum Likelihood Estimation (MLE). They are used to generate descriptive captions for images. Although MLE 
improves training stability and accuracy, it suffers from a critical limitation known as exposure bias. In this case, the model trained 
on ground-truth sequences rely on its own predictions during inference. This mismatch often leads to degraded performance and 
captions that do not align well with human quality judgment [6]. 
To address these limitations, researchers have proposed Generative Adversarial Networks (GANs), as an alternative to MLE-based 
models. GANs produce visually realistic synthetic images that are difficult for humans to distinguish from real images [3]. In this 
framework, two deep learning based neural networks are used.  
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One is called a generator, that produces samples, while another is called a discriminator that evaluates their authenticity. Through 
adversarial training, both networks improve simultaneously, leading to more accurate and natural outputs [4]. This approach has 
been extended to image captioning, where the generator creates captions and the discriminator evaluates both the linguistic quality 
and consistency with the features of the image [7]. 
However, applying GANs to language generation still have certain issues. Unlike images, text consists of discrete tokens, which 
prevents direct gradient backpropagation from the discriminator to the generator. This makes conventional GAN training ineffective 
for natural language tasks [5]. To overcome this issue, many approaches adopt a Reinforcement Learning (RL) framework, where 
the caption generator is treated as an agent, and each generated word represents an action. The reward signal is provided by the 
discriminator, which allows for the estimation of the gradient using policy optimization techniques [6]. 
Despite its advantages, RL-based captioning also introduces a difficulty. There is a lack of intermediate rewards during sequence 
generation. In this process, the model receives feedback after the full caption is completed, making it difficult to evaluate the 
contribution of individual words [7]. To solve this problem, advanced methods employ policy gradient algorithms combined with 
Monte Carlo rollout strategies to estimate intermediate rewards. These techniques allow the model to consider long-term 
dependencies and improve the overall coherence and quality of the generated captions. 
 

III. RESEARCH METHODOLOGY 
The objective of this research is to utilize and compare four pre-trained vision models such as ViT-B/16, ResNet-18, VGG-16, and 
DenseNet-121—for an image captioning task. These models are used as frozen visual feature extractors within a prefix-based 
captioning framework. The comparison is performed based on limited training epochs to analyze which model adapts faster and 
performs better. 
 

A. Research Design 
This work follows an experimental and comparative research design, where only the model is varied while all other components 
remain constant to ensure a fair comparison. Key elements used in this process are: 
1) Independent variable: Type of model 
2) Dependent variable: Training loss (cross-entropy) 
3) Controlled factors: 
 Same dataset (COCO 2017) 
 Same model architecture 
 Same BERT encoder 
 Same hyperparameters 
 Same number of epochs (3) 
 Same random seed (42) 
 
B. Dataset and Preprocessing 
The experiments use the MS COCO 2017 caption dataset. A total of 32,000 images were randomly selected, with 28,000 used for 
training and 4,000 used for validation. Caption preprocessing includes punctuation removal, conversion to lowercase, and 
normalization of extra spaces. During training, one random caption is selected per image. 
 
C. Image Processing 
All images are processed uniformly before being given to the model for training. The following steps were applied in this process: 
1) Resize to 224 × 224 
2) Conversion to tensor 
3) Normalization using ImageNet mean and standard deviation 
4) No data augmentation applied 
 
D. Model Architecture 
A prefix-based image captioning framework is applied. The image is first encoded using a frozen visual model. The extracted 
features are projected into the text embedding space and added as a prefix token to the input sequence of a BERT-based text 
encoder. The model then predicts the next token using a linear classification head. 
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E. Main Components 
1) Frozen image encoder (ViT / ResNet / VGG / DenseNet) 
2) BERT-base-uncased text encoder (partially trainable) 
3) Image projection layer 
4) Prefix fusion with text tokens 
5) Linear prediction head for caption generation 
 
F. Vision Backbones 
Compared Four architectures were evaluated under identical experimental settings: 
1) ViT-B/16 (Transformer-based 768-dimensional features) 
2) ResNet-18 (512-dimensional features based on CNN) 
3) VGG-16 (512-dimensional features based on CNN) 
4) DenseNet-121 (1024-dimensional features based on CNN) 

 
Fig 1. Model Architecture  

All models were pre-trained on ImageNet and kept frozen during training. 
 
G. Training Setup 
All models were trained using identical hyperparameters to ensure correct comparison. 
 
H. Training Configuration 
1) Batch size: 24 
2) Epochs: 3 
3) Optimizer: AdamW 
4) Learning rate: 4 × 10^{-5} 
5) Loss function: Cross-entropy loss 
6) Gradient clipping applied 
7) Random seed fixed to 42 for reproducibility 
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I. Evaluation Strategy 
Model performance is evaluated using training loss per epoch. Since the goal is comparative analysis under limited training 
conditions, the final loss after 3 epochs is used as the primary comparison metric. Lower loss indicates better learning and faster 
adaptation to the captioning task. 
 

IV. RESULTS ANALYSIS 
According to the research methodology, each model was trained for three epochs on the same dataset. The following table 
summarizes the training cross-entropy loss obtained across epochs, along with the relative performance ranking. 

 
TABLE I 

TRAINING LOSS COMPARISON AFTER 3 EPOCHS 
Backbone Epoch 1 Epoch 2 Epoch 3 Δ Loss (Ep1 → Ep3) Iter/s Rank 
DenseNet-121 3.4126 0.5431 0.2894 -3.1232 7.3–7.4 1st 
VGG-16 3.6245 0.6036 0.3198 -3.3047 6.4–6.9 2nd 
ResNet-18 3.8717 0.7466 0.3935 -3.4782 7.6 3rd 
ViT-B/16 5.0947 1.4750 0.7002 -4.3945 5.0–5.1 4th 

 
DenseNet-121 achieved the lowest final training loss (0.2894), clearly outperforming all other models. This indicates that the dense 
connectivity pattern of DenseNet provides highly informative visual features. These features can be effectively utilized even when 
the model remains completely frozen and only the projection layers and text encoder components are trained.  
Strong Performance of Classical CNN Architectures VGG-16, despite being an older architecture, achieved the second-best 
performance, outperforming both ResNet-18 and ViT-B/16. This suggests that in highly constrained training scenarios, strong and 
diverse feature representations may be more beneficial, rather than complex architectural advancements. 
ViT-B/16 showed the weakest performance, with a relatively high final loss (0.7002) even after three epochs. The slower 
convergence may be due to further requirement of more fine-tuning and larger datasets to fully exploit their representational 
capacity. Additionally, the use of the [CLS] token as a prefix representation may be less suitable for direct alignment with a frozen 
text encoder. 
ResNet-18 achieved the fastest training speed, approximately 7.6 iterations per second, while ViT-B/16 was the slowest, 
approximately 5 iterations per second. This represents an important practical consideration when computational resources or time 
are limited. 

 
Fig 2. Training Loss Comparision  

 
V. CONCLUSION 

Under extremely limited training conditions, DenseNet-121 emerged as the most effective architecture for the prefix-based image 
captioning task. The overall ranking observed in this experimental setting is as follows: 

DenseNet-121 > VGG-16 > ResNet-18 > ViT-B/16. 
From a practical perspective, when computational resources or training time are severely constrained, for example rapid 
prototyping, educational experiments, or low-budget environments, DenseNet-121 appears to be the most suitable frozen backbone 
choice. However, it is important to note that with extensive training, larger datasets, and fine-tuning, more advanced architectures, 
such as vision transformers, are likely to outperform traditional CNN-based models. 
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