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 Abstract: Modern power grids with the increasing volatility of electricity markets and the growing deployment of battery energy 
storage systems (BESS) require intelligent energy management strategies to maximize economic benefits while preserving system 
performance. A  Reinforcement Learning (RL) based energy management framework utilizing the Q-learning is presented to 
optimize BESS operation for peak demand reduction. By formulating the problem as a Markov Decision Process, the Q-learning 
agent learns an optimal charging and discharging policy through interaction with fluctuating market prices and operational 
constraints. The proposed approach allows the Battery Energy Storage System (BESS) to carry out energy arbitrage to maximize 
economic benefits and maintaining demand-supply balance. Simulation results demonstrate that the Q-learning framework 
achieves superior profitability and battery energy efficiency compared to conventional rule-based optimization method. The 
results highlight the potential of reinforcement learning techniques, particularly Q-learning, in enabling adaptive and 
autonomous energy management in complex and uncertain environments. 
Keywords: Reinforcement Learning, Demand Side Management, Dynamic Electricity Market, Energy Efficiency, Battery 
Energy Storage System 
 

I. INTRODUCTION 
The expanding renewable energy sources along-with increasing variability in electricity demand and uncertainty energy such  as 
solar and wind due to weather changes, cloud cover and wind speed variations , make power generation non-linear as well as 
difficult to predict[1]. This results in a huge stress on modern power grids, which results in frequency deviations, instabilities in 
voltage, and transmission network congestion, causing functional challenges and financial losses as well. There are demand-side 
uncertainties of  irregular consumer behaviour, changing load profiles and also volatility of real-time electricity price in dynamic 
pricing markets, adding immense complexity and problem in energy management [2]. Battery energy management systems (BEMS) 
are an excellent solution to ease grid stress through enabling dynamic control over the storage of energy and energy dispatch 
intelligently by BESS. Traditional battery energy storage control methods that follow rule-based approaches, heuristic algorithms 
and the scheduling by predefined methodology depend on static assumptions and are not so adaptive to dynamic changes. They are 
suitable only for ideal and predictable conditions. As a result  they are incapable of fully exploiting the economic as well as  
operational benefits by intelligently performing battery [3]. 
To combat these limitations different machine learning techniques are being used among which Reinforcement Learning (RL) a 
very effective strategy is used for energy storage systems designed with highly adaptive control for. RL constitutes a powerful 
framework for sequential decision-making in complex, uncertain environments. Supervised learning requires labelled data whereas 
RL does not. RL learns optimal strategies by interacting with the environment and uses feedback in the form of rewards or 
penalties[4].This work targets the development and implementation of a Q-learning-based strategy that optimally schedules the 
charging and discharging of battery subjected to fluctuations in renewable generation of energy and real-time pricing of energy. The 
aim of this research is to outperform static methodology for better energy utilization and enhancement of economic returns in smart 
grid environments through intelligent data-driven control[5]. 
The structure of this paper is as follows: Articles related to BEMS and Q learning is reviewed in Section 2. Section 3 shows the 
methodology of the proposed work. Section 4 represents results and discussion. In Section 5, conclusions and future scopes are 
provided.  
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II. LITERATURE REVIEW 
A scheduling framework which is highly adaptable for BESS is presented[6]. They use classical Q-learning approach of a ε-greedy 
exploration considering electricity prices and demonstrating price adjustment volatility of Q-learning. They have considered battery 
degradation effects. Economic performance is as compared to heuristic approaches. 
Energy Management of a PV micro grid is enhancing the algorithm of Q learning.[7]  The model used Time-of-Use (ToU) tariff and 
did charging and discharging for 24 hour schedule and reached faster convergence. They have also achieved significant reduction in 
cost and accounted for solar generation and showed the demand’s period pattern changes daily. 
Markov Decision Process (MDP) brought expansion classical battery energy management [8].They have used solar generation and 
have improved the charging and discharging actions based on the availability of renewable energy and consumption and brought 
improvement in BESS’s smooth operation. 
The batch techniques of reinforcement learning mainly the Fitted Q-iteration(FQI) in microgrid environment and have used 
historical data for training the offline policies and has optimised BSS and brought 19% improvement in performance over the rule 
based models conventional using Q-learning[8]. 
Proposed a framework using reinforcement learning for the electricity markets that are real time by adopting few learning for better 
battery energy storage system designing The RL agent to better learn the adaptation to market and learning to improve profit and 
effectively manage battery's SoC [9]. 
[10] in 2018 presented a work for smart energy buildings using reinforcement learning and modelling by MDP using real world 
simulation and out-performing the conventional approaches for reduction in the energy cost. 
[11]  reviewed the techniques of battery modelling and balanced the real time application of battery energy management system by 
using data driven model and has worked on crucial parameters like state of charge state of health and discussed the state estimation 
methods in detail. 
In [12] it is suggested that a system that well balances the B.E.S.S and monitors and mitigate imbalance of cell the adjustments 
related to charging and discharging have been taken in account for maintaining the for maintaining for maintaining cell voltages to 
be uniform across better utilisation of energy and comparison with static strategies is done. 
 

TABLE I 
COMPARISON OF RELATED WORKS WITH THIS STUDY 

Features 

Research Papers by Authors 

Liu et al. 
(2024) 

Arwa & 
Folly (2021) 

Chang et al. 
(2021) 

De Somer et 
al. (2017) 

H. Wang & 
B. Zhang 

(2017) 

S. Kim & H. 
Lim (2018) This work 

Algorithm 
Type 

Classical Q-
learning with 
ε-greedy 

Enhanced Q-
learning for 
faster 
convergence 

Q-learning  
used for 
time-aware 
cyclic MDP 
with  

FQI used 
alongwith 
Batch RL ` 

Classical Q-
learning with 
price 
prediction 

Standard Q-
learning with 
MDP 

 Hybrid Q-learning with 
adaptive ε-decay, 
prioritized experience 
replay, and dynamic 
reward shaping 

Adaptation to 
Price 
Volatility 

Real-time 
price 
consideration 

ToU tariffs 
adaptation 

Focused on 
periodic 
pricing 
patterns 

Used 
historical 
prices for 
offline 
training 

Real-time 
price 
learning 

Grid 
import/export 
cost awareness 

Enhanced: Handles 
dynamic pricing signals 
with predictive modelling 
(sinusoidal + random 
noise) 

Exploration 
Strategy ε-greedy Enhanced Q-

update 

Cyclic time-
aware 
updates 

No online 
exploration 
(offline batch 
learning) 

ε-greedy Standard 
exploration 

 Improved: Adaptive ε-
decay with fine-tuned 
exploration/exploitation 
balance for faster 
convergence 

Learning 
Convergence 
Speed 

Moderate 
Faster than 
vanilla Q-
learning 

Slower due 
to cyclic 
complexity 

Offline 
learning only 

Slow 
convergence 
(historical 
data 
dependent) 

Moderate 

Superior: Prioritized 
experience replay + 
adaptive decay = faster, 
more stable convergence 
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Scalability to 
Multiple 
Scenarios 

Designed for 
BESS 
scheduling 

Focused on 
PV micro-
grids 

Residential 
BESS 

Microgrid 
only 

Real-time 
market 
arbitrage 
only 

Smart building 
energy 
management 

 Highly generalized: 
Supports micro grids, 
smart buildings, V2G 
(vehicle-to-grid), and 
scalable environment 

Economic 
Performance 

Outperformed 
rule-based 
scheduling 

Reduced 
operational 
costs 

Aligned with 
dynamic 
pricing 

19% better 
than model-
based 
optimization 

Higher 
profits than 
rule-based 
methods 

Lowered 
energy costs 

 Achieved higher average 
profits & efficiency Vs 
static strategies (shown 
in plots) 

Simulation 
Visualization Not reported No 

visualization 
No 
visualization Not reported No visual 

analysis 
No visual 
analysis 

Provides clear plots for 
profit & battery 
efficiency comparisons 
(supports analysis & 
debugging) 

Key 
Innovation 

Q-learning + 
degradation-
aware reward 

Modified Q-
update for 
speed 

Cyclic MDP Batch FQI 
Q-learning 
for market 
arbitrage 

RL for smart 
building 
management 

Hybrid reward shaping, 
adaptive exploration & 
efficient convergence 
techniques 

 
Collectively, these studies underscore the versatility of Q-learning in addressing the challenges posed by dynamic electricity 
markets. Despite their contributions, these approaches exhibit certain research gaps, such as limited adaptability to rapidly changing 
market conditions, insufficient handling of multi-objective optimization. Rather than relying on classical or enhanced Q-learning, 
our method employs an adaptive exploration strategy with epsilon decay. The inclusion of clear visualization of profits and 
efficiency further distinguishes our framework, offering better interpretability and practical insights for real-world deployment, 
enabling faster convergence and more effective exploitation of profitable actions. The proposed Q-learning framework advances 
beyond existing approaches by integrating multiple enhancements for improved economic and operational performance. This paper 
addresses these limitations through an improved framework for battery energy management, as detailed in Table 2.1 which 
compares prior work with the proposed method. 

 
III. PROPOSED METHODOLOGY 

In the proposed methodology, a simulation for a 24-hour cycle is done on Google Colab using Python. The libraries imported are 
numpy, pandas, matplotlib to find the profit, efficiency values and plot graphs. We have used the Machine Learning (ML) technique 
of Reinforcement Learning (RL) and further Q-learning method In this work, we have implemented a Q-learning-based approach as 
an alternative to the traditional rule-based control strategy. The proposed method is designed to manage electricity demand and 
pricing data effectively. Specifically, electricity demand is primarily satisfied from the grid up to a predefined threshold. Beyond 
this limit, additional demand is met using a Battery Energy Storage System (BESS). 
In conventional rule-based systems, the control logic purchases electricity from the grid when prices are low and exports power 
back to the grid when prices are high, with possible idle states in between. By contrast, in the Q-learning framework, charging and 
discharging decisions are governed by the ε-greedy exploration strategy, allowing the agent to balance exploitation of known 
policies and exploration of new actions. The system’s dynamics are modelled as a Markov Decision Process (MDP), where the next 
state depends only on the current state and action. This reinforcement learning formulation enables adaptive energy management 
without relying on static, pre-defined rules. 
Among storage technologies, Li-ion batteries are preferred for effective management [13] [14],especially through Battery 
Management Systems (BMS).A key role of BMS is of cell balancing to maintain at level the voltage or the state of charge (SoC) of 
individual cells in[16]. This prevents overcharging or over-discharging, which can reduce performance, shorten battery life, and 
create safety hazards. Balancing methods include passive and active techniques[15]. In battery management, most ML applications 
focus on prediction—such as estimating (SoC) [15], State of Health (SoH) [16], load as well as battery safety,. Predictive ML has 
shown great potential in enhancing battery performance, reliability, and safety [18].Prescriptive ML often  
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uses reinforcement learning (RL)[24].RL learns through trial and error by interacting with the environment, aiming to maximize a 
reward over time without explicit instructions. Though RL has existed for decades, recent breakthroughs have sparked interest in its 
applications, including battery management systems. Examples include planning battery use in hybrid systems [17]and optimal 
battery balancing [12].This study proposes a novel use of reinforcement learning for passive cell balancing, highlighting ML’s for 
better utilization of the potential of BESS.  
 
A. Reinforcement Learning (RL) 
Reinforcement Learning (RL) is a type of machine learning involving an agent to interact with an environment to learn an optimal 
policy by maximizing cumulative rewards. In this case, the battery storage system is the agent, and the environment is defined by 
time, price, load, and battery status[18]. RL offers:  
1) Model-free learning: No prior knowledge of system dynamics required. 
2) Online adaptability: Learns directly from experiences. 
3) Scalability: Can handle high-dimensional state-action spaces[19]. 
 
The Q-learning method of RL aims to learn quality (Q-value) of taking a certain action in a given state. It is particularly suitable for 
discrete and finite state-action spaces like in this  study[5].It is a model-free and off-policy algorithm stands out for its simplicity 
and effectiveness in a wide range of control tasks. Q-learning is well-suited to problems where the environment is partially unknown 
or highly dynamic. It enables the agent (in this case, the BESS controller) to learn a policy that maps system states—such as 
electricity prices, state of charge (SOC), time of day, and predicted demand or generation—to optimal actions, such as when and 
how much to charge or discharge[20]. Over time, the agent refines its decisions to maximize long-term rewards, which in the energy 
context can be defined in terms of economic gains, grid support, or system reliability[21].  
The proposed methodology is built around Q-learning, where the environment consists of: 
States (s): A state represents the condition or situation the agent finds itself in at any given moment within the environment. It serves 
basis for decision-making, offering the agent relevant information to choose an action. 
Actions (a): An action is one of the possible decisions or movements the agent can makes depending on the state the agent is in. 
Rewards (r): A reward is a numerical signal sent by the environment after the agent performs an action. It acts as immediate 
feedback, showing how beneficial or harmful the action was in the given state. The agent uses these signals to learn which actions 
are preferable in the long run.  
 
In our research work, Markov Decision Process is used to select the following: 
a) States: Defined by hour of the day, electricity price bin, day type (weekday/weekend), battery state of charge (SoC), and load 

demand bin. 
b) Actions: Charge, Discharge, or Idle. 
c) Reward: Based on the profit or loss from charging/discharging energy. 
The agent learns when its most profitable to charge (buy energy) or discharge (sell energy), to maximize total profit over 24 hours. 
Recommended font sizes are shown in Table 1. 

 
B.  Flow Description 
The Environment sends the current state or information to the Agent. The Agent decides on an Action, which in this diagram is the 
"Charge" process. After charging, the system moves to Discharge. The discharge process affects the Environment again, closing the 
loop. The Environment sends a Reward back to the agent based on the outcome of the discharge. This reward helps the agent learn 
or adapt future actions. 
Key components: 
1) State Space: A 5-dimensional space combining temporal, economic, and technical features. 
2) Action Space: A discrete set of 3 actions. 
3) Training: Over 7500 episodes, the RL agent learns an optimal Q-table by simulating different scenarios. 
4) Testing: The learned policy is tested over a 24-hour period and compared against a conventional fixed-threshold strategy. 
The block diagram of methodology is shown in Fig. 1 
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Fig. 1  Block diagram of Methodology 

 
The RL agent chooses actions using the ε-greedy strategy to balance exploration and exploitation[22]. Rewards are calculated based 
on energy traded and corresponding electricity prices[23]. The agent updates its Q-values using the standard Q-learning update rule: 

 
(ܽ,ݏ)ܳ ← Q(s, a) + α[r + γ maxQ(sᇱ , aᇱ)− Q(s, a)]       (1)  

Where, 
 The present estimate of the total expected reward for action a taken in state s. Stored in the Q-table.α: Learning rate (0 < α :(ܽ,ݏ)ܳ
≤ 1). It determines how much the new information overrules the previous value. Low α indicates slow learning and high α shows 
fast but possibility of unstable learning. r: Immediate reward attained after action a is taken in state s. In this case, the profit 
(positive or negative) depends on energy price and action (charge/discharge).γ (gamma): Discount factor (0 ≤ γ ≤ 1). It regulates the 
future reward amount taken into account. Higher γ makes agent care more about long-term gains. s′: Next state after action ܽ is 
taken in state ݏ.maxQ(s′, a′): The best possible Q-value from the next state s′, assuming agent acts optimally in the 
future.ܳ(ݏ,ܽ) ←: The updated Q-value is a weighted average of the old Q-value and the new estimate[23]. 

 
C. Flowchart of Methodology  
The process flow is shown in Fig. 2 

 
Fig. 2 Flowchart of Methodology 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue VII July 2025- Available at www.ijraset.com 
     

   2457 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

IV. RESULTS AND DISCUSSION  
To evaluate the performance of the proposed Reinforcement Learning (RL)-based battery energy management system, we 
conducted a simulation over a 24-hour operation cycle on Google Colab in Python. The RL agent was trained using a Q-learning 
approach, taking into account dynamic energy prices, load variations, and the battery's state of charge (SoC) . A baseline strategy, 
following a conventional heuristic without learning, was also implemented for comparative analysis. 
 The key performance metrics analyzed were monetary profit from energy arbitrage, energy charged/discharged, and overall energy 
efficiency. 

 
A. Profit Analysis 
The goal of our model is to evaluate relative energy management performance considering realistic price fluctuations. We have 
generated synthetic electricity demand and price to follow periodic patterns and also considered randomness and volatility using the 
equation [24]: 

  
         Pt=10+8⋅sin (4πt/T) +σ⋅ (Ut−0.5)               (2) 
 

Where- 
The base price offset is taken as Rs.10 which provides an appropriate scaling for the simulated environment.  
The sinusoidal term (amplitude 8, frequency 2/T) is the deterministic sine component. 
The noise term, σ (Ut−0.5), is uniform and not Gaussian. 
The RL-based strategy achieved a total profit of Rs. 2771.9 Compared to Rs.2612.6 generated by the baseline method. This 
corresponds to a 6.09% improvement in profit over the conventional approach. This significant increase demonstrates the 
effectiveness of the RL algorithm in learning optimal charge/discharge decisions in response to time-varying electricity prices and 
load demands. Profit analysis bar chart is shown below: 
Average Profit (Q-learning): 2771.9 
Average Profit (Static Strategy): 2612.6 

Percentage Increase in Profit =
Avg Profit (Q) − Average Profit (Static)

Average Profit (Static) × 100 

                                                                                         (3) 

Percentage Increase =
2771.9− 2612.6

2612.6 × 100 = ൬
159.3

2612.6
൰ × 100 ≈ 6.09%. 

Profit Improvement (Q-learning Vs Static): 6.33% 

 
Fig. 3 Bar Graph of Comparison between Average profit per Episode of Q-learning & Rule-based Method 

These are found by the RL policy. This high efficiency indicates that the RL agent not only maximizes profit but also utilizes the 
battery in a relatively loss-minimized manner, maintaining operational integrity and sustainability. 
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Fig .4 Comparison of Q-learning and Static Rule methods through Profit Vs Episode graph. 

B. Energy Utilization 
The profit-per-episode graph compares how much net profit the battery scheduling strategy achieves each day. Initially, the Q-
learning curve shows significant fluctuations because the agent is still exploring different charge/discharge actions. With time, the 
smoothing of the curve is obtained and by the agent learning and following an optimal policy. Later episodes are observed to 
achieve greater daily profits consistently as compared to the static strategy, depicted by a flat horizontal line which shows the 
average performance. It is the indication that the Q-learning agent have becomes adaptable to dynamic conditions such as 
fluctuations of electricity price and changing load demands, outperforming the simple static rule. 

 
Fig. 5 Comparison of Energy utilization curve of Q-learning Vs. Static Rule Method 

 
C. Energy Efficiency 
The Battery Energy Efficiency as the ratio of total energy discharge to total energy charge expressed as a percentage under the 
dynamic operational conditions which incorporates the physical losses as well as effectiveness of decision making for which the Q-
agent was trained to optimise charging. 
Battery Management System (BMS) is used and energy efficiency is calculated as[25]: 
Energy needed = (Battery capacity * (1 – SoC ) / charge efficiency)                                                                     (4) 
 
Energy to battery is taken as the minimum of the charging rate and the battery needed for the purpose of filling the battery. 
The total energy charged is the sum total of amount of energy that is taken from the grid for charging the battery, taking into 
accounts how well the charging worked, throughout all the episodes. 
The total energy discharged is the total amount of energy obtained from the battery and provided to the load also 
considering discharge efficiency, throughout all the episodes 26]. 
Energy efficiency = (Discharged energy / Charged energy)*100%                                                          (5) 
Battery Energy Efficiency is calculated using Static Rule based method and by Q-learning is calculated and their difference is 
observed. 
Battery Energy Efficiency (Q-learning): 80.30%  
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Battery Energy Efficiency (Static): 53.70% 
Absolute Battery % of difference of Battery Energy Efficiencies is found be 26.60%.   

 
Fig. 6 Comparison of Battery Energy Efficiency of Q-learning and Static Rule methods 

 
V. CONCLUSIONS AND FUTURE SCOPE 

The proposed Reinforcement Learning (RL)-based battery energy management system demonstrated significant improvements over 
the conventional heuristic baseline. Through the Q-learning approach, the RL agent effectively learned optimal charge and 
discharge strategies by responding dynamically to time-varying electricity prices, load demands, and the battery’s state of charge. 
The system achieved a 6.09% higher monetary profit, indicating superior economic performance. Additionally, the RL policy 
maintained a high absolute battery energy efficiency difference of 26.6% showing effective utilization of the battery with minimal 
losses. The battery energy efficiency may vary considering other constraints. The enhanced energy throughput further highlights the 
system’s ability to capitalize on market fluctuations more proactively than the baseline strategy. Overall, the results confirm that the 
RL-based approach is a promising solution for intelligent, adaptive battery energy management. 
Future work can incorporate focussing on extension of the RL framework like considering temperature-effects, degradation of 
battery, and even more composite demand response problems to take into account real-world scenarios. Implementation of advanced 
RL algorithms has potential of improving learning efficiency as well as scalability for wider systems. However, integration of 
renewable energy sources like wind and solar with BESS would bring highly effective, sustainable and economic energy solutions. 
The implementation and the testing of these RL based systems in real world scenarios, as in physical micro grids under different 
operating conditions would justify its practicality. Ultimately, exploration of multiple-agent reinforcement learning would lead to 
optimization of energy management in interconnected decentralized energy resources. 
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