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Abstract: Accurate forecasting of electrical load demand is essential for efficient energy management and planning. This study 
presents a comparative analysis of three artificial intelligence models—Artificial Neural Network (ANN), Support Vector 
Regression (SVR), and Random Forest Regression (RFR)—for short-term load forecasting. The models were trained using 
historical load data from POSOCO and weather parameters such as temperature and humidity obtained from NASA POWER 
and OpenWeatherMap. Performance was evaluated using Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and 
R² score. Results show that the RFR model outperformed the others, achieving the highest accuracy with an R² value of 0.93. 
The ANN model also performed well, while SVR showed slightly lower predictive accuracy. The study highlights the potential of 
ensemble learning for improving load forecasting reliability. 
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I. INTRODUCTION 
The rapid growth of urbanization, industrialization, and digitization has led to an increased demand for electricity, making accurate 
load forecasting a critical component in modern energy systems (Zhang et al., 2018). Efficient forecasting ensures optimal load 
dispatch, reduces operational costs, prevents blackouts, and enhances the reliability of power systems (Hong & Fan, 2016). 
Traditional forecasting methods such as autoregressive models, exponential smoothing, and time series decomposition, though 
useful in the past, often struggle to handle the nonlinear and stochastic nature of load demand influenced by various weather, 
temporal, and socio-economic factors (Taylor & McSharry, 2007). 
With the rise of artificial intelligence (AI) and machine learning (ML), forecasting methodologies have seen significant 
improvements in terms of accuracy and adaptability. AI-based models, particularly Artificial Neural Networks (ANN), Support 
Vector Regression (SVR), and ensemble techniques like Random Forest Regression (RFR), have gained prominence due to their 
ability to learn complex patterns from large datasets (Li et al., 2019). These models have demonstrated high robustness in capturing 
nonlinear dependencies between input variables such as temperature, humidity, calendar effects, and electricity consumption 
patterns (Chen et al., 2020). 
ANNs are powerful deep learning models that simulate the learning behavior of the human brain and are capable of approximating 
any nonlinear function given sufficient data and architecture tuning (Haykin, 2009). SVR, derived from Support Vector Machines 
(SVM), uses kernel functions to perform regression tasks in high-dimensional feature spaces, offering better generalization 
performance for smaller datasets (Smola &Schölkopf, 2004). RFR, on the other hand, is an ensemble learning technique that builds 
multiple decision trees and combines their outputs to improve predictive accuracy and control overfitting (Breiman, 2001). 
Despite the availability of numerous studies applying AI models for load forecasting, most lack a direct comparative evaluation 
under uniform conditions and standardized input features. Moreover, the majority of the literature focuses on either single-model 
optimization or hybrid approaches without quantifying trade-offs in model complexity, interpretability, and accuracy (Wang et al., 
2021). This study aims to address these gaps by conducting a comparative performance analysis of ANN, SVR, and RFR models 
using a unified dataset, consistent evaluation metrics, and interpretable results. 
The primary objective of this research is to assess the relative effectiveness of these AI techniques in forecasting short-term 
electrical load using weather and calendar-based inputs. By identifying the most reliable and accurate model, this study contributes 
to the development of data-driven strategies for smart grid management and demand-side planning in power systems. 
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II. LITERATURE REVIEW 
Forecasting of electrical load has evolved considerably over the past decades, transitioning from classical statistical techniques to 
more advanced AI-driven methods. Traditional approaches such as autoregressive integrated moving average (ARIMA), exponential 
smoothing, and regression-based models provided satisfactory results in stable environments but were often limited in their ability 
to capture nonlinear dependencies and seasonality inherent in electricity demand patterns (Hyndman & Athanasopoulos, 2018). 
These techniques also required extensive pre-processing and were sensitive to missing or noisy data, which are common in real-
world utility datasets. 
Artificial Neural Networks (ANNs) have been extensively studied for their ability to learn complex, nonlinear relationships between 
input features and target outputs. They have been applied in short-term load forecasting (STLF) with significant success due to their 
adaptive learning capability and robustness against irregularities in input data (Park et al., 1991; Hippert et al., 2001). For instance, 
Rahman and Bhatnagar (2019) implemented a multi-layer perceptron (MLP)-based ANN to forecast hourly loads and reported high 
accuracy using temperature and calendar data as inputs. However, challenges such as overfitting, requirement of large datasets, and 
difficulty in interpretability often limit their practical utility. 
Support Vector Regression (SVR), an extension of Support Vector Machines (SVM), has been explored as a reliable technique for 
load forecasting, particularly when the training data is limited. SVR models can handle high-dimensional input features using kernel 
functions and offer good generalization performance (Smola &Schölkopf, 2004). Pai and Hong (2005) demonstrated that SVR could 
outperform traditional regression and neural networks in certain STLF scenarios, especially for nonlinear load trends. However, 
SVR performance is highly sensitive to the choice of kernel, regularization parameters, and requires extensive tuning for real-world 
applications. 
Ensemble learning methods such as Random Forest Regression (RFR) have gained increasing attention in recent years for their 
robustness and superior predictive accuracy. RFR works by aggregating the results of multiple decision trees to reduce overfitting 
and variance in predictions (Breiman, 2001). Researchers like Kuster et al. (2017) highlighted RFR’s capability in handling missing 
data, noisy inputs, and non-linear relationships, making it highly suitable for utility forecasting. In comparative studies, RFR 
consistently showed better performance in scenarios involving complex environmental and temporal predictors (Khosravi et al., 
2018). 
Comparative studies further illustrate the trade-offs among these models. Zhou et al. (2020) conducted an empirical evaluation of 
ANN, SVR, and RFR on a regional load dataset and concluded that while ANN offered flexibility and accuracy, RFR yielded more 
stable predictions and lower error metrics. Meanwhile, SVR was preferred for datasets with fewer samples or limited training time. 
Despite their individual merits, there is a need for unified comparative studies under controlled conditions to guide model selection 
in practical load forecasting tasks. 
From the reviewed literature, it is evident that while ANN, SVR, and RFR each have their advantages and limitations, few studies 
conduct a head-to-head evaluation using consistent datasets, feature sets, and performance metrics. This gap motivates the current 
study, which aims to empirically compare the three models using a unified framework to determine the most suitable AI-based 
approach for short-term electrical load forecasting. 
 

III. METHODOLOGY 
A. Data Collection 
The dataset used in this study comprises hourly electrical load demand data collected from the Power System Operation Corporation 
(POSOCO), which is responsible for ensuring reliable grid operation in India. In addition to load data, the study integrates 
meteorological parameters—namely temperature and humidity—from reputable sources such as NASA POWER and 
OpenWeatherMap. These weather attributes are known to have a substantial impact on electricity consumption, particularly due to 
seasonal variations in cooling or heating demand (Chen et al., 2020). 
Furthermore, calendar-based variables were generated to account for behavioral patterns associated with time. These include: 
 Time of Day (capturing diurnal variations), 
 Day of the Week (e.g., weekday vs. weekend behavior), 
 Holiday Indicators (e.g., reduced demand on public holidays), and 
 Season or Month, which helps capture macro-seasonal effects (summer, monsoon, winter). 
The research workflow, as depicted in Figure 1, outlines the end-to-end data pipeline, beginning with data acquisition and 
preprocessing, followed by feature selection, model development, training-testing, and performance evaluation. 
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Figure 1: Overall Research Workflow 

 
B. Variables 
The study employed a mix of continuous, categorical, and binary variables as predictive inputs. These variables, as summarized in 
Table 1, serve as the independent features, while the dependent variable is the load demand (in MW). 

Table 1. Variables of the Study 
Variable Name Description Type Unit Role 
Temperature Ambient air temperature Continuous °C Independent 
Humidity Relative humidity of the environment Continuous % Independent 
Past Load Load demand from the previous time interval(s) Continuous MW Independent 
Time of Day Hour of the day (e.g., 00–23) Categorical – Independent 
Day of the Week Encoded day (0 = Monday, ..., 6 = Sunday) Categorical – Independent 
Holiday Indicator 1 = Holiday, 0 = Non-holiday Binary – Independent 
Season/Month Monthly or seasonal encoding Categorical – Independent 
Load Demand Forecasted electrical demand Continuous MW Dependent 

 
This comprehensive variable set enables the models to learn both temporal trends (via calendar features) and weather-driven load 
patterns, which are vital for accurate short-term forecasting (Kuster et al., 2017). 
 
C. Model Architecture 
Three AI-based regression models were deployed and compared: Artificial Neural Network (ANN), Support Vector Regression 
(SVR), and Random Forest Regression (RFR). These models were selected due to their contrasting learning paradigms, ranging 
from deep learning (ANN), kernel-based learning (SVR), to ensemble decision tree techniques (RFR). 
The specific configurations used for each model are shown in Table 2: 
 

Table 2: Configuration Summary of ANN, SVR, and RFR Models 
Model Key Configuration Parameters Training–Testing Split 
ANN 3 hidden layers (128, 64, 32 neurons); Activation: ReLU; Optimizer: Adam; Dropout: 0.2 80% training20% testing 
SVR Kernel: RBF; C = 100; Epsilon = 0.05; Gamma = 0.01 80% training20% testing 
RFR 300 Trees; Max Depth = 20; Min Samples Split = 4; Criterion: MSE 80% training20% testing 
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 The ANN model’s architecture was designed with three hidden layers, using ReLU activation for non-linear transformation, 
Adam as the optimizer for adaptive learning, and Dropout (0.2) to minimize overfitting. 

 SVR used the RBF kernel, optimal for capturing non-linear relationships, with regularization and tolerance parameters tuned 
for convergence. 

 The RFR model comprised an ensemble of 300 trees with controlled depth and minimum sample splits to ensure 
generalizability and accuracy under noisy conditions. 

All models were trained on 80% of the dataset and validated on the remaining 20%, ensuring consistent benchmarking across 
algorithms. 
 
D. Performance Evaluation Metrics 
The performance of the ANN, SVR, and RFR models was evaluated using three standard regression metrics: Mean Absolute Error 
(MAE), Root Mean Square Error (RMSE), and the Coefficient of Determination (R²). MAE quantifies the average magnitude of 
prediction errors in megawatts (MW), offering an intuitive measure of model accuracy. RMSE, which penalizes larger errors more 
severely, helps assess the model’s sensitivity to extreme deviations. R² reflects how well the model explains the variance in load 
demand, with values closer to 1 indicating better fit. These metrics collectively provide a balanced assessment of model reliability 
and predictive power in the context of short-term electrical load forecasting. 
 
E. Tools and Software Used 
This study utilized Python 3.9 as the core programming environment, leveraging libraries such as Scikit-learn for SVR and RFR 
implementation, and Keras with TensorFlow backend for building the ANN model. Data preprocessing and manipulation were 
handled using Pandas and NumPy, while visualizations were created using Matplotlib and Seaborn. Weather data was sourced via 
NASA POWER and OpenWeatherMap APIs. All modeling and evaluation were conducted on a Windows 11 system equipped with 
an Intel Core i7 processor and NVIDIA GPU, ensuring efficient training and computation. 
 

IV. RESULTS AND DISCUSSION 
A. Descriptive Statistics 
The summary of the input features—temperature, humidity, and load demand—is presented in Table 4. These statistics provide a 
foundational understanding of the data distribution used to train and evaluate the models. The mean temperature during the study 
period was 32.5°C, with a standard deviation of 3.2°C, indicating moderate daily variability. Humidity values ranged from 30.2% to 
70.4%, with an average of 54.3%, suggesting diverse weather conditions influencing electricity consumption patterns. The load 
demand, which is the target variable, averaged at 820.5 MW, with a maximum of 1050.2 MW and a minimum of 500.3 MW. This 
wide range reflects dynamic demand behavior, making it suitable for testing the predictive capabilities of AI models. 

Table 4. Descriptive Statistics 
Feature Mean Std Dev Min Max 
Temperature 32.5 3.2 24.0 40.1 
Humidity 54.3 10.1 30.2 70.4 
Load Demand 820.5 120.4 500.3 1050.2 
 
B. Model Performance Comparison 
The performance metrics for all three models—ANN, SVR, and RFR—are summarized in Table 5. The RFR model exhibited the 
best overall performance with the lowest MAE (17.3 MW) and RMSE (23.1 MW), along with the highest R² value (0.93), indicating 
its superior ability to capture non-linear patterns and resist overfitting. The ANN model also showed strong results, achieving an R² 
of 0.91, though slightly higher error values compared to RFR. In contrast, the SVR model reported the highest MAE and RMSE 
values and the lowest R² (0.88), suggesting relatively weaker generalization on this dataset. These findings reinforce the 
effectiveness of ensemble learning methods like RFR in load forecasting tasks where both accuracy and model robustness are 
critical. 

Table 5. Model Performance Comparison 
Model MAE RMSE R² 
ANN 18.2 24.5 0.91 
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SVR 20.1 27.6 0.88 
RFR 17.3 23.1 0.93 
 
The predicted vs actual load plot for the Random Forest Regression model shown in Figure 2 visually confirms its superior 
accuracy, with most predictions closely tracking the actual load curve. The compact spread of points around the ideal diagonal line 
highlights the model’s strong predictive alignment. These visual results, combined with numerical evaluation, justify the selection of 
RFR as the most reliable model among those tested. 
 

 
Figure 2. Predicted vs Actual Load for the Best Model (RFR) 

 
The RFR model demonstrates the highest accuracy with the lowest MAE and RMSE and the highest R² score. ANN performs 
competitively, while SVR, although acceptable, lags slightly behind in handling complex nonlinearities in the dataset. 
 

V. CONCLUSION AND FUTURE WORK 
This study aimed to evaluate the effectiveness of three widely used artificial intelligence techniques—Artificial Neural Network 
(ANN), Support Vector Regression (SVR), and Random Forest Regression (RFR)—for short-term electrical load forecasting. Using 
a robust dataset composed of hourly load demand from POSOCO, and weather parameters such as temperature and humidity 
obtained from NASA POWER and OpenWeatherMap, the models were trained and tested under consistent conditions. Additional 
calendar variables such as time of day, day of the week, and holiday indicators were included to reflect human activity patterns that 
influence energy usage. 
The findings highlight the superiority of the Random Forest Regression model, which outperformed both ANN and SVR in terms of 
accuracy and consistency. With the lowest MAE (17.3 MW), RMSE (23.1 MW), and highest R² value (0.93), RFR demonstrated 
strong capability in capturing non-linear and noisy trends in the dataset. While the ANN model also achieved high accuracy (R² = 
0.91), it required more computational resources and parameter tuning. The SVR model, though suitable for smaller datasets, yielded 
comparatively higher errors and was less effective in modeling the complexity of real-world load patterns. 
These results offer valuable insights for utility operators and energy planners, emphasizing the practical viability of ensemble 
learning approaches such as RFR in developing reliable load forecasting systems. Accurate short-term forecasts not only aid in 
optimizing power generation and reducing operational costs but also enhance demand response and grid reliability, particularly in 
dynamic and resource-constrained settings like India. 
Looking ahead, there are several promising directions for future research. The integration of advanced deep learning models such as 
Long Short-Term Memory (LSTM) or Gated Recurrent Units (GRU) could help capture sequential dependencies in load data more 
effectively.  
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Future models may also benefit from incorporating additional external variables, including solar irradiance, wind speed, or socio-
economic indicators, to improve forecast precision. Further studies could evaluate model performance across different geographic 
regions and seasonal periods, or test model robustness at finer temporal resolutions such as 15-minute intervals. Finally, exploring 
probabilistic forecasting methods and real-time deployment scenarios can pave the way for adaptive, intelligent energy management 
systems. 
In conclusion, this research demonstrates the substantial potential of AI-driven forecasting models, with Random Forest emerging as 
the most suitable technique for short-term load prediction. The approach and findings lay a solid foundation for future 
enhancements in data-driven energy forecasting and contribute to the evolving landscape of smart grid technologies. 
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