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Abstract: In today's world, mechanical processes long performed by human vision have been superseded by computer vision, 
which uses cameras and algorithms to automate processes. Object trackers [2] are an important part of this computer 
vision. In this article, I tried to compare different kinds of tracking algorithms [5] implemented in OpenCV based 
on different factors. 
 

I. INTRODUCTION 
Object tracking is a deep learning application in which an object is detected and divided into a series of frames, with each 
frame recording its trajectory. This object can be a person, a bat, a vehicle, or anything in a series of frames. Object tracking is 
normally performed in two models. The first is the motion model, which tracks the speed and direction of object movement, and the 
second is the appearance model [4], which defines the selected object within a frame.  Object tracking through OpenCV is one 
famous option in this area. OpenCV consists of a set of built-in functions designed for object tracking, so there are many 
different object trackers you can use [7], and choosing a particular tracker depends on the application you develop. Developing a 
universal tracking algorithm Is almost impossible. OpenCV includes interfaces such as Java, Python, C, C++, Windows, Mac, 
Linux, Android, etc. Object tracking can be accessed using any OpenCV application [11]. There are two concepts [3] of 
tracking and detection, when we track an object that was detected in the previous frame, we know a lot about the object's 
appearance, its position in the last frame, its speed and direction of movement, so tracking is detection is faster than So with all 
the information you can easily predict the position of the object in the next frame [4]. Tracking is also useful when discovery fails. 
Few tracking algorithms available. Each has its own purpose, specific strengths, and weaknesses [1]. 
 
Some of the tracking algorithms are shown below [2] - 
1) Boosting Tracker: Based on the algorithm using incorporation of machine learning in Haar Cascade [9], but this age over 10 

years, unhurried and works satisfactorily. But it has mediocre tracking performance. 
2) MIL Tracker: Works very well in various cases and is more accurate than Boost-her tracker, but bugs are poorly reported. 
3) KCF Tracker: Kernelized Correlation Filter. More accurate and faster than Boost and MIL. Like MIL and KCF, but does 

not manage full occlusion very well. 
4) CSRT Tracker:  It is more accurate than KCF, but somewhat slower. 
5) Median Flow Tracker: Great for reporting errors. But if the movement has too big a jump, like B. fast moving object, it will fail 

[6]. 
6) TLD Tracker: Incredibly false-positive and potentially unusable, but works best under multi-frame occlusion. 
7) MOSSE Tracker: Good for tracking, but not as good as CSRT or KCF. If your tracking criteria are purely velocity-based, this 

is a very good choice. 
8) GOTURN Tracker: The only deep learning-based object detector, it employs the "Caffe" model for tracking and needs extra 

model files to function [10]. 
 

II. ALGORITHM DESCRIPTION 
OpenCV has a huge collection of libraries, but the available algorithms are limited. Here we use 3 feature detectors, 3 pure trackers 
and a tracking framework [7]. 
 
A. Feature Detector 
Objects are detected in each frame. It helps identify different features in object images and find the best mapping within the frame. 
OpenCV mainly has his three feature detectors: SURF, SIFT and ORB [6]. 
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B. Pure Trackers 
A pure tracker is designed to track an object by identifying its trajectory and predicting its future position. This includes 
fixing errors in the process. OpenCV has 3 pure trackers: - MIL, Boosting and MedianFlow [11]. 
 
C. Tracing Frameworks 
This type of algorithm aims to provide the most complex responses to tracking activity. They regularly adapt to new situations and 
correct big mistakes. OpenCV has a tracking framework: TLD 
 

III. MEASUREMENT METHODS 
Performing complex and complex comparisons of tracking algorithms can be very difficult. One of the main reasons for this is that 
tracking itself can be used for different purposes (tracking faces, people, vehicles, etc.) in different environments and locations 
(airports, offices, streets, etc.). Low quality/high quality, near/far, relocation, etc. Tracking itself also consists of 
overcoming different types of problems, such as: For example, partial occlusion [9] of tracked objects, changing lighting conditions, 
and fast camera movements that cause blurry images. So, this requires a very large dataset. 
 
A. Success Evaluation 
We used the following formula for each frame: Csuc (f) = |rt∩rg|/ |rt∪rg| where Csuc(f) [4]is also the matching criterion function for 
frame f. rt is the bounding box and rg is the bounding box. 

 
B. Precision Evaluation 
We used the rectangular scale obtained from the tracker and used the bottom truth and the best accuracy is reasonably 1 using 
the formula: Cprec (f) = |rt|/ |rg| [4] where, Cprec(f) is the accuracy criterion function for the currently processed frame f [9]. 
 
C. Time Demands Evaluation 
We propose to simply measure the time of each frame. Ctim(f) = t where Ctim(f) [4] is the algorithm time required criterion 
function. t is the time it took to process this frame. 
 

IV. DIFFICULTIES 
Many issues had to be resolved before the data could be collected and processed. The original idea was to test how much the 
bounding box provided by the tracker and the lower truth bounding box overlap, and measure the separation at the same time. The 
first problem was that sometimes the tracker would reject items from subpages on initialization, or lose items entirely during 
tracking. Data is generated at every frame, so even if tracking fails, the tracker may not be able to handle all tracking issues 
in the video currently being processed. In benchmarking, you can often fix this by triggering a reinitialization after a few failed 
frames. I decided to set the re-trigger threshold to 30 failed frames [10]. This could mean that some trackers look easier 
(ground truth may not be available). In very rare cases, another issue has been discovered where the tracker behaves 
unexpectedly and the output data is outside the expected range. Sometimes it took a few seconds to process a relatively small image, 
sometimes it took a few seconds to process almost the entire image, but the bottom truth-limiting rectangle was 
much smaller. Such performance is reclassified as an error and information is functionally restricted to achieve 
penalties and obtain reasonable statistical records [5]. 

V. RESULTS 
A. Success 
Count the number of frames that gave a result within a defined limit (Csuc(f) ≥ 0.5 ∧ Cscale(f) < 2.0 ∧ t(f) < 1) [6], and denote this 
number by the total number of split frames. I split. Surprisingly, despite its complexity, TLD was not the most effective algorithm. 
Two reasons for this -  
First, the algorithms MIL and Boosting classified as pure trackers were more successful thanks to reinitialization from Underside 
Truth., the TLD may be so self-correcting that the bounding box moves so much from frame to frame that it does not even follow 
the bottom truth bounding box (sometimes less than 50% intersection) [6].  
It does not mean that TLD loses stuff. Select is true but does not center the element in its bounding box. 
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B. Precision 
I decided to use a scaling ratio to measure the accuracy of each algorithm. If the item is found exactly, the dimensions of the 
bounding rectangle should be about the same as the truth below than otherwise. This criterion excludes all failed data and suggests a 
maximum acceptable scaling ratio of 2 [9]. The extreme values of all algorithms were below this upper bound and the lower bound 
was of course 0. So, to determine which algorithms performed well according to this criterion, we need to see how close their 
mean is to 1.0 [1]. Precise minimal and maximal values 
 
C. Time Demands 
For this metric, we measured the time it takes each algorithm to process a frame. I had to remove not only the very short time but 
also the very long time, as the boxplot would be extremely overstretched. SIFT and SURF are very slow. This is because it 
deals with floating point values and internal calculations take time [8]. The rest of the algorithms are fast, but TLD is the slowest. 
The slowness of the TLD algorithm is due to its relative robustness and lack of optimization in the OpenCV implementation. 
 

VI. CONCLUSION 
The first part is that success brings unexpected results. Of course, the TLD algorithm, which was considered the best on the research 
base so far, was not all that great. Partly due to its complexity (I could not put the target blob in place due to customization), partly 
he was due to poor implementation in OpenCV. The second criterion - precision - gives consistent results in terms of standards [4][5]. 
On the other hand, significant differences are often seen between the minimum and maximum levels of this measure. These results 
are marked as predictable based on previous research. The long run work on this research is going to be focused of detailed analysis 
of implementation of those algorithms, including used programming techniques and memory and computing efficiency [8]. 
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