

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 11 Issue: X Month of publication: October 2023

DOI: https://doi.org/10.22214/ijraset.2023.56079

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue X Oct 2023- Available at www.ijraset.com

Comparison of Various Algorithms for Handwritten Character Recognition of Indian Languages

Dr. Vishal Naik¹, Heli Mehta²

¹Asst. Prof., Udhna College, Surat, Gujarat, India

²Asst. Prof., RNGPIT, Bardoli, Gujarat, India

Abstract: In this paper, we present a comparison of various pre-processor, feature extraction methods and algorithms for handwritten character recognition of various Indian languages. Comparison of classifier, feature set and accuracy of offline handwritten character recognition of Gujarati, Devanagari, Gurmukhi, Kannada, Malayalam, Bangla and Hindi Indian languages. Comparison of classifier, feature set and accuracy of online handwritten character recognition of Assamese, Tamil, Devanagari, Malayalam, Gurmukhi, and Bangla Indian languages. Indian language wise best performance of each language is compared for both offline and online handwritten character recognition systems.

Keywords: HCR, OCR, SVM, ANN, CNN, HMM, Online Handwritten Character Recognition, Offline Handwritten Character Recognition

I. INTRODUCTION

Optical character recognition system can be used to identify the handwritten characters. Handwritten character recognition (HCR) can be classified into two types - offline and online.

Offline handwritten character recognition system recognizes character written on paper or other such material using a pen or any device. In offline handwritten character recognition system, a character written on paper is converted into an image using a scanner or other imaging devices. The scanned image is further processed using different algorithms to remove noise, size variation etc. Preprocessed image is used to extract meaningful information from the written character. Extracted features are provided to the classifier as an input.

Indian languages have large and complex character set compare to English and other Latin scripts. Indian scripts include constants, vowels and composite characters representing a combination of constants and vowels. There is a similarity between characters of different Indian languages, mainly based on a geographic location of languages used.

Many characters in different Indian languages requires multiple strokes to write. Such a complex character set makes traditional keyboard not practical for Indian languages. Most of the Indian languages have major differences among each other and due to that, there cannot be a single handwritten character recognition system for all the Indian languages. We need to develop separate systems for every Indian language.

II. LITERATURE REVIEW

The character recognition system has training data of all character classes of a particular language. Offline handwritten character recognition is more complex compared to printed character recognition due to variation in writing style. In this system, handwritten documents are scanned and converted into digital image.

The scanned image is further processed using pre-processing methods, segmentation methods, text extraction methods, feature extraction methods and classification methods.

The character recognition system can be categorized into Offline and Online. We have compiled and compared different work of researchers of major Indian languages.

The following tables 1 to 7 shows and compare classifier, feature set and accuracy of offline handwritten character recognition of Gujarati, Devanagari, Gurmukhi, Kannada, Malayalam, Bangla and Hindi Indian languages.

90.55%

Gujarati

SVM

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

Mamta [5]

Table 1. Comparison of character recognition system for Gujarati

		-	_	•	•
Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Gujarati	SVM Polynomial Naïve based	Chain code Zoning Projection profile	99.80%	A. Sharma [1]
2	Gujarati	DTW	grey level co- occurrence	99.40%	S. B. Sunilkumar [2]
3	Gujarati	SVM Polynomial	Aspect ratio Extent Image sub division	86.66%	A. A. Desai [3]
4	Gujarati	k-NN	Primary and Secondary	63.10%	C. Patel [4]

Table 2. Comparison of character recognition system for Devanagari

PCA

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Devanagari	Multiclass SVM	Zernike and Legendre moment	98.30%	K. V. Kale [6]
2	Devanagari	SVM	Gradient based directional features	95.81%	M. Bhalerao [7]
3	Devanagari	ANN	Zoning	93.40%	D. Khanduja [8]
4	Devanagari	Mapping	Line & Intersection features	93.33%	R. Sharma [9]
5	Devanagari	SVM k-NN FFNN	Geometric Regional Gradient	86.34% 79.10% 91.30%	S. Ansari [10]

Table 3. Comparison of character recognition system for Gurmukhi

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Gurmukhi	Deep learning	Directional Regional	99.30%	N. Kumar [11]
2	Gurmukhi	HMM Bayesian	Zoning Directional Zernike	93.50%	M. Kumar [12]

Table 4. Comparison of character recognition system for Kannada

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Kannada	ANN	Structural Wavelet transform	91%	S. Pasha [13]
2	Kannada	Distance measuring method	FLD	68.00%	S. K. Niranjan [14]
3	Kannada	HMM	Gradient geometry Aspect ratio	66%	G. S. Veena [15]

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

Table 5. Comparison of character recognition system for Malayalam

	Tuble 5. Comparison of character recognition system for Managaran					
Sr. No.	Language	Classifier	Features	Accuracy	Author(s)	
1	Malayalam	Cross-sectional sequence	HLH patterns	88%	A. Rahiman [16]	
2	Malayalam	Two-layer FFNN	Chain code	72.10%	J. John [17]	

Table 6. Comparison of character recognition system for Bangla

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Bangla	Deep Belief Network	Pixel values	91.30%	M. M. R. Sazal [18]
2	Bangla	MLP	Chain code histogram	88.74%	R. Pramanik [19]
3	Bangla	MLP ANN	Zone density Directional	88.64%	F. I. Alam [20]

Table 7. Comparison of character recognition system for Hindi

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Hindi	Two-pass dynamic programming	Directional element	91.23%	S. Ramachandra [21]
2	Hindi	CNN	Augmented	94.19%	Ajay Indian [22]

The following tables 8 to 14 shows and compare classifier, feature set and accuracy of online handwritten character recognition of Assamese, Tamil, Devanagari, Malayalam, Gurmukhi, and Bangla Indian languages.

Table 8. Comparison of character recognition system for Assamese

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Assamese	SVM	Posterior feature	99.52%	S. Mandal [23]
2	Assamese	Combined HMM & SVM	Coordinate sequence 1st & 2nd order derivative	96.17%	H. Choudhury [24]
3	Assamese	HMM SVM	1st & 2nd order derivative Baseline features	95.10%	S. Mandal [25]
4	Assamese	HMM	Pixel coordinates	93.35%	H. Choudhury [26]
5	Assamese	HMM SVM	Statistical Directional	76.24% 76.56%	S. Mandal [27]

Table 9. Comparison of character recognition system for Tamil

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Tamil	Naïve Bayes	Pixel coordinates	91.81%	R. Kunwar [28]
2	Tamil	HMM	Writing direction Curvature	91.80%	A. Bharath [29]
		BOS	Slope		
3	Tamil	Connected	Blobs	77.84%	K. H. Aparna [30]
3		component	Stems features	77.0470	

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

Table 10. Comparison of character recognition system for Devanagari

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Devanagari	SVM HMM	Pixel coordinates	97.27%	H. Swetha lakshmi [31]
2	Devanagari	HMM SVM	Zone wise slope of dominant points	93.3% 97.11%	R. Ghosh [32]
3	Devanagari	Template matching	DTW	97%	K. C. Santosh [33]
4	Devanagari	SVM	Structural Zone wise directional Zone wise slope	90.63%	R. Ghosh [34]
5	Devanagari	HMM BOS	Writing direction Curvature Slope	87.13%	A. Bharath [35]

Table 11. Comparison of character recognition system for Malayalam

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Malayalam	k-NN	Pixel coordinates Direction Curvature Aspect ratio	98.12%	M. Sreeraj [36]
2	Malayalam	HMM SVM	Pixel coordinates Direction Curvature Angular features	97.97%	K.P. Prime kumar [37]
3	Malayalam	SVM DDAG	Pixel coordinates Direction Curvature Moments	95.78%	A. Arora [38]
4	Malayalam	k-NN MLP SVM	Accurate dominant points Intersections	90.39% 93.17% 95.12%	Baiju KB [39]

Table 12. Comparison of character recognition system for Gurmukhi

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Gurmukhi	SVM	X & Y projection	99.75%	H. Singh [40]
2	Gurmukhi	SVM HMM	RDP Chain code	98.21% 98.27%	S. Singh [41]
3	Gurmukhi	K-means clustering	Direction Loops	94.69%	A. Sharma [42]
4	Gurmukhi	k-NN MLP SVM	Spatial temporal Spectral features	89.35% 89.89% 89.64%	R. Kaur [43]
5	Gurmukhi	HMM	Zoning features	88.40%	K. Verma [44]

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue X Oct 2023- Available at www.ijraset.com

Table 13. Comparison of character recognition system for Bangla

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Bangla	CNN	Pooling	99.40%	S. Sen [45]
			Mass distribution		
2	Bangla	SMO	Chord length	98.57%	S. Sen [46]
			krill-herd		
3	Bangla	SVM	COG based global & local	98.26%	S. Sen [47]
4	Bangla	MLP	Hausdorff Distance	95.57%	S. Sen [48]
4	Dangia		Directed HD		
			Transition counts,		
5	Bangla	SVM	centre of gravity, &	95.49%	S. Sen [49]
			topological		

Table 14. Comparison of character recognition system for Gujarati

Sr. No.	Language	Classifier	Features	Accuracy	Author(s)
1	Gujarati	SVM k-NN	derivative of pixel values, zoning, normalized chain code	94.65%	Vishal [50]
2	Gujarati	SVM	zoning features dominant point-based normalized chain code	94.13%	Vishal [51]
3	Gujarati	SVM MLP k-NN	Structural Statistical	91.63% 86.72% 90.09%	Vishal [52]
4	Gujarati	SVM	zoning and chain code directional features	95%	Vishal [53]

III.RESULTS AND DISCUSSION

The comparison of various classifier, feature set and accuracy of offline and online handwritten character recognition for various Indian languages. For offline handwritten character recognition, following are the best result achieved by the researcher for various Indian languages.

- Gujarati: The classification was performed using a Support Vector Machine and naïve based classifiers. The feature set included chain code, zoning, and projection profile-based features and their possible combinations as a fusion feature set. The result showed the highest accuracy of 99.80% using SVM with the polynomial kernel classifier and chain code & zone-based features. [1]
- 2) Devanagari: In the pre-processing stage, smoothing, enhancing, and filtering methods were used. In the pre-classification stage, local and global features were used. The features were extracted using Zernike and Legendre moment. Classification was performed using multiclass SVM. The result showed a maximum accuracy of 98.30% for a handwritten character. [6]
- 3) Gurmukhi: The feature set had 117 feature values which included the local binary pattern with directional and regional features. Classification was performed using deep learning classifier. The result showed an accuracy of 99.3%. [11]
- 4) Kannada: In pre-processing skew detection and correction, binarization, noise removal, normalization, and thinning methods were used. The features set had 149 feature values which included structural and wavelet transform features. Classification was performed using the Artificial Neural Network classifier. The result showed an accuracy of 91%. [13]
- 5) Malayalam: Characters were separated based on foreground and background colours. The HLH patterns featured with horizontal, vertical and cross-sectional sequence check was used to identify a character. The authors obtained an accuracy of 88%. [16]
- 6) Bangla: Deep Belief Network (DBN) was used for classification. DBN learning process has two steps, unsupervised feature learning and supervised parameter tuning. The result showed an accuracy of 91.30%. [18]
- 7) *Hindi:* They used augmented data set with CNN. The proposed method achieved accuracy of 94.19% with average training time/epoch 8.43s. [22]

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue X Oct 2023- Available at www.ijraset.com

For online handwritten character recognition, following are the best result achieved by the researcher for various Indian languages.

- a) Assamese: The Support Vector Machine was used for classification. The feature set included class-conditional probabilities features derived from a Gaussian mixture model. The result showed an accuracy of 97.67% for upper letters & processing time of 162.34 milliseconds, and 96.05% for lower letters & processing time of 335.56 milliseconds. The extended work of English word recognition showed an accuracy of 94.66%. [23]
- b) Tamil: The proposed algorithm was a semi-supervised method which learns from labeled and unlabeled samples. The classification was performed using the naïve Bayes classifiers and the expectation-maximization algorithm. The result showed an accuracy of 91.81%. [28]
- c) Devanagari: Normalization and smoothing pre-processing methods were used here. Single Engine Approach using SVM, Multiple SVM Engines and HMM were used for classification. The feature set included curve and coordinate points features. The result showed an accuracy of 97.27% using SVM and 83.08% using HMM. [31]
- d) Malayalam: They used dot detection, dehooking, smoothing, thinning, loop detection, normalization, orientation normalization and equidistant resampling for pre-processing. They used normalized x-y co-ordinates, pen up/down, aspect ratio, curvature and writing direction for feature extraction. They used k-NN for classification. They achieved an accuracy of 98.12%. [36]
- e) Gurmukhi: The Support Vector Machine with the RBF kernel was used for classification. The zone identification was performed using the x & y projection method. The feature set included x & y points, discrete Fourier transform features, and directional features. The result showed an accuracy of 94.8% for character and 99.75% for zone identification. [40]
- f) Bangla: Classification with different strategies. Comparison between max pooling and average pooling schemes was done. The softmax and sigmoid activation functions were also compared. The result showed an accuracy of 99.40% using max pooling and softmax function. [45]
- g) Gujarati: Classification with multi-layer classification using SVM at first layer and k-NN at second layer. The feature set is consist of derivative of pixel values, zoning and normalized chain code. The result showed an accuracy of 94.65%. [50]

IV.CONCLUSIONS

Comparison of classifier, feature set and accuracy of offline handwritten character recognition of Gujarati, Devanagari, Gurmukhi, Kannada, Malayalam, Bangla and Hindi Indian languages and online handwritten character recognition of Assamese, Tamil, Devanagari, Malayalam, Gurmukhi, and Bangla Indian languages. For offline handwritten character recognition, Gujarati, Devanagari, Gurmukhi and Hindi language performed best among all Indian languages with SVM and deep learning algorithms. For online handwritten character recognition, Assamese, Devanagari, Gurmukhi, Bangla and Gujarati language performed best among all Indian languages with SVM and CNN learning algorithms.

REFERENCES

- [1] Sharma, P. Thakkar, D. M. Adhyaru, and T. H. Zaveri, "Features Fusion based Approach for Handwritten Gujarati Character Recognition", NIRMA UNIVERISTY J. Eng. Technol., vol. 5, no. 2, pp. 13–19, 2016.
- [2] S. B. Sunilkumar, R. Y. Arvind, M. P. Mihir, and M. P. Mitul, "Gujarati handwritten character recognition using grey level co-occurrence matrix and dynamic time warping technique", in International Conference On Smart Technologies For Smart Nation (SmartTechCon), 2017, pp. 340–346.
- [3] A. A. Desai, "Support vector machine for identification of handwritten Gujarati alphabets using hybrid feature space", CSI Trans. ICT, vol. 2, no. January, pp. 235–241, 2015.
- [4] C. Patel and A. Desai, "Gujarati Handwritten Character Recognition Using Hybrid Method Based on Binary Tree-Classifier And K-Nearest Neighbour", Int. J. Eng. Res. Technol., vol. 2, no. 6, pp. 2337–2345, 2013.
- [5] Dr. Mrs. Mamta Jagdish Baheti, "Principal Component Analysis and Support Vector Machine approach for Gujarati Handwritten Numeral Recognition", International Journal of Scientific Research in Computer Science, Engineering and Information Technology, Volume 3, Issue 3, 2018
- [6] K.V.Kale, S.V.Chavan, M.M.Kazi, and Y.S.Rode, "Handwritten and Printed Devanagari Compound using Multiclass SVM Classifier with Orthogonal moment Feature", Int. J. Comput. Appl., vol. 71, no. 24, pp. 31–37, 2013.
- [7] M. Bhalerao, S. Bonde, A. Nandedkar, and S. Pilawan, "Combined Classifier Approach for Offline Handwritten Devanagari Character Recognition Using Multiple Features", Comput. Vis. Bio Inspired Comput., pp. 45–54, 2018.
- [8] D. Khanduja, N. Nain, and S. Panwar, "A Hybrid Feature Extraction Algorithm for Devanagari Script", ACM Trans. Asian Low-Resource Lang. Inf. Process., vol. 15, no. 1, 2015.
- [9] R. Sharma and T. Mudgal, "Primitive Feature-Based Optical Character Recognition of the Devanagari Script", Prog. Adv. Comput. Intell., vol. 714, pp. 249–259, 2018.
- [10] S. Ansari and U. Sutar, "Devanagari Handwritten Character Recognition using Hybrid Features Extraction and Feed Forward Neural Network Classifier (FFNN)", Int. J. Comput. Appl., vol. 129, no. 7, pp. 22–27, 2015.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue X Oct 2023- Available at www.ijraset.com

- [11] N. Kumar and S. Gupta, "A Novel Handwritten Gurmukhi Character Recognition System Based on Deep Neural Networks", Int. J. Pure Appl. Math., vol. 117, no. 21, pp. 663–678, 2017.
- [12] M. Kumar, M. K. Jindal, and R. K. Sharma, "A Novel Framework for Grading of Writers Using Offline Gurmukhi Characters", Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., vol. 86, no. 3, pp. 405–415, 2016.
- [13] S. Pasha and M. C. Padma, "Handwritten Kannada character recognition using wavelet transform and structural features", 2015 Int. Conf. Emerg. Res. Electron. Comput. Sci. Technol., pp. 346–351, 2015.
- [14] S. K. Niranjan, V. Kumar, G. Hemantha Kumar, and V. N. Manjunath Aradhya, "FLD based unconstrained handwritten kannada character recognition", Proc. 2008 2nd Int. Conf. Futur. Gener. Commun. Networking, FGCN 2008, vol. 3, no. 3, pp. 7–10, 2008.
- [15] G. S. Veena, T. N. R. Kumar, and A. Sushma, "Handwritten Off-line Kannada Character / Word Recognition Using Hidden Markov Model", in International Conference on Cognition and Recognition, 2018, pp. 357–369.
- [16] A. Abdul Rahiman, A. Shajan, A. Elizabeth, M. K. Divya, G. Manoj Kumar, and M. S. Rajasree, "Isolated handwritten Malayalam character recognition using HLH intensity patterns", ICMLC 2010 2nd Int. Conf. Mach. Learn. Comput., pp. 147–151, 2010.
- [17] J. John, K. V. Pramod, and K. Balakrishnan, "Offline handwritten Malayalam Character Recognition based on chain code histogram", 2011 Int. Conf. Emerg. Trends Electr. Comput. Technol. ICETECT 2011, pp. 736–741, 2011.
- [18] M. M. R. Sazal, S. K. Biswas, M. F. Amin, and K. Murase, "Bangla handwritten character recognition using deep belief network", 2013 Int. Conf. Electr. Inf. Commun. Technol., pp. 1–5, 2014.
- [19] R. Pramanik and S. Bag, "Shape decomposition-based handwritten compound character recognition for Bangla OCR", J. Vis. Commun. Image Represent., vol. 50, no. August 2017, pp. 123–134, 2018.
- [20] F. I. Alam and B. Banik, "Offline Isolated Bangla Handwritten Character Recognition Using Spatial Relationships", in International Conference on Informatics, Electronics and Vision (ICIEV), 2013.
- [21] S. Ramachandrula, S. Jain, and H. Ravishankar, "Offline Handwritten Word Recognition in Hindi", in the workshop on Document Analysis and Recognition, 2012, no. ii, pp. 49–54.
- [22] Ajay Indian, Karamjit Bhatia, and Krishan Kumar, "Offline Handwritten Hindi Character Recognition Using Deep Learning with Augmented Dataset", Cyber Security in Intelligent Computing and Communications, 2022 https://doi.org/10.1007/978-981-16-8012-0_11
- [23] S. Mandal, S. R. M. Prasanna, and S. Sundaram, "GMM posterior features for improving online handwriting recognition", Expert Syst. Appl., vol. 97, pp. 421–433, 2018.
- [24] H. Choudhury, S. Mandal, S. Devnath, S. R. M. Prasanna, and S. Sundaram, "Combining HMM and SVM based stroke classifiers for online Assamese handwritten character recognition", in 12th IEEE International Conference Electronics, Energy, Environment, Communication, Computer, Control: (E3-C3), INDICON 2015, 2016, pp. 1–6.
- [25] S. Mandal, H. Choudhury, S. R. M. Prasanna, and S. Sundaram, "Frequency count based two stage classification for online handwritten character recognition", 2016 Int. Conf. Signal Process. Commun. SPCOM 2016, 2016.
- [26] H. Choudhury, S. Mandal, S. Devnath, S. R. M. Prasanna, and S. Sundaram, "Comparison of assamese character recognizer using stroke level and character level engines", 2015 21st Natl. Conf. Commun. NCC 2015, 2015.
- [27] S. Mandal, S. R. M. Prasanna, and S. Sundaram, "An improved discriminative region selection methodology for online handwriting recognition", Int. J. Doc. Anal. Recognit., 2018.
- [28] R. Kunwar, U. Pal, and M. Blumenstein, "Semi-supervised Online Learning of Handwritten Characters Using a Bayesian Classifier", 2013 2nd IAPR Asian Conf. Pattern Recognit., pp. 717–721, 2013.
- [29] A. Bharath and S. Madhvanath, "HMM-based lexicon-driven and lexicon-free word recognition for online handwritten indic scripts", IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 670–682, 2012.
- [30] K. H. Aparna, V. Subramanian, M. Kasirajan, G. V. Prakash, and V. S. Chakravarthy, "Online Handwriting Recognition for Tamil", Ninth Int. Work. Front. Handwrit. Recognit., pp. 438–443, 2004.
- [31] H. Swethalakshmi, "Online handwritten character recognition of Devanagari and Telugu Characters using support vector machines", Tenth Int. Work. Front. Handwrit. Recognit., pp. 1–6, 2006.
- [32] R. Ghosh and P. P. Roy, "Study of Zone-Based Feature for Online Handwritten Signature Recognition and Verification in Devanagari Script", in International Conference on Computer Vision and Image Processing, 2017, pp. 523–530.
- [33] K. C. Santosh and E. Iwata, "Stroke-Based Cursive Character Recognition", Adv. Character Recognit., 2012.
- [34] R. Ghosh and P. P. Roy, "Study of two zone-based features for online Bengali and Devanagari character recognition", Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, vol. 2015–Novem, pp. 401–405, 2015.
- [35] A. Bharath and S. Madhvanath, "HMM-based lexicon-driven and lexicon-free word recognition for online handwritten indic scripts", IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 670–682, 2012.
- [36] M. Sreeraj and S. Idicula, "k-NN Based On-Line Handwritten Character Recognition System", Integr. Intell. Comput. (ICIIC), 2010 First Int. Conf., pp. 171–176, 2010.
- [37] K. P. Primekumar and S. M. Idiculla, "On-line Malayalam Handwritten Character Recognition using HMM and SVM", Int. Conf. Signal Process., Image Process. Pattern Recognit. [ICSIPR], pp. 1–5, 2013.
- [38] A. Arora and A. M. Namboodiri, "A hybrid model for recognition of online handwriting in Indian scripts", in International Conference on Frontiers in Handwriting Recognition, ICFHR 2010, 2010, pp. 433–438.
- [39] K. Baiju and S. K, "Online Recognition of Malayalam Handwritten Scripts A comparison using KNN, MLP and SVM", Intl. Conf. Adv. Comput. Commun. Informatics, no. Sept. 21-24, 2016, pp. 1–5, 2016.
- [40] H. Singh, R. K. Sharma, and V. P. Singh, "Efficient zone identification approach for the recognition of online handwritten Gurmukhi script", Neural Comput. Appl., vol. 3456789, 2018.
- [41] S. Singh, A. Sharma, and I. Chhabra, "A dominant points-based feature extraction approach to recognize online handwritten strokes", Int. J. Doc. Anal. Recognit., vol. 20, no. 1, pp. 37–58, 2017.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue X Oct 2023- Available at www.ijraset.com

- [42] A. Sharma and K. Dahiya, "Online Handwriting Recognition of Gurmukhi and Devanagari Characters in Mobile Phone Devices", in International Journal of Computer Applications, 2012, pp. 37–41.
- [43] R. Kaur and M. Singh, "Stroke based online handwritten Gurmukhi character recognition", 2016 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2016, pp. 598–601, 2016.
- [44] K. Verma and R. K. Sharma, "An Efficient Writing-Zone Identification Technique for Online Handwritten Gurmukhi Character Recognition", Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 2017.
- [45] S. Sen, D. Shaoo, S. Paul, R. Sarkar, and K. Roy, "Online Handwritten Bangla Character Recognition Using CNN: A Deep Learning Approach", Intell. Eng. Informatics. Adv. Intell. Syst. Comput., vol. 695, pp. 413–420, 2018.
- [46] S. Sen, M. Mitra, A. Bhattacharyya, R. Sarkar, F. Schwenker, and K. Roy, "Feature Selection for Recognition of Online Handwritten Bangla Characters", Neural Process. Lett., 2019.
- [47] S. Sen, A. Bhattacharyya, A. Das, R. Sarkar, and K. Roy, "Design of Novel Feature Vector for Recognition of Online Handwritten Bangla Basic Characters", in the First International Conference on Intelligent Computing and Communication. Advances in Intelligent Systems and Computing, 2016, vol. 458, pp. 485–494.
- [48] S. Sen, R. Sarkar, K. Roy, and N. Hori, "Recognize Online Handwritten Bangla Characters Using Hausdorff Distance-Based Feature", in the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications. Advances in Intelligent Systems and Computing, 2017, vol. 515, pp. 541–549.
- [49] S. Sen, A. Bhattacharyya, P. K. Singh, R. A. M. Sarkar, K. Roy, and D. Doermann, "Application of Structural and Topological Features to Recognize Online Handwritten Bangla Characters", ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 17, no. 3, 2018.
- [50] Vishal Naik and Apurva Desai, "Online Handwritten Gujarati Character Recognition: Two-Layer Classification Approach", International Journal of Research in Advent Technology, Vol.7, No.6, June 2019 DOI: 10.32622/ijrat.762019128
- [51] Vishal Naik and Apurva Desai, "Multi-layer Classification Approach for Online Handwritten Gujarati Character Recognition", Computational Intelligence: Theories, Applications and Future Directions—Volume II, Advances in Intelligent Systems and Computing, pp 595-606,2019 https://doi.org/10.1007/978-981-13-1135-2_45
- [52] Vishal Naik and Apurva Desai, "Online handwritten Gujarati character recognition using SVM, MLP, and K-NN", 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2017 DOI: 10.1109/ICCCNT.2017.8203926
- [53] Vishal Naik and Apurva Desai, "Online Handwritten Gujarati Numeral Recognition Using Support Vector Machine", International Journal of Computer Sciences and Engineering, Vol.-6, Issue-9, Sept. 2018 DOI: 10.26438/jjcse/v6i9.416421
- [54] Vishal Naik and Apurva Desai, "Online Handwritten Gujarati Word Recognition", International Journal of Computer Vision and Image Processing, Vol-9, Issue-1, 2019 DOI: 10.4018/IJCVIP.2019010103

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)