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Abstract: Image georeferencing is the process of accurately mapping an image onto a geographic coordinate system. It is really 
crucial for applications in remote sensing, urban planning, environmental analysis, and historical research. Numerous studies 
have evaluated georeferencing methods for their accuracy, efficiency, and application suitability. This paper introduces a new 
approach, the Composite Georeferencing Method (CGM). 
The CGM begins by applying an Affine or Helmert transformation to align the image control points with their real-world 
geographic coordinates. Next, a stepwise interpolation process is implemented, utilizing three proposed influence factors: Linear, 
Cosine, and Tangent. Results indicate that CGM, using these influence factors, yields better outcomes compared to traditional 
Helmert and Affine methods. Within the first quarter of the maximum distance between points, the Cosine and Tangent 
Influence Factors show similar performance, while the Linear Influence Factor proves to be less effective. Beyond this point, the 
Cosine Influence Factor experiences a rapid decline in its effect, which enhances overall performance. In the final quarter of 
the distance range, the Cosine Influence Factor flattens, becoming negligible, indicating minimal influence of point 
displacement at longer distances. 
Based on these findings, the fifth-degree Cosine Influence Factor is identified as the optimal choice for the Composite 
Georeferencing Method, offering superior accuracy and efficiency in the georefePrencing process. 
Keywords: Transformation, Georeferencing, Interpolation, Image Processing. 
 

I. INTRODUCTION 
Image georeferencing can be considered as one of the important pillars for many fields of applied sciences such as remote sensing, 
environmental analysis, urban planning and archeological research. It has the obvious advantage of improving accuracy and 
enhancing both comparability, and usability. It, therefore, facilitates the process of decision-making and promotes global 
collaboration to address environmental, urban, and developmental challenges. 
Georeferencing can be defined as the process of assigning real-world geographic coordinates to each pixel of an image, which 
would allow it to be mapped accurately onto geographic coordinate systems like latitude and longitude. This alignment enables the 
image to be analyzed in relation to other spatial data, making georeferencing a core function in Geographic Information Systems 
(GIS) and remote sensing. 
Georeferenced aerial photographs play a vital role in ensuring spatial accuracy and integration. They can be overlaid with vector 
data, such as roads or property boundaries, to create detailed maps used in urban planning and environmental assessments. This 
integration of data layers is a key factor to simplify both spatial analysis and infrastructure planning. 
In remote sensing, georeferencing is essential for integrating satellite imagery with other spatial datasets. Brown and Wilson (2018) 
have concluded that recent advancements in georeferencing techniques would play an important role in improving the alignment of 
satellite images with geographic data layers, which leads to enhancing the analysis of environmental changes and land-use patterns. 
Georeferenced images are very necessary in urban planning, namely, for studying, monitoring and managing urban sprawl. In their 
study, Garcia and Martinez (2019) concluded that improved georeferencing techniques provide a means for reaching detailed 
assessments of urban growth, enforcing better-informed decisions regarding infrastructure, land management, and city development. 
Another significant benefit of georeferencing is the consistency and comparability it offers. High temporal resolution georeferenced 
satellite images allow monitoring land use changes, deforestation and urban growth. On the other hand, high spatial resolution 
georeferenced satellite images provide accurate spatial data which is vital for natural resource management and urban planning.   
Georeferencing is usually performed using specialized GIS software such as ArcGIS, QGIS, and ERDAS IMAGINE. Moreover, 
quick and obvious progress in machine learning and automated algorithms has also been a major factor to improve the efficiency 
and accuracy of the georeferencing process, reducing manual intervention and increasing precision. 
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A. Techniques in Image Georeferencing 
Image Georeferencing techniques can be classified as either Manual, Automatic or Machine Learning. These can be outlined as 
follows: 
� Manual Georeferencing: This approach is based on manually selecting control points on an image and matching them with their 
corresponding geographic coordinates. Although this approach is time-consuming, it is however, essential for applications that 
demand high precision, such as working with historical maps or images with substantial distortions. 
� Automatic Georeferencing: This approach is a result of the noticeable and quick development in image processing and computer 
vision techniques. Automatic Georeferencing techniques utilize algorithms to detect and match features between an image and a 
reference dataset. By this they significantly reduce the need for manual input. Recent developments have introduced feature-based 
methods for image georeferencing. As an example, the study by Miller and Zhang (2015) explored the use of feature detection 
algorithms like SIFT (Scale-Invariant Feature Transform) and SURF (Speeded-Up Robust Features), which automatically identify 
and match features between images and geographic maps. These techniques would obviously improve georeferencing accuracy by 
minimizing reliance on manually selected control points. 
� Machine Learning Techniques: Machine learning has played a recognizable role in revolutionizing image georeferencing. Li et al. 
(2020) employed convolutional neural networks (CNNs) to automate the georeferencing process. Their study has achieved 
impressive accuracy and robustness. Their research underscores the potential of deep learning to handle complex geospatial data and 
enhance georeferencing performance, even in challenging conditions. 
 
B. Challenges in the Georeferencing Process 
� Image Distortion: Aerial and satellite images often suffer from distortions caused by sensor orientation, terrain variations, or 
atmospheric conditions. These distortions affect the alignment of consecutive images with the actual ground coordinates. Hence, 
correction of these distortions is necessary for accurate georeferencing.  
� Control Point Selection: The precision of georeferencing largely depends heavily on the quality accuracy and distribution of 
control points. If control points are poorly selected or unevenly spaced, it may cause significant errors in the transformation process 
which can lead to reduction of the overall accuracy. 
� Resolution and Scale: The image’s resolution and the reference data's scale are highly effective factors in georeferencing. High-
resolution images usually require more precise control points to maintain accuracy, while low resolution images are not expected to 
lead to high accuracy due to insufficient detail, making it difficult to achieve precise georeferencing. 
 

II. LITERATURE REVIEW 
Historically, image georeferencing was used to be done through manual methods making use of control points. Researchers such as 
Smith et al. (1995) explored early affine transformation techniques, manually aligning images with ground control points (GCPs) 
identified on maps. Although foundational, these methods often faced limitations in terms of accuracy and efficiency. Although 
these methods are quite basic and recognizable they often faced limitations in terms of accuracy and efficiency. 
In the late 1990s, significant advancements were made with the introduction of polynomial transformations. Jones and Brown 
(1998) demonstrated that polynomial equations are more relevant to model the relationship between image and geographic 
coordinates compared to simple affine transformations, thus improving accuracy by addressing complex distortions. 
Over time, image georeferencing methods progressed from manual techniques to sophisticated algorithms and machine learning 
approaches. Recent improvements have significantly enhanced both the accuracy and automation of georeferencing, particularly in 
applications like remote sensing and urban planning. Future research should focus on further automating these processes, integrating 
diverse data sources, and addressing georeferencing challenges in complex environments. 
In the study by Yuan and Elaksher (2007) the methods for georeferencing historical aerial photographs using GIS and image 
processing techniques have been explored. The study emphasized the importance of accurate control points and suggested solutions 
to issues such as image distortion. Chiabrando, Donadio, and Rinaudo (2016) investigated the use of machine learning and 
crowdsourcing to automate the georeferencing of historical maps, demonstrating how these techniques can enhance both accuracy 
and efficiency. 
In their study, Zhang and Luo (2018) addressed real-time image georeferencing using UAVs (Unmanned Aerial Vehicles), 
proposing methods to integrate real-time georeferencing into UAV-based remote sensing. On the other hand, Li, Wang, and Zhang 
(2012) focused on georeferencing satellite images using GCPs and feature matching. They also discussed the feasibility of utilizing 
various interpolation methods and discussed the crucial role of control point selection. 
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Rumsey and Williams (2002) examined the challenges of georeferencing historical maps in a GIS framework, particularly focusing 
on how historical map distortions impact the georeferencing process. McDaid and Long (2019) compared georeferencing algorithms 
for historical maps. They have concluded that machine learning-based methods generally outperformed traditional techniques in 
both accuracy and efficiency. They also highlighted the critical importance of high-quality control points. 
Campbell and Wilke (2020) proved that leveraging OpenStreetMap (OSM) data significantly improves the automation of image 
georeferencing, reducing the need for manual intervention while increasing accuracy. Johnson and O'Reilly (2021) applied 
convolutional neural networks (CNNs) for georeferencing remote sensing images, demonstrating superior accuracy and robustness, 
particularly in challenging environments. 
Liu, Zhang, and Chen (2018) introduced a hybrid georeferencing method combining feature-based and pixel-based techniques, 
striking a balance between precision and computational efficiency, making it ideal for high-resolution satellite imagery. Peters and 
Smith (2022) reviewed the use of control points in image georeferencing. The emphasized the fact that the quality and distribution 
of control points are critical to georeferencing accuracy. Moreover, they recommended best practices for optimal results. 
Several studies have also compared georeferencing methods to evaluate their accuracy, efficiency, and suitability for various 
applications. Notable comparisons include: 
Martinez and Garcia (2017) carried out a comparison between traditional georeferencing methods including affine and polynomial 
transformations with modern feature-based techniques such as SIFT and SURF. Their findings showed that feature-based methods 
provided higher accuracy and better handling of distortions, though polynomial transformations remained effective with high-
quality control points. 
Smith and Brown (2018) compared various georeferencing techniques, including affine, projective, and machine learning-based 
methods for remote sensing imagery. They found concluded that machine learning techniques, particularly those using CNNs, 
outperformed are superior to traditional methods in accuracy and robustness, indicating the potential of machine learning for 
complex geospatial data. 
Johnson and Wang (2019) compared automated georeferencing methods with manual approaches using high-resolution satellite 
imagery They concluded that automated methods, such as feature-based and machine learning techniques, are more efficient and 
time-saving, although manual methods offered greater precision in cases with fewer control points. 
Liu and Chen (2020) studied the feasibility of using hybrid georeferencing approaches, combining traditional methods with modern 
techniques. Their study proclaimed that hybrid methods integrating affine transformations with feature-based techniques enhanced 
accuracy and robustness, offering a versatile solution for various georeferencing challenges. 
Lee and Park (2021) compared algorithms utilizing OSM data, including feature matching, control points, and machine learning-
based methods. Their research demonstrated that algorithms using OSM data significantly improved georeferencing accuracy and 
automation, with machine learning methods excelling at aligning images with OSM data. 
In general, these studies collectively illustrate clearly the evolution of image georeferencing techniques, highlighting their respective 
strengths and weaknesses. Advances in machine learning and hybrid approaches have generally improved accuracy and efficiency, 
though traditional methods continue to be valuable in specific contexts. 
 

III. COMPOSITE GEOREFERENCING METHOD (CGM) 
Let’s consider a set of r points in an image for which the ground coordinates have been measured using GPS. This set is divided into 
two groups: n control points and m check points. We will denote the following: 
௜ܺ , ௜ܻ   are the coordinates of control points (CP)on the ground (i=1, 2, ….., n). 
ܺܿ௞ ,ܻܿ௞  are the coordinates of check points (Ch.P)on the ground (k=1, 2, …, m). 
෠ܺ௜ , ෠ܻ௜    and ܺ෢ܿ௞ ,ܻ෢ܿ௞ are consequently, the coordinates of the CP and Ch.P within the image. 
෠ܺ௜଴, ෠ܻ௜଴  represent the coordinates of CP after applying the Affine (or Helmert) Transformation. 
෠ܺ௝௜ , ෠ܻ௝௜  represent the coordinates of CP after applying the step-wise CGM with respect to point i. 
෢௞ܥܺ  .෢௞  represent the coordinates of Ch.P, calculated by the transformation parametersܥܻ,
௜,௝ܦ   is represents the distance between point i and point j. 

௜,௝ܦ =  ට൫ ௜ܺ − ௝ܺ൯
ଶ

+ ൫ ௜ܻ − ௝ܻ൯
ଶ

            (1) 
i; j =1, 2, 3, …….., m+n). 
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In the first step, we apply the Affine or Helmert transformation using a set of n control points, which generates new coordinates 
෠ܺ௜ , ෠ܻ௜ . However, the image’s pixel coordinates may not perfectly align with the geographic coordinates ௜ܺ , ௜ܻ measured by GPS. The 
CGM is then used as an interpolation approach to ensure that each pixel is assigned an accurate location. CGM aims to maintain 
consistency between the control points and their actual geographic positions, improving overall georeferencing accuracy. 
he second step introduces an influence factor, which determines how the displacement of one point affects the surrounding points. 
This influence factor helps distribute the positional adjustments across the image, ensuring that any correction applied to a control 
point is smoothly propagated to nearby points, thereby improving the overall spatial accuracy of the georeferencing process. 
 The concept of the proposed CGM involves stepwise shifting of the control points ෠ܺ௜ , ෠ܻ௜  so that they align with the true 
coordinates` ௜ܺ , ௜ܻ. This process creates mutual influence among the other points, meaning that shifting any point i (where i = 1, 2, 
…, n) will affect the other points j (where j = 1, 2, …, n-1). The shift for point j is should be inversely proportional to the distance 
௜,௝between points i and j. This effect can be expressed as: ܺܦ = ൫ ௜ܺ − ෠ܺ௜൯ ݂൫ܦ௜,௝൯ and ܻ = ൫ ௜ܻ − ෠ܻ௜൯ ݂൫ܦ௜,௝൯, where ݂൫ܦ௜,௝൯ is the 
influencing factor on point j due to shifting of point i. The function ݂൫ܦ௜,௝൯  should be designed such that the effect of shifting point i 
on point j decreases as the distance ܦ௜,௝  between them increases.  
Therefore, the second step involves proposing a suitable form for the influence factor ݂൫ܦ௜,௝൯. Based on the concept that nearby 
points significantly affect one another during the georeferencing process, the following forms can be suggested: 

 The Linear Influence Factor       ݂(ܦ௜,௝) = ቂ1−(
஽೔,ೕ
஽೘ೌೣ

)ቃ
௥

         (2) 

 The Cosine Influence Factor      ݂(ܦ௜,௝) = )௥ݏ݋ܿ
஽೔,ೕ
஽೘ೌೣ

. గ
ଶ

)             (3)  

 The Tangent Influence Factor    ݂(ܦ௜,௝) = ௥݊ܽݐ ቂ (1−
஽೔,ೕ
஽೘ೌೣ

). గ
ସ
ቃ        (4) 

Where ܦ௠௔௫ is the maximum distance between control points, and r is a parameter (r 1). 
 It is clear that, in the above suggested forms there is no influence of point i on point j when they are separated by ܦ௠௔௫. 
 The third step in the CGM involves shifting the point ( ෠ܺ୧ , ෠ܻ୧) so that it aligns with its actual coordinates ( ୧ܺ, ୧ܻ) for each i=1,2,…,n. 
Each adjustment at point i will subsequently influence the coordinates of the other points j (j=1, 2, …,n), resulting in step-wise 
updated coordinates for all point.  
Beginning with the shift of point 1 (where i=1), the updated coordinates for the other points j can be expressed as follows: 

ቆ
෠ܺ௝ଵ = ෠ܺ௝ ,଴ + ൫ ଵܺ − ෠ܺ୨,଴൯ ݂൫ܦଵ୨൯
෠ܻ௝ଵ = ෠ܻ௝ ,଴ + ൫ ଵܻ − ෠ܻ୨,଴൯ ݂൫ܦଵ୨൯

ቇ      (5) 

Then, shifting of point 2 gives: 

ቆ
෠ܺ௝ଶ = ෠ܺ௝,ଵ + ൫ܺଶ − ෠ܺ୨,ଵ൯ ݂൫ܦଶ୨൯
෠ܻ௝ଶ = ෠ܻ௝ ,ଵ + ൫ ଶܻ − ෠ܻ୨,ଵ൯ ݂൫ܦଶ୨൯

ቇ      (6) 

Thus, we can generalize the process so that, at each step  i (i = 1, 2, 3, …, n) of step-wise georeferencing, a shift is applied to point i 
will result in updated coordinates ( ෠ܺ௝,୧, ෠ܻ௝,௜) with respect to those ( ෠ܺ௝,௜ିଵ, ෠ܻ௝ ,௜ିଵ) obtained from the previous shift. This iterative 
adjustment process can be expressed as: 

ቆ
෠ܺ௝௜ = ෠ܺ௝,௜ିଵ + ൫ ୧ܺ − ෠ܺ୨,୧ିଵ൯ ݂൫ܦ୧୨൯
෠ܻ௝௜ = ෠ܻ௝ ,௜ିଵ + ൫ ୧ܻ − ෠ܻ୨,୧ିଵ൯ ݂൫ܦ୧୨൯

ቇ      (7) 

i= 1,2 …, n   ;    j= 1, 2, …, n 
This formulation allows for the cumulative refinement of coordinates across all points as each control point is adjusted in a stepwise 
manner. 
As a result, the coordinates ෠ܺ௜ , ෠ܻ௜  obtained from the Affine/Helmert Transformation will be updated after each shift, leading to the 
final coordinates of the control points (ܺ௡,௡ , ௡ܻ,௡).  
Simultaneously, shifts one through n influence on the m check points, updating their coordinates as follows:   

ቆ
ܺ෢ܿ௞௜ = ܺ෢ܿ௞,௜ିଵ + ൫ܺܿ୩ − ܺ෢ܿ୩,୧ିଵ൯ ݂(ܦ୧୩)
ܻ෢ܿ௞௜ = ܻ෢ܿ௞,௜ିଵ + ൫ܻܿ୩ − ܻ෢ܿ୩,୧ିଵ൯ ݂(ܦ୧୩)ቇ      (8) 

 k= 1,2 ……., m 
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IV. APPLICATION 
We will implement the proposed methodology on a LIDAR image of a region in Cairo City, Egypt as an example. In this image, 
/12/ distinct points were chosen so that, their coordinates can be measured on the ground using GPS. Table 1 displays the 
coordinates of these points both in the image and on the ground, while Figure 1 illustrates their distribution. 

 
Table 1 The coordinates of ground control points measured by GPS, along with the corresponding coordinates of these points in the 

LIDAR image 

Point 
Number 

LiDAR Image Coordinates GCP Coordinates 

Input E (m) Input N (m) Reference E (m) Reference N (m) 

1 640817.488 815658.553 640823.884 815654.260 
2 643308.990 814022.489 643319.115 814017.253 
3 642160.433 815834.003 642169.052 815827.228 
4 643174.952 815712.007 643182.851 815707.218 
5 641362.932 814901.340 641373.391 814896.485 
6 642155.981 815028.894 642164.775 815020.437 
7 640718.069 814243.871 640726.597 814235.5 08 
8 641681.992 814390.075 641691.846 814383.120 
9 641111.518 813609.341 641117.291 813604.129 

10 643243.460 814719.870 643250.951 814715.879 
11 641547.972 815285.054 641554.194 815278.540 
12 642460.984 814380.024 642469.085 814375.358 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Distribution of ground control points 
 

Initially, an affine transformation was applied using ten control points, with the remaining two points designated as check points. 
This step resulted in the preliminary georeferencing of the image, where all control points were closely aligned with their actual 
positions based on the least squares principle. Displacements between the affine-transformed points and their true positions were 
then calculated. 
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In the second phase, the proposed methodology (CGM) was applied to the affine-transformed points. This process involved using 
different ratios of points for the modeling, alongside various influence factor cases, each characterized by different shapes and 
internal parameters r. During the modeling, one check point was maintained, and the number of modeling points varied with ratios 
of 1:5, 1:3, and 1:2. 
Experiment 1: The CGM was applied using a linear Influence Factor (as per equation 2), with varying values of the internal 
parameter r and different ratios of check points to modeling points: 1:5, 1:3, and 1:2. After recalculating the new coordinates, the 
displacements of the check points from their actual positions were measured. The maximum, average, and standard deviation of 
these displacements were determined. 
Figure 2 shows the maximum, mean, and standard deviation values of the check point displacements after applying the linear 
Influence Factor with r = 1. The figure reveals that using one check point per three or five control points yields similar results, both 
outperforming the 1:2 ratio. 
When r was increased to 2, the results improved compared to r = 1 (Fig. 3). However, increasing r to 3 or 4 did not lead to further 
improvement beyond r = 2, as illustrated in Figures 4 and 5. 
The experiment concluded that the second-degree linear Influence factor produced the best results. Figure 6 compares the CGM 
(using the second-degree linear Influence Factor) with Affine and Helmert transformations, showing that CGM outperformed both 
methods, as demonstrated in Figure 6. 

 
Fig. 2 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 1, r=1) 

 
Fig. 3 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 1, r=2) 
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Fig. 4 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 1, r=3) 
 

 
Fig. 5 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 1, r=4) 
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Fig. 6 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying methods: CGM (Experiment 1, r=2), Helmert and Affine 
 
Experiment 2: The CGM was applied using the cosine influence factor (as described in equation 3), tested with various values of r 
and different ratios of check points (Ch.P) to control points (CP), similar to the previous experiment. The figures show that using 
one check point with five control points produced better results. Figure 2 presents the maximum, mean, and standard deviation 
values of the displacements of check points from their actual positions after applying the Cosine Influence Factor with r = 1. The 
performance improved as r increased, but after r = 5, the results started to decline. Figures 7, 8, 9, 10, and 11 illustrate the outcomes 
for check points using the three specified ratios of Ch.P for r values ranging from 1 to 5. The experiment concluded that the second-
degree linear Influence Factor provided the best results. Figure 6 compares the CGM (using the second-degree linear Influence 
Factor) with Affine and Helmert transformations, and Figure 12 further illustrates that the CGM outperformed both the Affine and 
Helmert methods. 

 
Fig. 7 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 2, r=1) 
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Fig. 8 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 2, r=2) 
 

 
Fig. 9 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 2, r=3) 
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Fig. 10 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 2, r=4) 
 

 
Fig. 11 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 2, r=5) 
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Fig. 12 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying methods: CGM (Experiment 2, r=5), Helmert and Affine 
 
Experiment 3 The CGM was applied using a linear Influence factor (as described in equation 4), with varying values of the internal 
parameter r and different ratios of check points (Ch.P) to modeling points: 1:5, 1:3, and 1:2, similar to the previous experiment. 
Here, as r increased, the results worsened, confirming that the first-degree tangent influence factor is the most effective. Figures 13, 
14, 15, and 16 present the results for the check points under the three specified Ch.P ratios. After recalculating the new coordinates, 
the displacements of the check points from their actual positions were measured, and the maximum, average, and standard deviation 
of these displacements were determined. Figure 17 compares the performance of the CGM (using the first-degree tangent influence 
factor) with the Affine and Helmert transformations. The comparison shows that the CGM consistently delivers better results than 
both the Affine and Helmert methods. 
 

 
Fig. 13 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 3, r=1) 
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Fig. 14 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 3, r=2) 
 

 
Fig. 15 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 3, r=3) 
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Fig. 16 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying numbers of control points (Experiment 3, r=4) 
 

.  
Fig. 17 The maximum, average, and standard deviation of the displacements of check points across different scenarios involving 

varying methods: CGM (Experiment 3, r=1), Helmert and Affine  
 

V. CONCLUSION 
Figure 18 presents a summary of the final results, showing that all experiments yield better outcomes compared to the traditional 
Helmert and Affine methods. Notably, it demonstrates that the fifth-degree Cosine Influence Factor is the optimal choice for 
applying CGM. In Figure 19, it is shown that for about the first quarter of the maximum distance in the image, the cosine and 
Tangent Influence Factors behave similarly, whereas the linear Influence Factor has a weaker effect.  
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Beyond this point, the linear and Tangent Influence Factors decrease at the same rate, while the Cosine Influence Factor steepens, 
indicating a more rapid decline in its effect. This faster reduction seems to contribute to the improved performance. In the final 
quarter of the maximum distance, the Cosine Influence Factor flattens, becoming nearly horizontal. This suggests that beyond three-
quarters of the maximum distance, the displacement of a point has minimal or no effect on other points in the image. 

 
Fig. 18 The results of the CGM, using the optimal value of r, are compared with the Affine and Helmert transformation methods. 

 
Figure 19 illustrates that, for approximately the first quarter of the maximum distance in the image, the Cosine and Tangent 
Influence Factors behave similarly, while the linear Influence Factor has a weaker effect. Beyond this range, the linear and Tangent 
Influence Factors exhibit the same rate of decrease, while the curve of the Cosine Influence Factor becomes steeper than the others, 
indicating a faster reduction in its effect. This rapid decrease may contribute to the improved results observed. In the last quarter of 
the maximum distance, the Cosine Influence Factor levels off, becoming nearly horizontal. This suggests that displacing a point has 
little to no Influence on other points that are more than three-quarters of the maximum distance apart in the image. 
 

 
Fig. 19 An illustration of the behavior of the three proposed Influence factors—Linear, Cosine, and Tangent 
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