

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 10 Issue: V Month of publication: May 2022

DOI: https://doi.org/10.22214/ijraset.2022.43004

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Construction Management of a Multi-Storey Building

Tushar Baranwal¹, Samar Tyagi², Suravi Chaudhary³, Shubham Singh⁴

^{1, 2, 3, 4}Under Graduate Students, Department of Civil Engineering, KIET Group of Institutions, Ghaziabad, 201206, Uttar Pradesh, India

Abstract: For construction projects to reduce and control delays, proper planning and scheduling are critical. Each year, the construction sector wastes a significant amount of time, money, and resources owing to ineffective project management. Building projects have grown in size and complexity as a result of globalization. By decreasing the amount of paperwork you have to undertake, project planning software may help you save time and money. A project cannot accomplish the target outcome just by providing adequate planning, proper organization, and a sufficient flow of resources. A warning system must be present throughout the project to notify the organization about its potential success and failures. The primary purpose of this assignment is to evaluate the drawing in Auto CAD, produce an estimate in MS Excel, and plan, schedule, and track a construction project using Primavera software.

Keywords: Project Management, MS Project, planning and scheduling.

I. INTRODUCTION

Civil engineering is one of the oldest fields of engineering, with roots dating back to antiquity. With the advancement of modern science and technology, this stream has broadened its reach and is now known as "Construction Industry" in the modern world. Construction is a field that deals with building, modifying, renovating, and rehabilitating various structures. It has grown to be one of the most important sources of employment in our country. With the increase in infrastructure requirements to meet human needs, this industry has expanded in three dimensions and is now prepared to meet any modern-day problem. Modern machinery has also contributed in the expansion of the building industry.

With the advent of concepts like "Time Value of Money," the Civil Engineer understood the need of finishing the project in the shortest amount of time possible.

This opened the way for a new area in the Civil Engineering department called "Construction Project Management." Fast-track construction has grown increasingly common in the current environment, and it is currently used for the majority of building projects, due to the strong demand for new technology construction in a short length of time. Using this strategy, the length and cost of the entire structure may be reduced.

The length of time it takes to build multifamily housing depends on the total number of units. Any delays in the construction or execution of the project, on the other hand, would entail further delays in the project's completion job that requires estimation Cost and schedule overruns

plague the majority of building projects. Because the total project costs are so high, cost and time are the most important determinants in project success. Resource management is another important aspect of project success. The resources have an influence on the project from beginning to end, thus they must be managed properly. All resource-related problems, such as estimates, procurement, storage, supply, and transportation, should be addressed as quickly as possible to minimize a building delay.

II. IMPORTANCE OF PROJECT MANAGEMENT

The project starts off to a good start, but as it progresses, it falls off course. As a result, it's crucial to manage activities properly, and project management plays a significant role in organizing the project's critical activities, also known as tasks, to ensure that they run smoothly. Project management helps the project offer services more efficiently.

In order to avoid sinking and scheming project delays, proper planning and scheduling are critical. Construction projects have grown limitless and complex as a result of globalization.

Project planning tools such as Primavera, Microsoft Project, and others can help to decrease the amount of documentation work required for such projects.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

III. PHASES OF PROJECT MANAGEMENT

- 1) Project Definition: Establishing the project's goals, objectives, and important success elements.
- 2) Project Initiation: Before work could begin, everything had to be in place to get the project up and going.
- 3) Project Planning: Detailed plans for how the task will be done, including estimates for time, cost, and resources.
- 4) Project Execution: Performing the actions required to deliver the product, service, or intended outcome.
- 5) Project Monitoring and Control: Ensuring that a project stays on schedule and taking remedial action as necessary.
- 6) Project Completion: Written acceptance of deliverables and disbandment of all project-related organizations.

IV. LITERATURE REVIEW

After carefully reviewing a number of research articles, we can see the relevance of project management in the construction sector, as well as the critical function it plays in cost analysis, reduction, and resource allocation. Primavera P6 and Microsoft Project Professional are two of the most often used project management softwares. Papers on the use of both of these softwares were also carefully examined.

From [1] *Study on Time and Resource Management in Construction Projects Using MS Project by T.Subramani^{1*}, T.M.Karthick²*, This building project investigates a high-stakes undertaking with a time-bound performance target. No operation can be accomplished according to a predetermined schedule unless combined resources are planned and secured. Under unusual schedule demands and in unknown scenarios, project managers must make difficult decisions that frequently extend past assignment intervals. Our project analysis includes resource scheduling for a fast-paced project with tight deadlines. The training was carried out in phases. In the first section, task time tables for various tasks for the creation of a commercial building are generated using MS PROJECT software. Finally, businesses that primarily use Standard Schedule Rates were assigned source requirements. It was determined that the data acquired from the prescribed drawings and triumphing site online conditions was necessary. The study used useable resource levelling for a range of activities, which required rapidly reducing resources to determine the time-cost repercussions.

From [2] *Application of MS Project for Optimizing the Delay in Construction of Multistoried Building Caused Due to Uncertainties by Kratika J. Deshpande¹, Amey A. Kelkar², Construction is a field that deals with building, modifying, renovating, and rehabilitating various structures. Every project's success is determined by its completion date and cost. The goal of project management is to complete a project on schedule and within budget. Project cost overruns occur from delays in completion. This article addresses the difficulties that multi-story building construction faces, such as severe rain and pandemics. Covid -19. For the planning and scheduling of the building, a project management programme such as Microsoft Project is used. The work is separated into four stages for ease of execution, with each step requiring the use of a project management tool to plan and schedule the construction. Only the overall project is regarded in the first stage, with no effect of delay; in the second stage, the effect of heavy rain is considered; in the third stage, the effect of Pandemic Covid -19 is regarded; and in the fourth stage, planning and scheduling is made by considering both delays to minimize the total latency using enhanced project management methodology. We used the MS Project programme to try to reduce the delay by using tactics like asset improvement, project crashing, decreasing dependencies, and good critical path tracking.*

From [3] Construction Management Using Primavera by Fathima Zerin T^l , Angela C. Joy², Construction managers encounter a variety of issues, some of which are new to the business and others which have existed for many years. Workforce considerations, safety, time restrictions, and the changing nature of work are among issues that construction company's face. Planning and scheduling are two critical aspects of effectively completing a project. The construction industry necessitates rigorous scheduling, planning, and resource management. Due to increased workloads and smaller business departments, new technology was discovered that aids in the administration and organization of work, allowing industries to develop quickly. Today, project management computer software programmes such as MSP, Primavera P6, and others are accessible. Appropriate project monitoring and implementation may be achieved with the help of this software. Primavera enables comparing the expected progress of construction activity to the existing project state a breeze. Primavera P6 is a project planning software that allows you to gather, analyze, evaluate, govern, and publish on project delivery. Controlling and monitoring may be done, as well as determining the reasons of delays.

From [4] Planning, Scheduling and Tracking of Industrial Project Using Primavera P6 Software by Shah Harsh¹, Prof Mamata Rajgor², Dr. Jayeshkumar Pitroda³, Planning and scheduling are critical components of construction projects for preventing and controlling project delays. Poor project management costs the construction industry a tremendous amount of time, money, and resources each year.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 10 Issue V May 2022- Available at www.ijraset.com

As a result of globalization, construction projects have risen in scale and complexity. Such initiatives need a lot of paperwork and effort, which may be reduced by using project management software. Providing solid planning, effective organization, and sufficient resource flow to a project does not guarantee the desired outcome.

Throughout the project, a warning mechanism must be available to notify the organization about its potential success and failures. The major goals of this research are to use Primavera P6 software to plan, schedule, and track an industrial project, as well as to analyze the outcomes. Also, to make recommendations to the company for improving their project planning abilities in the future for comparable initiatives.

V. THE PROJECT'S METHODOLOGY

A. Building Layout Preparation Using AutoCAD

An architect designed, discussed, and approved the proposed building's plan. After that, AutoCAD was used to create the layout. The different layouts were created, and then the architect was consulted for error rectification.

B. Project Planning using Primavera

Primavera P6 model gives a pretty included challenge portfolio management (PPM) answer that consists of role-precise skills to fulfill the needs, responsibilities, and abilities of every crew member. Standard Windows interfaces, client/server architecture, Webenabled technologies, and stand-alone (SQL Server Express) or network-based (Oracle and Microsoft SQL-Server) databases are all used in this solution. Primavera provides us with the following software component, as well as a variety of superior options: Primavera P6 Professional was created to get us up and running with planning and scheduling as fast as possible. Thanks to a simple and uncomplicated navigation, we can start planning, scheduling, and controlling our project faster than anyone ever anticipates. Because many owners need it in their project requirements, this solution is the gold standard when it comes to project planning and administration. Whether the project is a sophisticated multi-billion dollar infrastructure project or a little house or business building, we demand P6 Professional.

C. Cost Estimation Using Microsoft Excel

STAAD Pro estimates the overall steel and concrete need, saving time and effort. The calculations for walls, cement plaster, doors and windows, earthwork, and foundation remain to be completed. The computations are made using the centerline approach, which is rather simple.

VI. LAYOUT OF G+4 RESIDENTIAL BUILDING USING AUTOCAD

The plot size for the project was 10.10*12.70 mts, or 33'x41'. As a result, the structure has been located in the plot's centre, leaving ample space on both sides for landscaping and vehicular and pedestrian access.

Fig 1. 1st, 2nd, 3rd, and 4th Floor, Floor Plans

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

Fig 2. Sectional View

VII. USE OF PRIMAVERA P6 FOR PROJECT PLANNING

Primavera P6 is professional project management software that has a set start and finish date. It is utilized in a variety of sectors where intensive monitoring and planning are required to complete work on schedule and achieve the intended outcomes. This programme features a very user-friendly layout that makes it easy for any project manager to keep track of what's going on and what's coming up next. The project manager must be able to demonstrate his customer the progress of his assignment in real time if the client is to be satisfied. An animated Gantt chart depicts the many activities and their timetables. The graphic also depicts the connections between various activities, which are linked to a range of resources to facilitate tracking. All progress may be monitored in real time, and required actions can be taken if the schedule is not adhered to. Primavera also allows users to maintain real-time track of expenditures, labor, and resources. This helps the project manager plan ahead and keeps costs under control. Primavera is preferable to conventional planning in that it lets the user to observe the project's status in real time, providing them more influence over the project.

✓ Layout: Classi	c Schedule Layout	Filter: A	Activities	
Activity ID	C Activity Name	Original Duration	Remaining Duration	Schedul - Comp
😑 A1000	Site Clearance	10	10	- F
😑 A1010	Excavation for Footing	15	15	
😑 A1020	Casting of Footing	30	30	
😑 A1030	Casting Of RCC Columns and	31	31	
😑 A1040	Plinth Wall And Tie Beam	40	40	
😑 A1050	Ground Floor RC Column Cas	12	12	
😑 A1060	Ground Floor Slab Casting	12	12	
😑 A1070	1st Floor Column Casting	12	12	
😑 A1080	1st Floor Slab Casting	12	12	
😑 A1090	Ground Floor Slab Prop Rem	5	5	
😑 A1100	2nd Floor RC Column Casting	12	12	
😑 A1110	2nd Floor Slab Casting	12	12	
😑 A1120	Ground Floor Fininshing	15	15	
😑 A1130	1st Floor Prop Removal and I	5	5	
🚍 A1140	1st Floor Wall Construction	20	20	
😑 A1150	3rd Floor RC Column Casting	12	12	
😑 A1160	3rd Floor Slab Casting	12	12	
😑 A1170	2nd Floor Prop Removal and	5	5	

Fig 3. All Activities are entered into Primavera.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

ctivities Resou	rce Assignments Resour	ces WBS	2 Assign Resources			X	
✓ Layout: Classic S ctivity ID	chedule Layout	Fi Original Duratic	✓ Display: All Resources Search	[Qtr 3 Aug
📟 A1000	Site Clearance	1	Resource ID	E Resource Name	Resource Type	Unit of Measu A	×
🖨 A1010	Excavation for Footing	1	= 🌒 E&C Resources				
🖨 A1020	Casting of Footing	-	2 R	(New Resource)	Labor	5	ji ji
📟 A1030	Casting Of RCC Columns and		E 2 Trades	Trades	Labor	-	🛔 umns an
📟 A1040	Plinth Wall And Tie Beam	4	INSP	Inspections	Labor		nth Wa
📟 A1050	Ground Floor RC Column Cas	1	2 Cretefinisher	Concrete Finisher	Labor	2	Gro
😑 A1060	Ground Floor Slab Casting		2 Hydro	Hydroblaster	Labor	G	
🚍 A1070	1st Floor Column Casting	1	2 Operator	Operator	Labor		-
📟 A1080	1st Floor Slab Casting	1	2 OPTGP	Operations Test Group	Labor		F
🖨 A1090	Ground Floor Slab Prop Rem		Lec	Electrician	Labor		
😑 A1100	2nd Floor RC Column Casting	1	2 Paint	Painter	Labor		
📟 A1110	2nd Floor Slab Casting	1	Exc	Excavator	Labor		
🖨 A1120	Ground Floor Fininshing	1	Le Floor	Floor and Carpet Layer	r Labor		
📟 A1130	1st Floor Prop Removal and I		h/wini 🙎	Ironworker	Labor		
🖨 A1140	1st Floor Wall Construction	-	SenLabor	Laborer-Construction	Labor		
🖨 A1150	3rd Floor RC Column Casting	1	2 Plumb	Plumber	Labor		
🖨 A1160	3rd Floor Slab Casting	1	2 RCarp	Rough Carpenter	Labor		
🖨 A1170	2nd Floor Prop Removal and		Sector 2	Finish Carpenter	Labor		
			Elev Inst	Elevator Installer	Labor		
eneral Status Re	sources Predecessors Succes	ssors Feedback					
-	Activity A1060	G	round Floor Slab Casting				
Activity Type		Duration Ty	pe		% Complete Type	Ad	tivity Calenda
Task Dependen	t	Fixed Dura	ation & Units	•	Duration	E	Corporate -
WRS			Respon	sible Manager		Primary Reso	urce

Fig 4. Allocating Resources to Different Activities

When assigning resources, Primavera provides the user a variety of options. Primavera includes almost all of the resources necessary to finish a project, such as earthwork labor, field engineers, electricians, and plumbers. Any resource that is currently missing from the database can be manually added. This provides the user with a great deal of freedom in managing such a large and complex project.

VU AC A	yout Classic Schedule Layout Filter Al Activities									1 444												
40 A	0+1 0+2					6	112	Ofr3			Ofr 4		-	Oh 1			0112		2V10 0H3			
	Jan	Feb	War	Apr	liay	Jun	Ш	Aug	Sep	Oct	Nov	Dec	Jan	Feb	lis:	Apr	May	Jun	ы	Aug	Sep	Oct
			🔲 Ste	Dearance							1			1	1		1	8	0		1	6
			1	icavation to	Fooling																	
			-	_	Casting of F	ooling																
				F		Catin	OFRECCO	iume and	Wale													
13						_		Pierie Wall	ed Tie Rear													
1							Ę.	- Const	AD. DC	al ma Casi												
								Giour	IC HOOT HULL	Lounn Last	ng											
							1	•º	iound Floor :	siao Lasing												
								*	1st Floor (Column Cast	ng											
								+	1st Fig	or Slab Can	irg											
									• Gio	und Floor S	lab Prop Re	enoval & Cle	aring									
								I	2	d Floor RC (Column Cas	fing										
									F	2nd Floor	Clab Cartin											
٨.									2	Conn	Due Cal	¥										
ł.										- alours	n n	oney .										
										, IST MOD	x mop men	ioval and La	anng									
										•	1st Floo	or Wall Cons	ruction									
									+	3 Jul Fit	or RC Colu	rm Casting										
										(1)	d Floor Slab	Casting										
										-	nd Roor Pr	top Removal	and Clearin	0								
1											-	2nd Floo	Wall Const	tuction								
										-	1.0	Sov Islairy	Enition									
										1	44'0	Column Could	many									
											40:000	Counces	ny									
										+	- thi	loor Slab Ca	trg									
											1	3rd Floor Pl	op Removal	and Clean	ing							
											1	*	3d Floor	Wall Const	ruction							
											+	24	Floor Interio	Finishing								
												1 4	Floor Prop R	enoval an	dClearing							
	1											1										
	1																					1
0	12.00																					

Fig 5. Gantt Chart depicting time scale and link between activities.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

• ; [2] ·	Gui Gasa				100 40	· • 10								
tivities														
/ Layout: Classic S	chedule Layout	Filter, Al	Achites											
tivity D	Activity Name	Original Duration	Remaining Duration	Schedule % Complete	Start	Nar Apr	Otr 2 May	Jun	2015	Otr 3 Aug Sep	Od	Otr 4	Dec	21 Jan
🖬 amity Ma	or Project				6 82Mar15.4	-								-
🖬 A1000	Site Destance	10	0	C	K CEMartSA	Ste Dearance								
🖬 A1010	Excavation for Footing	15	0	¢	CI2Ma-15A	Excavation for	Footing							
🙂 A100)	Casting of Footing	30		B	K 16Martisa	-	Casting of F	ooing						
🖨 A1030	Casting DFROC Columns and	31	1	C	X 244pr15.4	-		Caring l	NRCE Colu	nno and Walls				
🖨 A1040	Pinth Wall And Tie Beam	40	1	D	t Billun 15A		4		Pint	WalAnd Tie Be	50			
🗃 Å1050	Ground Roor RC Column Car	12	12	C	\$ 24,0415				10	Ground Floor R	C Column Car	ing		
😑 A1060	Ground Floor Slab Casting	12	12	¢	1 (44ug15)				149	Ground Flat	x Slab Casting			
🖨 Å1070	1st Floor Column Casting	12	12	C	t 14Aug15'				1.0	• 💻 1x For	x Column Cas	ing		
🖨 A1080	1st Floor Slab Casting	12	12	C	t 25Aug-15				1	+ 🛄 1d	Floor Stab Ca	ing		
🚍 A1090	Ground Floor Slab Prop Ren	5	5	C	1 09Sep15				18	19	iround Floor S	lab Prop Reno	oval & Dean	19
😑 Å1100	2nd Floor RC Column Casting	12	12	C	t BSep15					*	and Roor RCI	Column Casting	9	
😑 A1110	2nd Floor Slab Casting	12	12	C	t 14Sep15					*	2 and Floor	Slab Casting		
🖨 A1120	Ground Roor Finituhing	15	15	C	t 17-Sep-15					1	Giour	d Floor Fininsh	ing	
🚍 A1130	1st Floor Prop Renoval and I	5	5	C	t 23Sep15				1		Itt.Ro	or Prop Remov	ral and Dear	ing
🖨 A1140	1st Floor Wall Construction	20	20	C	t 07-0d-15 .						•	1st Floor \	Wall Constru	tion
						*								
ieneral Status R	esources Predecessors Succe	35073												
*	Activity A1020	Casting	of Footing		_					Project	anity			
Duration		Satus								∨ Labor U	nts			
Original	3			16-Mar-15		Duration %	-	_	100%	Budgeted			_	2
Actual	3	Finished		27-Apr-15		Suspend			1	Actual			_	2
Remaining		ExpFinish		<u> </u>		Resume		_	1	Remaining				-
											2			-

Fig 6. Completed Activities are highlighted in yellow.

The yellow highlighted part indicates that the blue bars have been completed. Green indicates activities that have not been performed.

Each day begins with an 8-hour working shift for each laborer, which can be altered as needed. The project manager monitors all operations in real time, and any delays are adjusted properly so that the work plan is not disrupted.

Fig 7. After updating the progress, Gantt chart.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

VIII. G+4 RESIDENTIAL BUILDING COST ESTIMATION

The building's Abstract Cost is included in the cost estimate. The CPWD Schedule of Rates for New Delhi was utilized in the abstract.

The following is the G+4 Residential building's Complete Cost Estimate, which includes a quantity estimate and an abstract cost.

	line .	01.	Der	Dette	1.1.1
0.	Item	Qty.	Per	Kate	Amount
1	Excavation	48.64	cu m	Rs. 95.00	Rs. 4620.80
2	B.B.C.C. (1:6:12) in Foundation	16.34	cu m	Rs. 1410.00	Rs. 23039.40
10		and the second		1.50.000	
3	Sand filling in Plinth	37.56	cu m	Rs. 290.00	Rs. 10892.40
4	1st Quality Brick Masonary upto plinth in c.m. (1:6)	40.65	cu m	Rs. 1920.00	Rs. 78048.00
S	1st Quality Brick Masonary in superstructure in c.m. (1:6)	57.36	cu m	Rs. 1950.00	Rs. 111852.00
6	10 cm thick brick partition wall in c.m. (1:4)	1.7	sq m	Rs. 285.00	Rs. 484.50
7	Wooden doors and windows with brass fixtures and fittings	23.8	sq m	Rs. 7820.00	Rs. 186116.00
8	Fully glazed wooden windows with brass fixtures and fittings	14.64	sq m	Rs. 6945.00	Rs. 101674.80
9	Fully glazed wooden ventilators	0.6	sq m	Rs. 7075.00	Rs. 4245.00
10	Steel Grillwork	10.2	sq m	Rs. 800.00	Rs. 8160.00
11	Cement Concrete Jali	2.04	sq m	Rs. 330.00	Rs. 673.20
12	R.C.C. Lintels proportion (1:1.5:3)	2.23	cu m	Rs. 7710.00	Rs. 17193.30
13	R.C.C. Beams proportion (1:1.5:3)	0.39	cu m	Rs. 10855.00	Rs. 4233.45
14	R.C.C. Footing proportion (1:1.5:3)	0.08	cu m	Rs. 5145.00	Rs. 411.60
15	R.C.C. Column Proportion (1:1.5:3)	0.16	cu m	Rs. 9770.00	Rs. 1563.20
16	40 mm R.C.C. Box Proportion (1:1.5:3)	13.59	sq m	Rs. 550.00	Rs. 7474.50
17	75 mm thick R.C.C. Weathershed proprotion (1:1.5:3)	4.14	sq m	Rs. 550.00	Rs. 2277.00
18	10 cm R.C.C. Slab proportion (1:1.5:3)	18.36	sq m	Rs. 690.00	Rs. 12668.40
19	12 cm R.C.C. Slab proportion (1:1.5:3)	91.68	sq m	Rs. 845.00	Rs. 77469.60
20	R.C.C. Stair steps proportion (1:1.5:3) width 1m and polished kotah stone on tread and riser.	21	no	Rs. 730.00	Rs. 15330.00
21	10 cm B.B.C.C. (1:6:12) floor concrete	6.58	cu m	Rs. 1410.00	Rs. 9277.80
22	Paving of Mosiac tiles	57.42	sq m	Rs. 395.00	Rs. 22680.90
23	75 mm high mosiac tiles skirting	50.4	rm	Rs. 50.00	Rs. 2520.00
24	Paving of polished kotah stone	17.26	sq m	Rs. 600.00	Rs. 10356.00
25	75 mm high polished kotah stone skirting	15.4	rm	Rs. 88.00	Rs. 1355.20
26	Paving of 150 mm * 150 mm size white glazed tiles in flooring	0.81	sq m	Rs. 575.00	Rs. 465.75
27	do But in dado	5.76	sq m	Rs. 595.00	Rs. 3427.20
28	R.C.C. Cooking platform with sink and polished kotah stone	3.8	rm	Rs. 1900.00	Rs. 7220.00

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

29	Av. 65 mm thick brickbat coba concrete in proportion	73.39	sqm	Rs. 120.00	Rs. 8806.80
-	(1:6:12) on terrace				
30	Paving of mosaic tiles on terrace	73.39	sq m	Rs. 310.00	Rs. 22750.90
31	Cement grit vata in proportion (1:2:4)	44.2	rm	Rs. 35.00	Rs. 1547.00
32	12 mm thick sagol finish cement plaster in c.m.[1:4]	634.82	sq m	Rs. 81.00	Rs. 51420.42
33	Three coats of colour-washing	634.82	sq m	Rs. 15.00	Rs. 9522.30
34	100 mm diameter S.W. Pipe	4	rm	Rs. 130.00	Rs. 520.00
35	150 mm diameter S.W. Pipe	13	rm	Rs. 175.00	Rs. 2275.00
36	75 mm diameter C.I. Pipes (Open)	19.6	rm	Rs. 310.00	Rs. 6076.00
37	100 mm diameter C.I. Soil Pipes (Concealed)	5	rm	Rs. 550.00	Rs. 2750.00
38	75 mm diameter C.I. Vent cowl	1	no	Rs. 140.00	Rs. 140.00
39	100 mm diameter C.I. Vent Cowl	1	no	Rs. 160.00	Rs. 160.00
40	Indian W.C. Pans with a pair of foot rests	1	no	Rs. 1370.00	Rs. 1370.00
41	P.V.C. Flushing cistern for W.C.	1	no	Rs. 2200.00	Rs. 2200.00
42	White wash basin with stop cock, pillar cock etc.	1	no	Rs. 2465.00	Rs. 2465.00
43	Nahni Traps	2	no	Rs. 200.00	Rs. 400.00
44	Gully Traps	3	no	Rs. 320.00	Rs. 960.00
45	Inspection Chambers	1	no	Rs. 2600.00	Rs. 2600.00
46	Manholes	2	no	Rs. 3200.00	Rs. 6400.00
47	Intercepting S.W. Sewer trap	1	no	Rs. 450.00	Rs. 450.00
48	Mica Flap Valve	1	no	Rs. 900.00	Rs. 900.00
49	12 mm diameter G.I. Pipe concealed	20	rm	Rs. 190.00	Rs. 3800.00
50	Stop cocks	2	nó	Rs. 340.00	Rs. 680.00
51	Bib Cocks	3	no	Rs. 280.00	Rs. 840.00
52	Manhole Cover	2	no	Rs. 450.00	Rs. 900.00
53	Septic tank and soak well	1	pair	Rs. 80000.00	Rs. 80000.00
				Total	Rs. 935663.42
			Add	5% Contingencies	Rs. 46783.17
				Grand Total	KS. 982446.59

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue V May 2022- Available at www.ijraset.com

IX. CONCLUSION

This project entails designing a G+4 residential building with AutoCAD, planning with Primavera P6, and calculating the overall project cost.

The planned G+4 residential building's layout is based on a 33' x 41' plot. AutoCAD was used for all of the drafting.

Primavera P6 was used to plan the many operations that surround a building's development. Using Primavera, we were able to build a work plan and a progress indicator for ongoing project monitoring. Using Primavera, we were able to assign different resources and responsibilities to different people who were involved in different stages of the project, which boosted accountability. The length of the Primavera project has been estimated to be roughly 374 days, including vacations. An animated Gantt chart was used to highlight the progress and relationships between the various activities. This chart also aids the Project Manager in explaining the project's many features and progress to his clients.

The project's cost estimate was determined in Microsoft Excel using the Centre Line Method. The CPWD Schedule of Rates was used for the Abstract cost, and a total cost of Rs 982500/- was determined.

REFERENCES

- [1] Primavera User Manual.
- [2] CPWD Schedule of Rates for Delhi.
- [3] <u>http://en.wikipedia.org/wiki/AutoCAD</u>
- [4] <u>http://en.wikipedia.org/wiki/Primavera_%28software%29</u>
- [5] Estimating, Costing and Valuation by S.C. RANGWALA. Revised and Enlarged by K.S. RANGWALA and K.K. RANGWALA (Book)
- [6] Study on Time and Resource Management in Construction Projects Using MS Project by T.Subramani^{1*}, T.M.Karthick²
- [7] Application of MS Project for Optimizing the Delay in Construction of Multistoried Building Caused Due to Uncertainties by Kratika J. Deshpande¹, Amey A. Kelkar²
- [8] Construction Management Using Primavera by Fathima Zerin T¹, Angela C. Joy²
- [9] Planning, Scheduling and Tracking of Industrial Project Using Primavera P6 Software by Shah Harsh¹, Prof Mamata Rajgor², Dr. Jayeshkumar Pitroda³
- [10] A case Study on Agile And Lean Project Management In Construction Industry by Ajendra Kashikar¹ Devansh Mehta² Bhawesh Motichandani³ Prof/Dr. Dasika Chaitanya⁴

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)