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Abstract: Semantic searching over encrypted data is a crucial task for secure information retrieval in public cloud. It aims to 
provide retrieval service to arbitrary words so that queries and search results are flexible. In existing semantic searching 
schemes, the verifiable searching does not be supported since it is dependent on the forecasted results from predefined keywords 
to verify the search results from cloud, and the queries are expanded on plaintext and the exact matching is performed by the 
extended semantically words with predefined keywords, which limits their accuracy. In this paper, we propose a secure verifiable 
semantic searching scheme. For semantic optimal matching on ciphertext, we formulate word transportation (WT) problem to 
calculate the minimum word transportation cost (MWTC) as the similarity between queries and documents, and propose a secure 
transformation to transform WT problems into random linear programming (LP) problems to obtain the encrypted MWTC. For 
verifiability, we explore the duality theorem of LP to design a verification mechanism using the intermediate data produced in 
matching process to verify the correctness of search results. Security analysis demonstrates that our scheme can guarantee 
verifiability and confidentiality. Experimental results on two datasets show our scheme has higher accuracy than other schemes. 
Index Terms: public cloud, results verifiable searching, secure semantic searching, word transportation. 
 

I. INTRODUCTION 
Inherent scalability and flexibility of cloud computing make cloud services so popular and attract cloud customers to outsource their 
storage and computation into the public cloud. Although the cloud computing technique develops magnificently in both academia 
and industry, cloud security  is becoming one of the critical factors restricting its development. The events of data breaching in 
cloud computing, such as the Apple Fappening and the Uber data breaches, are increasingly attracting public attention. In principle, 
the  cloud services are trusted and honest, should ensure data confidentiality and integrity according to predefined protocols. 
Unfortunately, as the cloud server providers take full control of data and execute protocols, they may conduct dishonest behavior in 
the real world, such as sniffing sensitive data or performing incorrect calculations. Therefore, cloud customers should encrypt their 
data and establish a result verification mechanism before outsourcing storage and computation to the cloud. Since Song et al. [1] 
proposed the pioneering work about the searchable encryption scheme, searchable encryption has attracted significant attention. 
However, the traditional searchable encryption schemes require that query words must be the predefined keywords in the outsourced 
documents, which leads to an obvious limitation of these schemes that similarity measurement solely base on the exact matching 
between keywords in the queries and documents. Therefore, some works proposed semantic searching schemes to provide retrieval 
service to arbitrary words, making the query words and search results flexible and uncertain. However, the verifi- able searching 
schemes are dependent on forecasting the fixed results of predefined keywords to verify the correctness of the search result returned 
by the cloud. Therefore, the flexibility of semantic schemes and the fixity of verifiable schemes enlarge the gap between semantic 
searching and verifiable searching over encrypted data. Although Fu et al. [2] proposed a verifi- able semantic searching scheme 
that extends the query words to get the predefined keywords related to query words, then they used the extended keywords to search 
on a symbol-based trie index. However, their scheme only verifies whether all the documents containing the extended keywords are 
returned to users or not, and needs users to rank all the documents for getting top-k related documents. Therefore, it is challenging to 
design a secure semantic searching scheme to support verifiable searching. 
In this paper, we propose a secure verifiable semantic searching scheme that treats matching between queries and documents as an 
optimal matching task. We treat the document words as “suppliers,” the query words as “consumers,” and the semantic information 
as “product,” and design the minimum word transportation cost (MWTC) as the similarity metric between queries and documents. 
Therefore, we introduce word embeddings to represent words and compute Euclidean dis- tance as the similarity distance between 
words, then formulate the word transportation (WT) problems based on the word embeddings representation. However, the cloud 
server could learn sensitive information in the WT problems, such as the similarity between words.  
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For semantic optimal matching on the ciphertext, we further propose a secure transformation to transform WT problems into 
random linear programming (LP) problems. In this way, the cloud can leverage any ready- made optimizer to solve the RLP 
problems and obtain the encrypted MWTC as measurements without learning sensitive information. Considering the cloud server 
may be dishonest to return wrong/forged search results, we explore the duality theorem of linear programming (LP) and derive a set 
of necessary and sufficient conditions that the intermediate data produced in the matching process must satisfy. Thus, we can verify 
whether the cloud solves correctly RLP problems and further confirm the correctness of search results. Our new ideas are 
summarized as follows: 
1) Treating the matching between queries and documents as an optimal matching task, we explore the fundamental theorems of 

linear programming (LP) to propose a se- cure verifiable semantic searching scheme that performs semantic optimal matching 
on the ciphertext.  

2) For secure semantic optimal matching on the ciphertext, we formulate the word transportation (WT) problem and propose a 
secure transformation technique to transform WT problems into random linear programming (LP) problems for obtaining the 
encrypted minimum word transportation cost as measurements between queries and documents.  

3) For supporting verifiable searching, we explore the dual- ity theorem of LP and present a novel insight that using the 
intermediate data produced in the matching process as proof to verify the correctness of search results. 
 

II. RELATED WORK 
Since Song et al. [1] proposed the notion of searching over encrypted cloud data, searchable encryption has received significant 
attention for its practicability in the past 20 years. Therefore, many works have made efforts on the security as well as functionality 
in the searchable encryption field. 
Along the research line about security, many works formulate the definitions of security as well as novel attack pattern against the 
existing schemes. Goh et al. [10] formulated a security model for document indexes known as semantic security against adaptive 
chosen keyword attack (IND-CKA), which requires the document indexes not to reveal contents of documents. However, we note 
that the definition of IND-CKA does not indicate that the queries must be secure. Curtmola et al. [11] further improved security 
definitions for symmetric 2 searchable encryption, then put forth chosen-keyword attacks and adaptive chosen-keyword attacks. 
Besides, Islam et al. [12] first introduced the access pattern disclosure used to learn sensitive information about the encrypted 
documents, then Liu et al. [13] presented a novel attack based on the search pattern leakage. Stefanov et al. [14] introduced the 
notions of forward security and backward security for the dynamic searchable encryption schemes that support data addition and 
deletion. Along another research line about functionality, many works introduced practical functions to meet the demand in practice, 
such as ranked search and semantic searching for improving search accuracy. Additionally, some works proposed verifiable 
searching schemes to verify the correctness of search results. Ranked Search over Encrypted Data. Ranked search means that the 
cloud server can calculate the relevance scores be- tween the query and each document, then ranks the documents without leaking 
sensitive information. The notion of single- keyword ranked search was proposed in [15] that used a modified one-to-many order-
preserving encryption (OPE) to encrypt relevance scores and rank the encrypted documents. Cao et al. [16] first proposed a privacy-
preserving multi- keyword ranked search scheme (MRSE), which represents documents and queries with binary vectors and uses the 
secure kNN algorithm (SeckNN) [17] to encrypt the vectors, then use the inner product of the encrypted vectors as the similarity 
measure. Besides, Yu et al. [18] introduced homomorphic encryption to encrypt relevance scores and realize a multi- keyword 
ranked search scheme under the vector space model. Recently, Kermanshahi et al. [19] used various homomor- phic encryption 
techniques to propose a generic solution for supporting multi-keyword ranked searching schemes that can resist against several 
attacks brought by OPE-based schemes. Secure Semantic Searching. A general limitation of tradi- tional searchable encryption 
schemes is that they fail to utilize semantic information among words to evaluate the relevance between queries and documents. Fu 
et al. [3] proposed the first synonym searchable encryption scheme under the vector space model to bridge the gap between 
semantically related words and given keywords. They first extended the keyword set from the synonym keyword thesaurus built on 
the New American Roget’s College Thesaurus (NARCT), then used the extended keyword set to build secure indexes with SeckNN. 
Using the order-preserving encryption algorithm, [5] and [6] presented secure semantic searching schemes based on the mutual 
information model. Xia et al. [6] proposed a scheme that requires the cloud to constructs a semantic relationship library based on the 
mutual information used in [20]. However, any schemes based on the inverted index can calculate the mutual information model. 
Using the SeckNN algorithm, [7], [8], [2] proposed secure semantic searching schemes based on the concept hierarchy.  
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III. PROBLEM FORMULATION 
In this section, we define the system architecture, the security model, and the main notations used in this paper. 
 
A. System Architecture 
As illustrated in Fig. 1, there are three entities involved in our system: the data owner, data users, and the cloud server. The data 
owner has a lot of useful documents, but only has limited resources on the local machines. Therefore, the owner is highly motivated 
to perform Initialize () for initializing the proposed scheme. The owner encrypts documents F to get ciphertext documents C with 
secret key K, then outsources C to the cloud server. The data owner builds forward indexes I, then sends indexes I and K to data 
users. 
Data users are the searching requesters that send the trap- door of a query to the cloud server for acquiring top-k related documents. 
Specifically, users input arbitrary query words q, then perform BuildRLP () to generate word transportation problems Ψ, after 
transform Ψ to random linear programming problems Ω and the corresponding constant terms ∆ as a trap- door. Afterward, users 
receive top-k encrypted documents and proofs Λ returned from the cloud. Users perform VerDec () to decrypt documents when Λ 
passes our verification mechanism. The cloud server is an intermediate service provider that stores the encrypted document dataset 
C and performs the retrieval process. Once receiving the trapdoor, the cloud server performs SeaPro () for leveraging any ready-
made optimizer to solve the Ω, then obtains the encrypted minimum word transportation cost values with ∆. The cloud ranks the 
values in ascending order and returns the top-k encrypted documents to users. In the process, the cloud server also provides proofs Λ 
for proving the correctness of the search results. 

Figure 1. The system architecture of our secure verifiable semantic searching scheme. 

B. Security Model 
We assume that the data owner is trusted, and the data users are authorized by the data owner. The communication channels 
between the owner and users are secure on existing security protocols such as SSL, TLS. 
With regard to the cloud server, our scheme resists a more challenging security model which is beyond the “semi-honest server” 
used in other secure semantic searching schemes [3], [4], [5], [6], [7], [8], [9]. In our model, the dishonest cloud server attempts to 
return wrong/forged search results and learn sensitive information, but would not maliciously delete or tamper with the outsourced 
documents. Therefore, our secure semantic scheme should guarantee the verifiability, and confidentiality under such a security 
model. As for verifiability, we first re-formalized the definitions of the Result Forgeries Attack and Proof Forgeries Attack in [24], 
then adopt a game-based security definition to analyze the verifiability of the proposed scheme in Section VII. Definition 1 (Result 
Forgeries Attack). The Result Forgeries Attack is that a dishonest cloud server attempts to return erro- neous search results to the 
users for some reasons. Formally, let q be arbitrary query words, and C be the encrypted documents. Then, let T (C, q) denote the 
correct search result, let R(C, q) denote the search result returned from the cloud server. 
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In this attack, R(C, q) 6 = T (C, q). Definition 2 (Proof Forgeries Attack). The Proof Forgeries Attack is that a dishonest cloud server 
attempts to return erro- neous search results and forged proofs to the users. The cloud must generate some forged proofs at a small 
computational cost for passing the result verification mechanism. Formally, let q be arbitrary query words, C be the encrypted 
documents. Next, let V(C, q, Λ) = 0 denote the proof Λ pass the verification; otherwise V(C, q, Λ) > 0. Then, let C(Λ) denote the 
real proofs, let F(Λ) denote the proofs returned from the cloud. In this attack, V(C, q, F(Λ)) = 0 and F(Λ) 6 = C(Λ). As for 
confidentiality, we follow the widely-accepted Real/Ideal simulation [11], [24], [29] to analyze the confi- dentiality of symmetric 
searchable encryption schemes. Below we give the definition of confidentiality with respect to the verifiable semantic searching 
scheme we are going to propose. Definition 3 (Confidentiality). Our verifiable secure semantic searching scheme is secure against 
adaptively chosen query attack, if for any PPT stateful adversary A, there exists a PPT stateful simulator S, L is stateful leakage 
algorithms, consider the following probabilistic experiments: Real A (ε) : The adversary A chooses dataset F for a chal- lenger. The 
challenger runs {K, I, C} ← Initialize (1 ε , F ), where ε is our security parameter. A makes a polynomial num- ber of adaptive 
queries q. For any query q, the challenger acts as a data user and calls (Ω, ∆) ← BuildRLP (q, I, 1 ε , CV ). A act as the cloud server 
and runs SeaPro (). Finally, A returns a bit b as the output of the experiment. Ideal A,S (ε) : The adversary A chooses a document 
dataset F and makes a polynomial number of adaptive queries q for a simulator S. Given L, S generates and sends C to A, then as a 
data user to generate the trapdoor, namely Ω and ∆. Finally, A acts as the cloud server and returns a bit b, which is the output of the 
experiment. A semantic searching scheme is L-confidential if for any PPT adversary A, there exists a PPT simulator S such that: |P r 
[Real A (ε) = 1] − P r [Ideal A,S (ε) = 1]| ≤ negl(ε) where negl(ε) is a negligible function. 
 
C. Notations 
The main notations used in this paper are shown as follows: 

• q: The query inputted from a data user. 
• d: The number of documents in the dataset. 
• m: The number of keywords in a document. 
• n: The number of query words in the query. 
• F : Plaintext documents dataset F = {f 1 , f 2 . . . f i . . . f   d }, where f i denotes a document in the F. 
• C: Encrypted documents C = {c 1 , c 2 . . . c i . . . c d },   where c i denotes a document in the C. 
• Ψ: WT problems for the q and documents, and Ψ = 

{ψ 1 , ψ 2 . . . ψ i . . . ψ d }, where ψ i denotes a WT  problem for the q with f i. 
• Ω: RLP problems for the q and documents, and Ω = 

{ω 1 , ω 2 . . . ω i . . . ω d }, where ω i denotes a RLP  problem for the q with f i. 
• θ: The dual problems of the RLP problem ω. 
• ∆: Constant terms of every RLP problems, and ∆ = 

{δ 1 , δ 2 . . . δ i . . . δ d }, where δ i denotes the  constant  term of the RLP problem ω i. 
• Λ: Proofs for every RLP problems, and Λ= 

{λ 1 , λ 2 . . . λ i . . . λ d }, where λ i denotes the proof  for  ω i. 
• β: The minimum word transportation cost value of a WT 

problem. 
• Π: Optimal values of RLP problems, and Π = 

{π 1 , π 2 . . . π i . . . π d }, where π i denotes the  optimal  value of the RLP problem ω i. 
 

TABLE I 
THE EUCLIDEAN DISTANCE VALUES BETWEEN WORDS 

 university college professor office 
university 0 4.94 5.25 6.82 

college 4.94 0 5.11 5.18 
professor 5.25 5.11 0 5.48 

office 6.82 5.18 5.48 0 
• Ξ: The encrypted minimum word transportation cost    values  as measurements between q and documents,  

 and Ξ = {ξ  1 , ξ 2 , ξ 3 . . . ξ i . . . ξ d }, where ξ i    denotes the  measurement between q and f i. 
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IV. PRELIMINARIES 
A. Word Embedding 
Word embedding is a representative method for words in vector space, through which we can preserve the fundamental properties of 
words and the semantic relations between them. Neural language models are trained to minimize the prediction error to learn vector 
representations for words. Therefore, we can perform algebraic operations with word embeddings to probe semantic information 
between words. As illustrated in Table I, take “university, college, professor, and office” as an example, the Euclidean distance 
values are just in line with our intuition that the more relevant the words are, the smaller the Euclidean distance is. Word embedding 
has been studied in plaintext information retrieval tasks, such as query expansion zero-shot retrieval and cross-modal retrieval. In 
this paper, we use word embeddings to capture semantic information between words without revealing semantic information to the 
cloud server. 

 
B. Earth Mover’s Distance 
Earth Mover’s Distance (EMD) is introduced as a metric in computer vision to capture the signatures distribution differences 
between images. The name of EMD comes from its intuitive interpretation: Given two distributions, we regard one as a mass of 
earth spread properly in space, the other as a collection of holes in that same space. Then, EMD is the result that the minimum 
amount of work cost to fill the holes with earth. As EMD has advantages in representing problems involving multifeatured 
signatures, it has been applied to some practical scenarios, such as gesture recognition [36], music genre classification [37], 
document classification [38], plaintext retrieval [39] and gene identifica- tion [40]. We observe that EMD is a particular case of 
linear programming problems. Therefore, in this paper, we explore the fundamental theorems of linear programming and security 
algorithms to design our scheme for realizing secure semantic optimal matching on the ciphertext. 

 
V. PROPOSED APPROACHES 

In this section, we present the proposed core approaches in Fig. 1, namely, the word transportation problem, the secure 
transformation technique, and the verification mechanism. 

 
Figure 2. An example of the word transportation optimal matching. The relative area of the shadow represents the weight of a word; 
the length of the line segment represents the relative Euclidean distance between two connected words; as for the value M-N on the 
line segment, M represents the Euclidean distance between two words, N represents the amount of transportation between them. In 
this example, the MWTC between document-1 and the query is 4.794; the MWTC between document-2 and the query is 6.003, so 

document-1 is more relevant to the query compared with document-2. 
 

 
Figure 3. An example of the forward indexes of documents. Forward indexes are the data structure storing the mapping from each 
document to its keywords. In our scheme, each keyword carries a normalized weight representing the relevant score between the 

keyword and a specific document. 
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A. Word Transportation Problem for Optimal Matching 
Treating the matching between queries and documents as an optimal matching task, we formulate the word transportation (WT) 
problem following the optimal transportation problem of linear programming. We utilize WT problems to calculate the minimum 
word transportation cost (MWTC) as the similarity metric between queries and documents, as illustrated in Fig 2.  
To represent the documents in WT problems, we introduce the forward indexes as semantic information of documents. An example 
of forward indexes, as illustrated in Fig. 3. We define each keyword and its weight in the forward index of a document as the 
keywords distributions for the document. Therefore, we need to select keywords for each document and calculate the weight of each 
keyword in a specific document. Without loss of generality, we use TF-IDF (term frequency- inverse document frequency) as a 
criterion to select keywords in our scheme. Besides, we calculate weights via using (1): 

 

(݂,ݓ)ݐℎ݃݅݁ݓ =
1

| ௜݂|
·  (1 + ௜݂ ݊ܫ .௪) · ݊ܫ ൬1 +

݀
௪݂
൰ , (1) 

 
where w denotes a specific keyword, f expresses a specific document, |fi| indicates the length of the document, f i,w is the term 
frequency TF of the keyword w in the f , fw denotes the number of documents that contain the keyword w and d is the number of 
documents in the dataset. We adopt the same method to represent the query and define the weights of query words are equivalent. In 
this work, we normalize the amount of weight of each document/query to 1. Given forward indexes of documents and the query, we 
treat the document words as “suppliers,” the query words as “consumers,” and the semantic information as “product.” Therefore, 
given the forward index of a document f and the query q, we can formulate the WT problem as follows: 

 
where the d i,j represents the transportation cost of each movement, namely, the Euclidean distance values between word 
embeddings in this work. The f i,j denotes the trans- portation value in a word transportation strategy. The m and n indicate the 
number of keywords in a document and the query, respectively. The e fi and e qj denote the weight of each word in the document 
and the query, respectively. Next, we use the matrixes expression method to express (2), as follows: 

 
min    ்ܿݔ 
subject to Vx = W    (3) 

Ix ≥ 0 , 
 
here, we still define symbol m and n as the number of keywords in a document and the query, respectively. The c T x denotes the 
total word transportation cost between the query and a document. The symbol c is an mn × 1 cost vector whose elements are 
Euclidean distance values between word embeddings. The symbol x denotes an mn × 1 decision vector, which means one of the 
feasible solutions for the word transportation problem. The Vx = W is a constraint condition that requires the amount of each word 
transportation equal to its weight. The symbol V is an (m + n) × mn known matrix whose elements are 0 or 1. To facilitate the 
understanding, we show an example for V (when m=3, n=2), The symbol W is an (m+n)×1 weight. 
In this work, we calculate the semantic difference between the queries and documents via the word transportation optimal matching. 
In this way, we can observe that the document is more semantically related to the query when there is less transportation cost 
between them. 
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B. Secure Transformation Technique 
Word transportation problems can not be applied directly to the secure semantic searching scheme due to that the original WT 
problem can reveal sensitive information. Therefore, we propose a secure transformation technique to realize semantic optimal 
matching on the ciphertext so that the confidentiality and integrity of the information in word transportation prob- lems can be 
guaranteed. 
In our scheme, the users utilize our secure transformation technique to transform the WT problems into random linear programming 
(RLP) problems so that the cloud can lever- age any ready-made optimizer to solve the RLP problems and get the encrypted 
minimum word transportation cost (EMWTC) without learning sensitive information. Specifi- cally, our secure transformation 
technique encrypts each WT problem ψ = (c, V, W, I) with a one-time secret key K T = (A, Q, γ, r, R), where A is an mn × mn 
random invertible matrix, Q is an (m + n) × (m + n) random invertible matrix, γ is a real positive value, r is an mn × 1 random 
vector and R is an mn × mn generalized permutation matrix. We first transform the original objective function 
We first transform the original objective function c T x to the encrypted form cT Ay − cTr with x = Ay − r. The symbol y denotes an 
mn × 1 decision vector, which denotes one of the feasible solutions for the RLP problem. Note that, we require each r i is no less 
than 0, where i=1, 2,..., mn. With x replaced by Ay − r, we transform the original WT problem ψ to (4). In (4), we define the 
constraint condition IAy ≥ Ir is equivalent to that the i-th element in the vector T1 = IAy is not less than the i-th element in the vector 
T2 = Ir, where i=1, 2,..., mn. 

min   cTAy − cTr 
subject to  VAy = W + Vr   (4) 

IAy ≥ Ir . 
 
Next, we use a random invertible matrix Q to encrypt the weight vector W, and then we use a real positive value γ to protect the 
optimal value. Meanwhile, we leave out the identity matrix I due to IA = A is established. Therefore, we transform the original WT 
problem ψ to (5). In (5), we define the constraint condition Ay ≥ r is equivalent to that the i-th element in the vector T 3 = Ay is not 
less than the i-th element in the vector r, where i=1, 2,..., mn. 

min   γc T Ay − γc T r 
subject to QVAy = Q(W + Vr)  (5) 

Ay ≥ r . 
 

To encrypt Ay ≥ r, we construct an mn × mn generalized permutation matrix R based on the elements in r. Specifically, the nonzero 
elements in R are reciprocal of elements in the r. We show an example for r and R (when m = 3, n = 2), as illustrated in Fig.5. 
Therefore, we transform the ψ to (6). In (6), we define the constraint condition RAy ≥ 1 is equivalent to that the elements in the 
vector T 4 = RAy are not less than 1, where i=1, 2,..., mn 

min   γc T Ay − γc T r 
subject to  QVAy = Q(W + Vr)  (6) 

RAy ≥ 1. 
 
C. Result Verification Mechanism 
To verify the correctness of search results, we design a result verification mechanism using the intermediate data produced in the 
matching process.  
As the optimal matching on the ciphertext is a linear programming (LP) task, we further explore the duality theorem of LP and use 
the strong theorem of LP problem to design our verification mechanism, inspired by [41]. We first construct the dual programming 
problem of each RLP problem ω. Given the (7) of ω, we adopt Lagrange multipliers to construct its dual problem θ, as 
follows:construct the dual programming problem of each RLP problem ω. Given the (7) of ω, we adopt Lagran 

max  g(s, t) 
subject to Vs + ITt = c 0 

t ≥ 0    (8) 
g(s, t) = WT s + LTt , 

 
where, g(s, t) is the objective function of the dual problem θ = (c 0 , V 0 , W 0 , I 0 , L), L is an (m + n) × 1 vector whose elements 
are 1. In the (8), s and t are (m + n) × 1 decision vectors of the dual problem θ. 
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Figure 4. Overview of our secure verifiable semantic searching scheme. 

 
VI. OUR SCHEME 

In this section, we present the detailed design of our scheme that consists of four phases, namely, Initialization, BuildRLP, 
Search&Prove, Verification&Decryption. The overview of our scheme, as illustrated in Fig. 6. 
 
A. Initialization 
In this phase, the data owner performs Initialize () to initialize our scheme. To describe this algorithm in detail, we split it into three 
algorithms, as follows: 
K KeyGen (1ε) is a probabilistic secret key generation algorithm, corresponding to the “Secret Key Generator” in Fig.4. The data 
owner takes the security parameter ε as input, thengenerates secret key K for encrypting documents.  
C EncDoc(K, F) is a deterministic algorithm, corre- sponding to the “Symmetric Encryption” in Fig. 4. The data owner takes the 
documents dataset F and the secret key K as input, then generates the ciphertext dataset C.  
I BuildIndex(F) is a deterministic building index algorithm, corresponding to the “Indexer” in Fig. 4. The data owner takes F as 
input, then generates forward indexes I as semantic information of documents.  
The data owner first calls KeyGen() and EncDoc() to generate a secret key K for encrypting documents dataset F and get the 
ciphertext dataset C, then outsources C to the cloud server. Afterward, the owner calls BuildIndex() to build forward indexes I. In 
this algorithm, the data owner extracts keywords and calculates weights for building forward indexes as semantic information of 
documents. Finally, the owner sends the secret key K and indexes I to data users. 

 
B.  BuildRLP 
In this phase, data users perform BuildRLP () to generate trapdoor the searching query q. To describe this algorithm in detail, we 
split it into three algorithms, as follows:  
Ψ BuildWT(q, I, E) is a deterministic algorithm, corre- sponding to the “WT Builder” in Fig. 6. The users take query q, forward 
indexes I and word embedding library E as input, then generate word transportation problems Ψ for each pair of query and each 
document.  
K T ← TranKeyGen (1 ε ) is a probabilistic transformation key generation algorithm, corresponding to the “One-Secret Key 
Generator” in Fig. 6. The user takes the security parameter ε as input, then generates one-time transformation secret key K T = (A, 
Q, γ, r, R) for encrypting Ψ. 
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 (Ω, ∆) ← SecTran (Ψ, K T ) is a deterministic algorithm, corresponding to the “Secure Transformation” in Fig. 6. The users take 
WT problems Ψ and transformation key K T as input, then generate random linear programming problems Ω and the corresponding 
constant terms ∆.  
The users first call BuildWT() to build WT problems Ψ for the query and forward index of each document. Specifically, The users 
use word embeddings to represent all words and calculate Euclidean distance values between word embeddings, then build word 
transportation problems Ψ according to the proposed approach. After building WT problems Ψ, the data users call TranKeyGen() to 
generate a one-time secure key K T for encrypting Ψ. Then, the users call SecureTran() to encrypt each ψ i and get the 
corresponding RLP problem ω i with its constant term δ i , where ψ i ∈ Ψ, ω i ∈ Ω, δ i ∈ ∆, and i = 1, 2, . . . , d. Finally, the user 
sends all RLP problems Ω and the corresponding constant terms ∆ to the cloud server. 

 
C. Search&Prove 
In this phase, the cloud server performs SeaPro () to search documents and generate proofs. To describe this algorithm in detail, we 
split SeaPro () into two algorithms, namely, SolveRLP () and Rank (), as follows: 
 (Π, Λ) ← SolveRLP(Ω) is a deterministic algorithm, cor- responding to the “Any Ready-made Optimizer” in Fig. 6. The cloud 
server takes RLP problems Ω as input, then generates the optimal values Π and proofs Λ for RLP problems. 
 (Γ, Ξ) Rank(Π, ∆, C, k) is a deterministic ranking algorithm, corresponding to the “Subtractor” and “Ranker” in Fig. 6. The cloud 
server takes optimal values Π, the constant terms ∆, the ciphertext dataset C and the number k as input, first calculates all the 
measurements Ξ, then generates the top-k related encrypted documents Γ, where Ξ = {ξ 1 , ξ 2 , ξ 3 . . . ξ i . . . ξ d }, and i = 1, 2, . . 
., d.  
The cloud server calls SolveRLP() to solve RLP problems. The cloud can leverage any ready-made optimizer to solve each RLP ω i 
and get the corresponding optimal value π i and proof λ i , where ω i ∈ Ω, π i ∈ Π, λ i ∈ Λ, and i = 1, 2, . . . , d. The cloud calls 
RankDoc() to calculate each encrypted minimum word transportation cost ξ i = π i − δ i as measurement, where i = 1, 2, . . . , d. 
Then, the cloud ranks measurements Ξ in ascending order and obtains the top-k related encrypted documents Γ. Finally, the cloud 
returns the top-k related encrypted documents Γ and proofs Λ to the users. 

 
D. Verification & Decryption 
In this phase, data users perform VerDec () to verify the correctness of the search results and decrypt the top-k en- crypted 
documents. To describe this algorithm in detail, we split it into Verify () and DecDoc (), as follows:  
(0 or α) ← Verify(Λ) is a deterministic verification algo- rithm, corresponding to the “Verify ?” in Fig. 6. Data users take proofs Λ 
as input, then generate the result of verification 0 or α, where α ∈ N ∗ , N ∗ denotes the positive integer set.  
Υ DecDoc(K, Γ) is a deterministic decryption algo- rithm, corresponding to the “Documents Decryption” in Fig. 6. The users take 
the top-k related encrypted documents Γ and secret key K as input, then generate the top-k related plaintext documents Υ for the 
query q.  
The users first call Verify() to verify the correctness of the search results. The users verify the correctness of each proof λ i 
according to (9), thus verifying whether the cloud performs the correct calculations for each RLP problem and determining the 
correctness of the search result, where λ i ∈ Λ, and i = 1, 2, . . . , d. The Verify() will output 0 when the verification pass; otherwise, 
this algorithm calls “Annunciator” to output α as the warning which denotes the number of failing proofs. The users call DecDoc() 
to decrypt the top- k encrypted documents Γ with the secret key K and obtains the top-k related documents Υ if the proofs Λ pass 
our result verification mechanism. 

 
VII. CONCLUSIONS 

We propose a secure verifiable semantic searching scheme that treats matching between queries and documents as a word 
transportation optimal matching task. Therefore, we investigate the fundamental theorems of linear programming (LP) to design the 
word transportation (WT) problem and a result verification mechanism. We formulate the WT problem to calculate the minimum 
word transportation cost (MWTC)as the similarity metric between queries and documents, and further propose a secure 
transformation technique to trans- form WT problems into random LP problems. Therefore, our scheme is simple to deploy in 
practice as any ready-made optimizer can solve the RLP problems to obtain the encrypted MWTC without learning sensitive 
information in the WT problems. Meanwhile, we believe that the proposed secure transformation technique can be used to design 
other privacy- preserving linear programming applications. We bridge the semantic-verifiable searching gap by observing an insight 
that using the intermediate data produced in the optimal matching process to verify the correctness of search results.  
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Specifically, we investigate the duality theorem of LP and derive a set of necessary and sufficient conditions that the intermediate 
data must meet. The experimental results on two TREC collections show that our scheme has higher accuracy than other schemes. 
In the future, we plan to research on applying the principles of secure semantic searching to design secure cross-language searching 
schemes. 
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