

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 14 Issue: II Month of publication: February 2026

DOI: <https://doi.org/10.22214/ijraset.2026.77453>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Data Governance for Big Data Business Intelligence: A Conceptual Framework and Research Agenda

Zeyad Faieq Suleiman Abuhuweidi¹, Ibrahim Khaled Qasem Farea²

¹*School of Computer Science, Nanjing University of Information Science and Technology,*

²*School of AI, Nanjing University of Information Science and Technology*

Abstract: Organizations increasingly depend on big data business intelligence (BI) to support operational and strategic decisions. Yet the realized value of BI remains uneven. Practitioners frequently attribute shortfalls not to data scarcity or analytical capability but to governance failures: unclear data ownership, inconsistent metric definitions, weak lineage, slow access approvals, and uncontrolled proliferation of shadow analytics. Big data amplifies these problems through continuous pipeline change, semantic heterogeneity, decentralized ownership, and the embedding of algorithmic outputs into decision workflows. Prior research offers governance principles and reference models, yet the field lacks an outcome-centered conceptual framework that specifies how governance mechanisms translate into BI performance under big data conditions. This paper addresses that gap. We propose a mechanism-based conceptual framework linking governance mechanisms (structural, process, technical) to BI outcomes (trustworthiness, decision quality, agility, risk/compliance) through four intermediate governance capabilities: data quality assurance, lineage and traceability, access agility with control, and analytical accountability. We develop six testable research propositions (P1-P6) specifying directional relationships and theorized boundary conditions including decentralization and regulatory intensity. We conclude with a focused research agenda comprising operationalization guidance, study designs, and units of analysis to support cumulative empirical inquiry. The framework contributes a diagnostic lens for practitioners and a theoretically grounded foundation for hypothesis testing in big data BI governance research.

Keywords: Data governance, business intelligence, big data, analytics governance, data quality, data lineage, access control, accountability, data mesh, organizational capabilities.

I. INTRODUCTION

Business intelligence (BI) has transformed from descriptive reporting toward continuous, data-driven decision support. Organizations now ingest streaming and heterogeneous data, embed machine learning into analytical workflows, and distribute insights across thousands of users via self-service platforms [1], [2]. These advances have created a paradox: the very abundance and accessibility of data have made governance more difficult, not less.

Practitioners increasingly report that BI value shortfalls stem not from tooling deficits but from governance failures [3], [4]. Unclear data ownership produces conflicting metric definitions. Weak lineage erodes confidence when dashboards change unexpectedly. Manual access approvals create bottlenecks that frustrate time-sensitive analysis. Uncontrolled “shadow” datasets proliferate, introducing unverified assumptions into decisions [4], [5]. Big data intensifies each of these problems. High-velocity pipelines make schema drift a continuous threat. Semantic variety multiplies the risk of misinterpretation. Distributed ownership fragments accountability for shared datasets. Algorithmic BI outputs—scores, forecasts, recommendations—add new governance demands beyond traditional data quality management [6], [7].

Data governance research has produced valuable frameworks, principles, and maturity models [8], [9], [10]. Yet the field lacks an outcome-centered conceptual model that specifies how governance mechanisms improve BI performance under big data conditions. Prior work tends toward one of two poles: either it offers comprehensive but abstract principles difficult to translate into testable hypotheses, or it evaluates specific technical controls in isolation, leaving questions of organizational capability and performance unaddressed. The result is a fragmented evidence base that provides limited guidance for either researchers seeking to test causal claims or practitioners seeking to diagnose governance shortcomings. We synthesize prior governance frameworks and use logical deduction to develop a mechanism-based model of governance capabilities and BI outcomes.

To address this gap, this paper:

- 1) A mechanism-based conceptual framework that distinguishes governance mechanisms (structural/process/technical) from intermediate governance capabilities (quality, lineage, access, accountability) and links these to BI outcomes (trust, decision quality, agility, risk/compliance).

- 2) Six testable research propositions (P1–P6) that specify directional relationships, causal logic, and theorized boundary conditions—including decentralization and regulatory intensity—suitable for empirical testing in organizational and platform contexts.
- 3) A focused research agenda comprising construct operationalization, recommended study designs, and units of analysis to support cumulative, methodologically plural inquiry.

This paper is a conceptual synthesis, not a systematic literature review. We do not claim exhaustive coverage. Our aim is theory-building: we integrate insights from prior governance frameworks, IT governance, and emerging work on data ecosystems and federated analytics to propose a model that is both theoretically grounded and practically actionable. We focus on big data BI governance—organizational practices and technical controls that shape how data and analytical artifacts are created, accessed, used, and retired to support decision-making under conditions of volume, velocity, variety, and distributed ownership.

II. CONCEPTUAL BACKGROUND AND KEY CONSTRUCTS

A. Data Governance: Definition and Scope

We define data governance as the set of organizational structures, decision rights, processes, and technical controls that direct and constrain how data and analytics artifacts are created, accessed, used, and retired to achieve enterprise objectives while managing risk [8], [9], [11]. This definition distinguishes governance from management: governance establishes what decisions should be made and who decides; management executes those decisions operationally [11].

Prior research identifies multiple governance domains. Khatri and Brown's foundational framework organizes data governance around five decision domains: data principles, data quality, metadata, data access, and data lifecycle [12]. Abraham et al. extend this by distinguishing governance mechanisms (structural, procedural, relational) and positioning data governance within the broader IT governance literature [10]. Industry frameworks such as DAMA-DMBOK and COBIT provide detailed capability models and maturity assessment instruments [13], [14].

B. Adjacent Concepts and Boundaries

Data governance is distinct from but related to several adjacent fields. IT governance addresses the overall management of IT assets and is organization-wide; data governance specifically governs data as an asset and may operate across organizational boundaries [11], [12]. AI governance and model governance focus on algorithmic systems, including fairness, explainability, and monitoring; these are subsets of the broader analytical accountability challenge we address [6], [15]. Data management refers to the technical practices of ingesting, storing, processing, and delivering data; governance sets the rules within which management operates [8], [10].

In this paper, we adopt a capability-oriented view: governance mechanisms (the “inputs”) produce intermediate governance capabilities (repeatable abilities to govern effectively), which in turn shape BI outcomes. This framing draws on the resource-based view of the firm and dynamic capabilities theory [16]: organizations do not benefit from policies alone but from the operational capabilities those policies enable [10], [11].

C. Why Big Data Changes Governance Assumptions

Classical data governance frameworks were developed for relatively stable data warehouse environments with centralized ownership, controlled schemas, and batch processing [8]. Big data BI introduces four systematic shifts:

- 1) *Velocity of change*: Data pipelines evolve continuously. Schema drift, API updates, and source-system changes occur without centralized notice. This renders static, audit-centric governance models insufficient; governance must become observable and automated [1], [7].
- 2) *Variety and semantic heterogeneity*: BI now integrate structured, semi-structured, and unstructured data. The same term (e.g., “customer,” “active,” “churn”) may carry different meanings across domains. Semantic standardization cannot be imposed centrally; it requires federated structures and machine-readable contracts [5], [17].
- 3) *Volume and reuse*: Large-scale datasets are reused across contexts not anticipated at creation. This expands the risk surface: privacy violations, biased algorithmic outputs, and misinterpretation of metrics designed for one purpose but applied to another [6], [18].
- 4) *Distributed ownership*: Data is no longer produced and consumed within single functional silos. Domain teams publish datasets, metrics, and models consumed by others. Accountability becomes fragmented; end-to-end traceability is required to assign responsibility when failures occur [5], [19].

These conditions motivate a reconceptualization of governance. The question is not whether to govern but how to govern in ways that are simultaneously scalable, flexible, and auditable. Despite these established streams, the specific mechanisms by which governance builds BI capabilities under big data conditions remain undertheorized—a gap this paper addresses.

III. CONCEPTUAL FRAMEWORK: DATA GOVERNANCE FOR BIG DATA BI

A. Framework Overview

The proposed conceptual framework comprises four layers:

- 1) *Governance mechanisms*: structural, process, and technical instruments organizations deploy.
- 2) *Intermediate governance capabilities*: organizational abilities to perform governance functions at scale.
- 3) *BI outcomes*: performance dimensions affected by governance capability.
- 4) *Boundary conditions*: contextual factors that moderate mechanism–capability and capability–outcome relationships.

The framework posits directional relationships: governance mechanisms enable intermediate capabilities; capabilities in turn improve BI outcomes. Each relationship is moderated by theoretically derived boundary conditions.

B. Governance Mechanisms

We distinguish three categories of governance mechanisms, adapted from prior IT governance and data governance syntheses [10], [11]:

- 1) *Structural mechanisms (SM)*: Formal organizational arrangements that allocate decision rights and accountability. These include: data governance councils, executive sponsorship, domain data owners, embedded data stewards, and product managers for shared metric layers. Structural mechanisms answer: Who decides?
- 2) *Process mechanisms (PM)*: Standardized workflows and policies that operationalize governance. These include: semantic standardization procedures, change impact assessments, data incident management, data quality SLAs, and lifecycle governance (certification, deprecation, retention). Process mechanisms answer: How are decisions made and enforced?
- 3) *Technical mechanisms (TM)*: Platform-based controls and instrumentation that enable governance at scale. These include: metadata catalogs, automated lineage capture, policy-as-code access control, data quality monitoring, and audit logging. Technical mechanisms answer: How is governance implemented in systems?

C. Intermediate Governance Capabilities

We propose that governance mechanisms affect BI outcomes primarily through their influence on four intermediate governance capabilities—repeatable organizational abilities to perform governance functions reliably and at scale.

- 1) *Data quality assurance capability (DQ)*: The ability to define, measure, and remediate data quality dimensions (accuracy, completeness, timeliness, consistency) relevant to BI use cases. DQ enables trust in source data and derived metrics [8], [20].
- 2) *Lineage and traceability capability (LT)*: The ability to trace BI outputs (metrics, dashboards, model predictions) back to source data, transformations, and assumptions. LT supports reproducibility, impact analysis, and rapid diagnosis of discrepancies [1], [7].
- 3) *Access agility with control capability (AA)*: The ability to provision data and analytics access quickly while maintaining least-privilege security and regulatory compliance. AA captures the resolution of the “governance vs. speed” trade-off [3], [4].
- 4) *Analytical accountability capability (AC)*: The ability to assign responsibility and maintain oversight for analytical artifacts—metric definitions, feature pipelines, model versions, prompts—proportionate to decision risk. AC includes documentation, review gates, and escalation pathways [6], [15].

D. BI Outcomes

We conceptualize BI performance as a multidimensional construct comprising four distinct but related outcomes:

- 1) *BI trustworthiness (TR)*: The extent to which decision-makers perceive BI outputs as reliable, accurate, and interpretable. Trust is a necessary condition for BI usage and influence [3], [4].
- 2) *BI decision quality (DQI)*: The extent to which BI improves the accuracy, timeliness, and appropriateness of decisions. This is the ultimate performance outcome, though it is difficult to measure directly and often requires proxy indicators [2], [7].
- 3) *BI agility (AG)*: The speed and flexibility with which new datasets, metrics, dashboards, and analytical capabilities can be delivered in response to evolving business needs. Agility captures the innovation-enabling function of governance [5], [17].

4) *Risk/compliance performance (RC)*: The reduction of privacy/security incidents, audit findings, regulatory sanctions, and uncontrolled data proliferation. RC captures the stewardship function of governance [1], [8].

E. Causal Logic and Boundary Conditions

The framework posits that governance mechanisms enable capabilities, and capabilities improve outcomes. This is not a deterministic claim; effects are moderated by contextual factors. We theorize three boundary conditions:

- 1) *Decentralization*: The distribution of data production and consumption authority across domain teams. Under high decentralization, structural mechanisms that clarify decision rights and federated standards become more consequential for LT and semantic consistency [5], [17].
- 2) *Regulatory intensity*: The stringency of external compliance obligations (e.g., GDPR, CCPA, sector-specific regulations). Under high regulatory intensity, technical mechanisms that enforce access control and maintain auditable lineage yield larger risk/compliance benefits [1], [7].
- 3) *Platform maturity*: The extent to which metadata, lineage, monitoring, and policy-enforcement infrastructure is deployed and adopted. Immature platforms impede the translation of structural/process mechanisms into operational capabilities; technical mechanisms are preconditions for scalable governance [2], [19].

IV. RESEARCH PROPOSITIONS (P1–P6)

P1 (Mechanisms → Capabilities): Stronger data governance mechanisms—structural (SM), process (PM), and technical (TM)—are positively associated with intermediate governance capabilities in big data BI, specifically data quality assurance (DQ), lineage/traceability (LT), access agility with control (AA), and analytical accountability (AC).

Rationale: Governance mechanisms are intentional organizational designs. Structural mechanisms create accountable roles and escalation paths; process mechanisms codify repeatable workflows; technical mechanisms embed controls into platforms, reducing reliance on manual compliance. Each mechanism class contributes distinctively to capability formation. The relationship is moderated by platform maturity: when metadata and automation infrastructure is immature, technical mechanisms cannot be fully deployed, and structural/process mechanisms alone yield weaker capability gains [1], [2], [10].

P2 (DQ + LT → Trustworthiness): Data quality assurance capability (DQ) and lineage/traceability capability (LT) are positively associated with perceived BI trustworthiness (TR) among decision-makers. This relationship is stronger under conditions of high change velocity.

Rationale: Trust in BI is shaped by consistent metric definitions, reduced error rates, and the ability to explain “what changed” when numbers shift unexpectedly. DQ reduces visible defects; LT enables explanation, reproducibility, and rapid root-cause analysis. Under high-velocity conditions (frequent pipeline changes, schema drift, source updates), traceability becomes a more salient antecedent of trust because unexplained variation is more frequent [3], [4], [20].

P3 (AA → Agility; moderated by automation): Access agility with control capability (AA) is positively associated with BI agility (AG). This relationship is stronger when technical mechanisms (TM) enable automated policy enforcement (e.g., role-based access, dynamic masking, policy-as-code).

Rationale: In big data BI, delivery delays often arise from access bottlenecks: manual approval queues, unclear data ownership, and case-by-case security reviews. AA captures the ability to move quickly without sacrificing compliance. Technical automation reduces the marginal cost of each access request and enables self-service within guardrails, preserving speed while maintaining control. In the absence of automation, even well-designed structural and process mechanisms produce slower access cycles [3], [5], [19].

P4 (AC → Decision quality; moderated by analytical embeddedness): Analytical accountability capability (AC) is positively associated with BI decision quality (DQ). This relationship is stronger when BI outputs are algorithmically augmented (predictive scores, prescriptive recommendations, LLM-generated insights) rather than purely descriptive.

Rationale: As BI evolves from “what happened” to “what will happen” and “what should we do,” decision-makers are influenced by analytical artifacts whose assumptions and limitations are not self-evident. AC—clear ownership, risk-aligned review gates, documentation of intended use and known failure modes—reduces the likelihood that poorly understood or unreviewed artifacts drive decisions. This effect is magnified when analytics outputs are directly action-triggering (credit limits, inventory allocation, fraud case prioritization) and when generative AI introduces provenance ambiguity [6], [7], [15].

P5 (Decentralization moderates SM → LT + DQ): The positive effect of structural mechanisms (SM) on lineage/traceability (LT) and semantic standardization (a component of DQ) is stronger in highly decentralized data organizations than in centralized ones.

Rationale: Decentralization increases coordination costs and the risk of semantic drift. When multiple domain teams publish datasets and metrics consumed by others, shared data definitions cannot be assumed; they must be negotiated and enforced. Structural mechanisms—data owners, stewardship roles, cross-domain governance forums—provide the decision-rights architecture necessary to resolve disputes, approve shared definitions, and maintain interoperability. In centralized environments, hierarchical authority can achieve these outcomes through command, making formal structural mechanisms less consequential [5], [10], [17].

P6 (Regulatory intensity moderates TM → RC): Regulatory intensity strengthens the positive association between technical mechanisms (TM) and risk/compliance performance (RC) in big data BI.

Rationale: Where audit obligations, privacy regulations, and reporting requirements are stringent, compliance cannot be achieved through policy alone; it requires technical enforcement. Automated access controls, immutable audit logs, and verifiable lineage provide evidence that can be inspected and tested. In low-regulation environments, similar mechanisms may still improve security hygiene but yield smaller observable compliance benefits relative to their cost, shifting the business case toward agility and trust rather than compliance [1], [8], [18].

V. RESEARCH AGENDA AND METHODOLOGICAL PATHWAYS

The framework and propositions are intended to guide cumulative empirical inquiry. We outline operationalization guidance, recommended study designs, and units of analysis.

A. Construct Operationalization

We distinguish mechanisms (organizational investments/designs) from capabilities (repeatable performance abilities). Researchers should measure both.

- 1) *Structural mechanisms (SM)*: Presence and clarity of data owner roles; decision-rights matrix completeness; stewardship coverage ratio (stewards per domain); existence and meeting frequency of cross-domain governance forums.
- 2) *Process mechanisms (PM)*: Documented standards for metric definitions; change approval workflows; incident response maturity; data quality SLA adherence rates.
- 3) *Technical mechanisms (TM)*: Automated lineage coverage (% of critical pipelines); metadata catalog adoption (% of datasets cataloged); access control automation (manual vs. policy-as-code); monitoring coverage (% of datasets with quality tests).
- 4) *Intermediate capabilities (DQ, LT, AA, AC)*: Perceptual scales adapted from prior IT governance and information quality instruments [20], plus objective indicators (mean time to detect/correct data incidents; mean time to provision access; % certified datasets; completeness of model/artifact documentation).
- 5) *BI outcomes (TR, DQI, AG, RC)*: Perceived trust scales; behavioral proxies (dashboard usage persistence, query volume); delivery lead time for new metrics; governance incident metrics (audit findings, access violations, privacy breaches).

B. Recommended Study Designs

Given the socio-technical, multi-level nature of governance, we recommend methodological pluralism:

- 1) *Comparative case studies*: Purposeful sampling of organizations varying on decentralization, regulatory intensity, and platform maturity. Within-case and cross-case analysis can trace mechanisms → capabilities → outcomes pathways, refine boundary conditions, and generate hypotheses for larger-sample testing.
- 2) *Survey-based field studies*: Multi-informant design (data producers, data stewards, BI consumers) at the domain/team level. Structural equation modeling can test P1–P6 simultaneously. Common method bias should be addressed through temporal separation, objective performance data, or matched dyads.
- 3) *Quasi-experimental designs*: Governance interventions (e.g., automated lineage rollout, governed metrics layer implementation) provide opportunities for interrupted time series or difference-in-differences analysis using operational metrics (incident rate, access cycle time, certified dataset growth).
- 4) *Mixed methods*: Platform telemetry (access logs, query patterns, lineage graphs) combined with qualitative interviews can illuminate why observed effects occur and how governance practices are appropriated locally.

C. Units of Analysis and Data Sources

The framework can be examined at multiple levels:

- 1) Enterprise BI platform program (unit: platform team/organization)
- 2) Domain data product team (unit: domain or data product)
- 3) Decision workflow (unit: recurring decision process informed by BI)

Data sources include: governance documentation, platform telemetry, organizational surveys, archival records (incident tickets, access requests), and interviews.

VI.DISCUSSION

A. Theoretical Implications

This framework contributes to data governance theory in three ways. First, it reframes governance as a capability-building system rather than a compliance overlay. The mechanism–capability–outcome distinction enables researchers to separate what organizations do from what they are able to do—a crucial analytical move for causal inference.

Second, it specifies intermediate mechanisms rather than treating governance as a black box. By articulating four governance capabilities (DQ, LT, AA, AC), we provide a vocabulary for diagnosing which specific governance functions are underperforming and which mechanisms are most likely to strengthen them.

Third, it introduces boundary conditions theoretically derived from big data BI contexts. Decentralization, regulatory intensity, and platform maturity are not merely control variables; they are substantive moderators that shape governance effectiveness. This opens pathways for contingency theorizing and context-sensitive design prescriptions.

The framework also bridges previously siloed conversations. It connects data governance to the resource-based view (capabilities as sources of performance differences) [16], IT governance (decision rights allocation) [11], and emerging work on data ecosystems and federated governance [5], [17].

B. Managerial Implications

For practitioners, the framework offers a diagnostic lens. Rather than asking “Do we have data governance?”, organizations should ask:

- 1) *Which governance capabilities are weak, and which BI outcomes are consequently impaired?*
 - Low trust? Focus on DQ and LT.
 - Slow delivery? Focus on AA and automation.
 - Algorithmic decision risk? Focus on AC.
- 2) *Which mechanisms are most leveraged for capability building given our context?*
 - Highly decentralized? Strengthen structural mechanisms (domain data owners, federated forums).
 - Highly regulated? Invest in technical mechanisms (automated lineage, policy-as-code).
 - Immature platform? Address technical debt before adding structural complexity.

The framework also supports investment trade-off discussions. Governance is not costless; the marginal benefit of additional controls depends on organizational context. Our propositions suggest where governance investments yield the highest returns under different boundary conditions.

C. Limitations

This paper is a conceptual synthesis, not an empirical test. The constructs, causal logic, and propositions require validation across diverse organizational settings. Several limitations merit acknowledgment.

First, the framework abstracts from important micro-foundations such as data literacy, governance competence, and organizational culture. These may moderate or mediate the mechanism–capability relationship and should be incorporated in future extensions.

Second, we treat governance mechanisms as independent design choices, but in practice they are interdependent and co-evolve. Organizations do not adopt SM, PM, and TM in isolation; they implement governance programs that combine them. Future research should examine governance configurations rather than individual mechanisms.

Third, the framework focuses on enterprise BI within and across organizations. It does not address public-sector data ecosystems, cross-sector data sharing, or citizen-generated data—contexts with distinct governance demands [5], [18].

Finally, the rapid evolution of generative AI and conversational BI introduces new governance challenges—grounding, provenance, hallucination mitigation—that our framework captures only partially under “analytical accountability.” Future research should empirically validate the proposed relationships using the measurement and design pathways outlined in Section V, and extend the model to address LLM-enabled BI specifically.

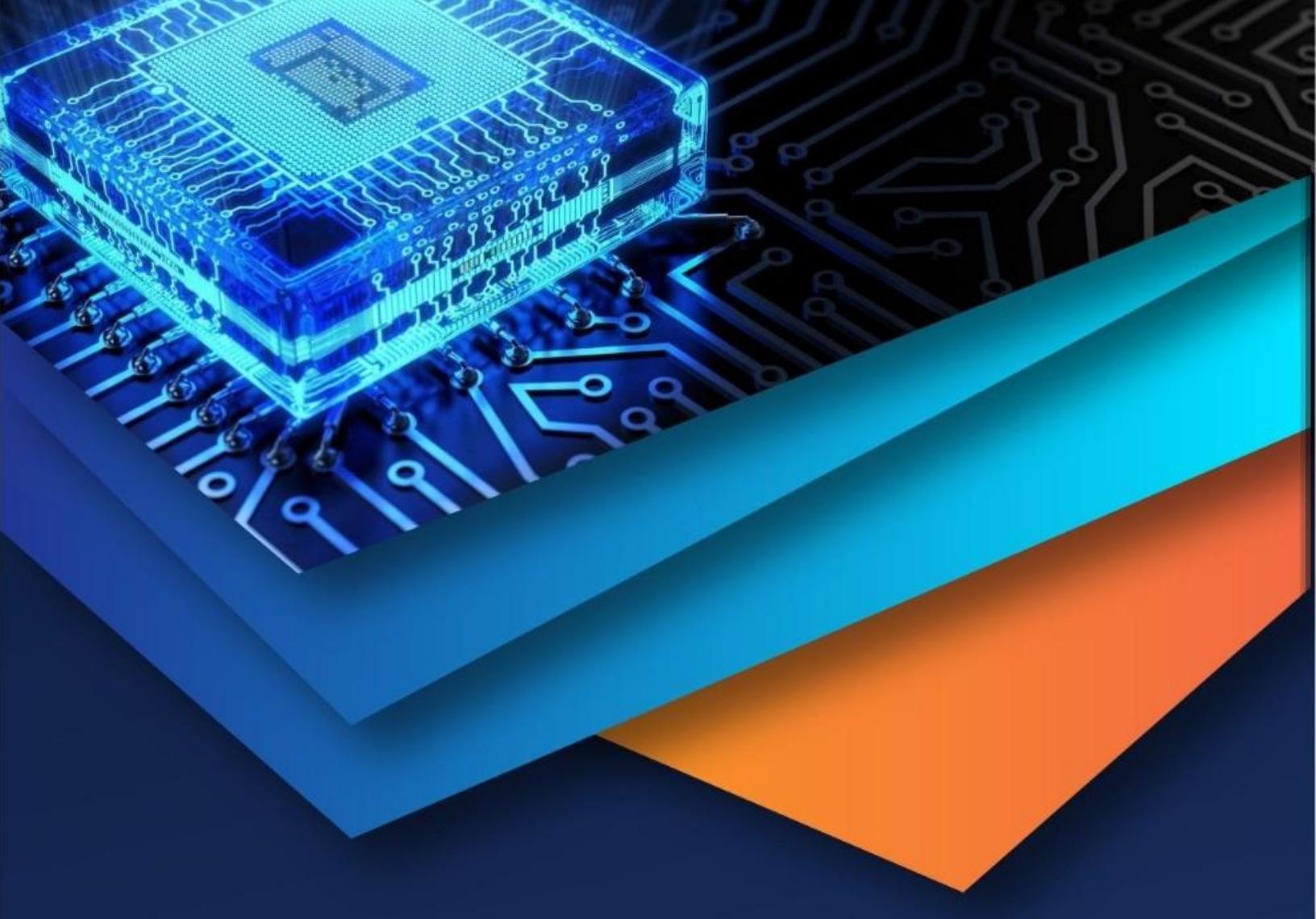
VII. CONCLUSION

Big data BI elevates both the opportunity and the risk of data-driven decision-making. Governance is increasingly a prerequisite for scalable, trusted BI, yet governance designs can also impede agility if misaligned with organizational structure and technical maturity. This paper has proposed a mechanism-based conceptual framework that links governance mechanisms (structural, process, technical) to BI outcomes (trust, decision quality, agility, risk/compliance) through four intermediate governance capabilities: data quality assurance, lineage/traceability, access agility with control, and analytical accountability. Six testable propositions specify directional relationships and theorized moderators including decentralization, regulatory intensity, and platform maturity. The accompanying research agenda outlines measurement approaches and study designs to support cumulative empirical inquiry. The framework is intended to move governance research toward outcome-centered, empirically testable theory and to help organizations govern big data BI in ways that preserve both control and speed.

REFERENCES

- [1] X. Gao, X. Chen, Y. Fang, and H. Cheng, “A data governance model based on multi-agents system,” in Proc. IEEE 7th Int. Conf. Commun. Inf. Syst. Comput. Eng. (CISCE), 2025, pp. 339–345. doi: 10.1109/CISCE62941.2025.00063
- [2] Y. Chen, S. Hu, H. Mao, W. Deng, and X. Gao, “Data governance for big data analytics: A systematic review and research agenda,” *IEEE Trans. Eng. Manage.*, vol. 71, pp. 11234–11250, 2024. doi: 10.1109/TEM.2024.3368912
- [3] A. AlShammari, “Big data governance challenges arising from data generated by intelligent systems technologies: A systematic literature review,” *IEEE Access*, vol. 13, pp. 12859–12888, 2025. doi: 10.1109/ACCESS.2025.3528941
- [4] P. Spagoletti, A. Kazemargi, and C. Cacciatori, “Data governance in data ecosystems: A research note,” *Prospettive in Organizzazione*, no. 21, pp. 1–12, May 2025. [Online]. Available: <https://prospettiveinorganizzazione.assioa.it/data-governance-in-data-ecosystems-a-research-note/>
- [5] I. A. Machado, C. Costa, and M. Y. Santos, “Data mesh: Concepts and principles of a paradigm shift for data management,” *Procedia Comput. Sci.*, vol. 196, pp. 263–271, 2022. doi: 10.1016/j.procs.2021.12.013
- [6] M. Zorrilla and J. Yebenes, “Data governance for Industry 4.0: A systematic literature review and future research agenda,” in Proc. IEEE 24th Int. Enterp. Distrib. Object Comput. Workshop (EDOCW), 2022, pp. 1–8. doi: 10.1109/EDOCW52865.2022.00012
- [7] B. M. V. Bernardo, H. S. Mamede, J. M. P. Barroso, and V. M. P. D. Santos, “Data governance & quality management—Innovation and breakthroughs across different fields,” *J. Innov. Knowl.*, vol. 9, no. 4, Art. no. 100598, Oct.–Dec. 2024. doi: 10.1016/j.jik.2024.100598
- [8] C. Cichy and S. Rass, “An overview of data governance frameworks,” *Comput. Sci. Rev.*, vol. 48, Art. no. 100553, May 2023. doi: 10.1016/j.cosrev.2023.100553
- [9] M. I. S. Oliveira and B. F. Lóscio, “Data governance in data ecosystems: A systematic mapping study,” *Inf. Syst.*, vol. 101, Art. no. 101798, Nov. 2021. doi: 10.1016/j.is.2021.101798
- [10] R. Abraham, J. Schneider, and J. vom Brocke, “Data governance: A conceptual framework, structured review, and research agenda,” *Int. J. Inf. Manage.*, vol. 49, pp. 424–438, Dec. 2019. doi: 10.1016/j.ijinfomgt.2019.05.018
- [11] P. Weill and J. W. Ross, *IT Governance: How Top Performers Manage IT Decision Rights for Superior Results*. Boston, MA, USA: Harvard Business School Press, 2004.
- [12] V. Khatri and C. V. Brown, “Designing data governance,” *Commun. ACM*, vol. 53, no. 1, pp. 148–152, Jan. 2010. doi: 10.1145/1629175.1629210
- [13] I. Alhassan, D. Sammon, and M. Daly, “A critical analysis of data governance dimensions,” *J. Decis. Syst.*, vol. 30, no. 2–3, pp. 145–167, 2021. doi: 10.1080/12460125.2021.1919946
- [14] D. Paparova, M. Aanestad, and M. Grisot, “The dynamics of data roles and responsibilities in data governance,” *J. Inf. Technol.*, vol. 38, no. 2, pp. 123–141, Jun. 2023. doi: 10.1177/02683962231153041
- [15] M. Janssen, P. Brous, E. Estevez, L. S. Barbosa, and T. Janowski, “Data governance: Organizing data for trustworthy artificial intelligence,” *Gov. Inf. Q.*, vol. 37, no. 3, Art. no. 101493, Jul. 2020. doi: 10.1016/j.giq.2020.101493
- [16] D. J. Teece, “Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance,” *Strategic Manage. J.*, vol. 28, no. 13, pp. 1319–1350, Dec. 2007. doi: 10.1002/smj.640
- [17] S. Earley, “Data governance in the age of large-scale data analytics,” *IT Prof.*, vol. 24, no. 1, pp. 62–66, Jan.–Feb. 2022. doi: 10.1109/MITP.2021.3135715
- [18] M. Al-Ruithie and E. Benkhelifa, “A conceptual framework for cloud data governance-driven decision making,” *J. Cloud Comput.*, vol. 10, no. 1, Art. no. 22, Apr. 2021. doi: 10.1186/s13677-021-00239-5
- [19] J. Ladley, *Data Governance: How to Design, Deploy, and Sustain an Effective Data Governance Program*, 2nd ed. Cambridge, MA, USA: Academic Press, 2021.
- [20] NIST, *Artificial Intelligence Risk Management Framework (AI RMF 1.0)*. Gaithersburg, MD, USA: National Institute of Standards and Technology, 2023. doi: 10.6028/NIST.AI.100-1
- [21] A. Abraham, “The future of data governance in the era of generative AI,” *J. Data Intell.*, vol. 4, no. 2, pp. 112–128, 2023. [Online]. Available: <https://www.rintonpress.com/journals/jdi/>

- [22] C. Crescenzi, "Integration of IBM Knowledge Catalog into a highly complex analytical workflow and comparison with Data Governance tools for enterprise data management," M.S. thesis, Politecnico di Torino, Turin, Italy, 2025. [Online]. Available: <http://webthesis.biblio.polito.it/id/eprint/35657>
- [23] EDM Council, "DCAM v3 – Data Capability Assessment Model," 2025. [Online]. Available: <https://edmcouncil.org/frameworks/dcam/>
- [24] G. S. Parra and A. Espinosa, "A data governance framework for data-driven business transformation," in Proc. 58th Hawaii Int. Conf. Syst. Sci. (HICSS), 2025, pp. 1–10. [Online]. Available: <https://hdl.handle.net/10125/108912>
- [25] M. S. Rahman and S. Akhter, "A review of data governance challenges in big data analytics," Int. J. Inf. Syst. Proj. Manage., vol. 13, no. 1, pp. 45–63, 2025. doi: 10.12821/ijispm130103



10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)