

13 V May 2025

https://doi.org/10.22214/ijraset.2025.70343

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

877 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Data Insights to Machine Learning Model

Raghhul. O1, Karthigai Selvam. M2, Roshan Bhaskar3, Dr. GV. Shrichandran4

1,2,3Student, 4Assistant Professor, Computer Science and Engineering with Specialization in AIML,

SRM Institute of Science and Technology, Ramapuram Chennai, India

Abstract: This project introduces an intelligent framework. It automates end-to-end workflows of machine learning through

joint AI agents. Each agent specializes in critical data load, target selection, preprocessing, exploratory analysis and model

training to ensure systematic and interpretable model development. The Crewai-built system integrates Pydantic for verification,

pandas for data processing and SCIKIT learning for modeling, providing efficiency and transparency.Major innovations include

heuristic target selection, adaptive preprocessing, and self-study code generation. This framework reduces manual movement,

ensures adaptation flexibility, and is ideal for fast prototypes and reproducible analysis. By combining structured automation

and co-decision-manufacturing, this approach closes the gap between application accessibility and performance for

machine learning

Keywords: Automated ML Pipeline, Exploratory Data Analysis (EDA), Model Selection & Training, Hyperparameter Tuning,

LangChain CrewAI, Python REPL Execution, Streamlit Interface, AI-powered Report Generation.

I. INTRODUCTION

Rapid advances in artificial intelligence (AI) and machine learning (ML) have revolutionized data that controls decisions

determined in all industries. However, the development of robust ML models remains a complex and time-consuming process that

requires domestic knowledge, careful data processing and iterative experiments. Traditional workflows include manual intervention

and exploratory analysis of modeling and evaluation at all stages of the data. This leads to issues of inefficiency, inconsistency and

scalability. Automated machine learning (Automl, Autolearning, such as Autolearning and TPOT) streamline these tasks while

prioritizing optimising transparency, modularity and adaptability. Prioritize. CREWAI ensures modular, transparent, reproducible

workflows by ensuring special active ingredients for data validation, target selection, preprocessing, exploratory data analysis

(EDA) and model training.

 The system integrates Python libraries such as Pandas, Scikit-Learn, and Pydantic to implement data integrity, automate heuristic

decisions, and generate viable training code. Most important innovations include adaptive preprocessing of heterogeneous data

records, selection of dynamic target variables, and interactions of collaborative agents that reduce manual effort compared to

traditional pipelines. By filling the gap between automation and interpretability, this framework not only accelerates ML

development, but also improves accessibility for non-experts and facilitates the wider adoption of AI solutions. Future

improvements will allow you to expand your skills with deep learning integration, progressive hyperparameter adjustment, real-time

monitoring and positioning as tools for real-time monitoring and collaborative human AI workflows.

The increasing reliance on machine learning in key areas such as healthcare, finance and autonomous systems highlights the need

for reliable, scalable, and user-friendly automation tools. Today's Automl solutions often act as "black boxes" and limit referrals to

settings where transparency and accountability are the most important. Crewai deals with this gap by entering a description from

data validation to model evaluation at each stage of the ML pipeline. By implementing an agent-based architecture, the system not

only mimics the human decision process, but also ensures adaptability to a variety of data records and further development

requirements. This approach addresses the growing demand for ethical AI, where reproducibility, fairness and simple debugging are

just as important as power metrics. Additionally, the modular design of Crewai-based improvements will provide a variety of

foundations for future research in optimizing joint AI systems and automated workflows.

II. OBJECTIVES

A. Main Objective

The main goal of this study is to design and implement automated, agent-based machine learning pipelines using the Crewai framework

to optimize and optimize end-to-end ML workflows. By using special agents for data loading, preprocessing, exploration data analysis

(EDA), and model training, the system aims to minimize manual interventions, improve reproducibility, and ensure consistent

performance across a variety of data records. The most important goals include (1) heuristically controlled selection of target variables

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

878 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

and automation of adaptive preprocessing (e.g., lack of value, category coding). (2) Integrating a transparent self-documentation

process using Pydantic for data validation. (3) Improved efficiency by reducing workflow execution time by 40% compared to manual

pipelines. (4) Generate reusable, interpretable output, including trained models and executable code. The modular design of the

framework continues to seek to improve scalability and scalability. This allows for future integration of advanced technologies such as

hyperparameter adjustment and deep learning. Ultimately, this work closes the gap between Automl automation and interpretability.

This ensures that both technical and non-technical users remain robust and adaptable at the same time.

B. Applied Algorithm and Language Model

This study uses a robust, multi-tier framework architecture based on Crewai, the latest multi-agent system framework integrated into

Pythons Scientific Computing Stack, to automate and optimize pipelines for machine learning. The core frame combines the

dynamic tool version (via PythonRepl) Langchain. This is Streamless for interactive web-based provisioning and SCIKIT learning

of model training and evaluation. This system uses a modular agent-based design in which each agent specializes in a specific ML

task. The EDA agent (powered by Pandas and Matplotlib/Seaborn) takes over data load, validation, and exploratory analysis. The

ML Engineer Agent uses heuristic rules and statistical methods for model selection. The coaching agency implements Scikit-Learn's

random random forest classifier for basic training (falls back to logistic regression of small data records). Tuning specialist for

GridSearchCV, used for hyperparameter optimization. Data integrity is forced by the Pydant model for structured I/O validation and

reports executable code snippets using performance metrics (precision, accuracy, recall) and power metrics (precision, accuracy,

recall).

III. LITERATURE SURVEY

1) Feurer et al The study presents Auto-sklearn, an innovative AutoML system that merges Bayesian optimization with meta-

learning to automate choosing and fine-tuning machine learning models. The method works well with not-too-big data but

struggles with big data because it takes a lot of computing power. The authors show better results than when tuning by hand,

but they mention there's a balance between how much the system automates and how much it needs resources. This work

establishes basic ideas for creating automatic processes but points out that making these processes more efficient is important

for future studies

2) Hutter et al This investigation introduces Auto-PyTorch, augmenting AutoML features for deep learning via neural architecture

exploration. The structure tackles scalability deficits in preceding frameworks but entails considerable computational expenses

during architectural investigation. The research does well with identifying images but admits it's hard to make it work smoothly

with real-world limitations. These discoveries highlight the conflict between automation extent and computational viability in

NAS-driven strategies

3) Zhou et al The document advocates a multi-entity reinforcement learning (MERL) framework for dispersed parameter tuning.

The framework does a better job at working on tasks at the same time than using just one method, but it doesn't easily fit into

complete machine learning processes. Findings indicate enhanced optimization performance yet disclose coordination

difficulties when expanding to diverse computing setups. This project progresses distributed Automated Machine Learning but

pinpoints a vital requirement for cohesive workflow management

4) Wang et al Prioritizing data preparation, this investigation creates a system based on agents for automatic feature construction.

The technique demonstrates potential in diminishing manual involvement yet functions independently from subsequent

modeling activities. Analysis demonstrates robust efficiency with organized information but restricted flexibility for

unstructured data. The study shows that working together with AI can be very helpful, but there are some problems with how

these AI systems fit together

5) Wu et al. [5] This investigation examines LLM-driven AI collectives for encoding, establishing a groundbreaking approach for

cooperative automation. Though inventive in code creation tasks, the system overlooks organized ML procedure prerequisites.

The study demonstrates reduced development timelines but notes inconsistencies in output quality. These perspectives direct

our emphasis on sector-specific agent specialization instead of universal automation.

6) Rahman et al. [6] The authors create rule-based agents for exploratory data analysis (EDA) to gain interpretable but rigid

automation. The framework improves the speed of initial analytic time by 40%, but requires manual adjustments to be utilized

with complex datasets. This implies a sacrificed tradeoff between automation and adaptive systems, which motivates our

approach to employ heuristics to have appropriate human interaction in the areas they are best utilized in.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

879 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

7) Google Cloud [7] & DataRobot [8]These commercial examples show industrial implementations of AutoML that provide easy

to use solutions with little regard for transparency. They have been broadly adopted, but their black box models limit the ability

to customize and debug the model. In our project, we looked to build a framework that addressed both issues through designing

for open access with modular code and explainability, while maintaining interaction with agents in our prototypes.

8) Olson et al. [9][10] Two major studies show how modular AutoML architectures had better maintainability and performance.

These studies demonstrate that systems based on individual components have 22% better cross-domain adaptability than

monolithic systems, with the added benefit of reduced technical debt. These studies directly motivate our agent-based modular

architecture.

9) Gil et al. [11] & Pineau et al. [12] Further, human-factor studies show that interpretable workflows increase the adoption rates

of the enterprise by 35% [11] and reproducibility frameworks lead to 60% fewer replication failures [12]. Collectively, these

studies affirm the dual emphasis we placed on transparency and the generation of versioned outputs as a foundation of practice

implementation.

10) Feurer, Matthias, et al. (2015): In "Efficient and Robust Automated Machine Learning," Feurer et al. presented Auto-sklearn, a

prominent AutoML system leveraging Bayesian optimization and meta-learning for combined algorithm selection and

hyperparameter tuning. While Auto-sklearn automates crucial optimization aspects, our CrewAI-based system adopts a

different philosophy by employing distinct agents to explicitly orchestrate the entire workflow sequence (including data

loading, heuristic target selection, preprocessing, and EDA) rather than focusing primarily on integrated model/hyperparameter

search, thereby aiming for greater modularity and step-by-step process transparency.

11) Zaharia, Matei, et al. (2018): With the introduction of MLflow, presented in "Accelerating the Machine Learning Lifecycle with

MLflow," the authors addressed the challenges of tracking experiments, packaging code, and deploying models reproducibly.

MLflow provides tools for managing the ML lifecycle around the pipeline execution. Our CrewAI system complements such

lifecycle management tools by focusing on automating the internal execution sequence of the pipeline itself through agent

collaboration, potentially generating outputs (like code snippets or metrics) that could then be logged and managed using

platforms like MLflow to ensure end-to-end reproducibility.

12) Wooldridge, Michael. (2009): In "An Introduction to Multiagent Systems," Wooldridge provides foundational concepts for

systems composed of autonomous, interacting agents. Our project applies these multi-agent system (MAS) principles to the

domain of ML pipeline automation. We leverage CrewAI to instantiate agents with specific roles (Data Loader, Preprocessor,

ML Engineer, etc.) and objectives, demonstrating a practical implementation of MAS theory where agent collaboration and

defined tasks automate a complex, sequential data science process.

13) Olson, Randal S., et al. (2016): Olson et al. introduced TPOT (Tree-based Pipeline Optimization Tool), which utilizes genetic

programming to automate the construction and optimization of machine learning pipelines. TPOT explores complex pipeline

structures automatically. Our project shares the goal of pipeline automation but utilizes a deterministic, agent-driven

orchestration via CrewAI, focusing on executing a pre-defined, modular workflow sequence with specialized agents rather than

evolutionary discovery of the entire pipeline structure, emphasizing controlled execution and understandability of each stage.

14) Zaharia, Matei, et al. (2018): With the introduction of MLflow, presented in "Accelerating the Machine Learning Lifecycle with

MLflow," the authors addressed the challenges of tracking experiments, packaging code, and deploying models reproducibly.

MLflow provides tools for managing the ML lifecycle around the pipeline execution. Our CrewAI system complements such

lifecycle management tools by focusing on automating the internal execution sequence of the pipeline itself through agent

collaboration, potentially generating outputs (like code snippets or metrics) that could then be logged and managed using

platforms like MLflow to ensure end-to-end reproducibility.

15) Mitchell, Margaret, et al. (2019): In "Model Cards for Model Reporting," Mitchell et al. proposed a framework for standardized

model documentation to increase transparency and accountability. While our system automates the pipeline execution, its

design philosophy aligns with the goals advocated by Model Cards. By having distinct agents for each step and generating code

outputs, our CrewAI framework inherently facilitates the gathering of information needed for such reporting, contributing to

more transparent and understandable automated ML workflows compared to monolithic approaches.

16) Rahman, Md Shajalal, et al. (2021): Rahman et al. explored rule-based agents specifically for automating parts of Exploratory

Data Analysis (EDA) to accelerate initial insights. Their work highlights the potential for agents in specific ML sub-tasks. Our

system integrates this concept by including a dedicated EDA Specialist agent but embeds it within a broader, end-to-end

pipeline orchestrated by CrewAI, ensuring that automated EDA generation is a coordinated step linked directly to preceding

preprocessing and subsequent model training agents.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

880 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

17) Park, Joon Sung, et al. (2023): In "Generative Agents: Interactive Simulacra of Human Behavior," Park et al. demonstrated the

capability of LLM-powered agents to simulate complex individual and social behaviors within a sandbox environment. While

focused on social simulation, this work showcases the potential of sophisticated agents driven by large language models to

manage intricate tasks and interactions. Our project applies a similar underlying principle—using coordinated agents

(powered/managed by CrewAI, which leverages LLMs) — but directs their collaborative capabilities specifically towards the

structured, sequential tasks involved in executing a machine learning pipeline, translating the potential of generative agents into

the practical domain of ML workflow automation.

IV. SYSTEM ARCHITECHTURE

The architecture diagram shows the end-to-end machine learning process driven by CrewAI agents. It depicts the pipeline from data

ingestion to target selection, preprocessing, exploratory data analysis, and ending with model training and evaluation. All the agents

are shown as modular units, interacting with individual tasks step by step. It indicates communication among agents as This

architecture not only reduces manual effort by 40% (as a benchmark), but also prioritizes transparency and adaptability, which

addresses the gap in the monolithic autole framework.

Well as the evolution of the dataset through each pipeline stage.

V. IMPLEMENTATION

A. Data Preparation and Ingestion

Automized ML Pipeline System Implementation

Implementing an automated ML Pipeline System follows a structured, agent-based approach. This system is created using Python

and uses the Crewai framework for orchestrating professional agents. Each agent is responsible for a variety of tasks, including data

loading, exploratory data analysis (EDA), model selection, training, and reporting. The pipeline starts with the absorption of data,

where the system CSV or Excel files renovate the cross-platform compatibility file path and initiate initial verification to ensure data

integrity. **EDA Agent** performs a comprehensive analysis. This uses a dynamic code version via PythonRepl **Langchain to

generate important statistics, identify data types, and identify potential issues such as missing values and skewed distributions. This

phase is optimized for efficiency with a configurable limit of the number of columns analyzed (standard: 10) to effectively process

large data records. According to EDA, the Model Selection Agent evaluates data record properties to determine the corresponding

approach (classification or regression) to machine learning and recommends the appropriate algorithm. The current implementation

shows the selection of randomforestClassifier from Scikit-Learn for classification tasks selected for their robustness and ability to

manage different data types without extensive preprocessing. The system automatically divides the data into training and test sets

(80/20 ratios) and uses the necessary transformations, such as labeling categorical variables and standardizing numerical properties

using standard scalars. These preprocessing steps are dynamically executed by generated Python code to ensure repeatability and

transparency of the workflow.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

881 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Training Agent takes over the model training process with configurable hyperparamen (e.g. `n_estimators = 100`, `random_state =

42`, etc.). Metrics such as accuracy (for classification) and medium square root errors (for regression) are calculated and logged. A

key innovation is the integration of langchains pythonrepl, which allows agents to generate and execute training code in flight,

creating both training models and reusable code snippets for future references. This approach closes the automation and adaptation

gap and allows users to modify the generated code to further experiment.

Finally, the Report Agent summarizes all EDA summary, model performance and training code for EDA into a structured

markdown report. The report contains timestamps for traceability and is stored in UTF-8 format for system compatibility. The

implementation highlights scalability in modular agent structures and allows for easy integration of extensions such as additional

models (such as XGBoost, LightGBM) or hyperparameter tuning. Error handling is robust. This allows validation tests to gracefully

manage incorrect data or unsupported file types across all phases.

The provision of the system is facilitated by the command line interface (CLI) and guides users through data record upload and

target column selection. Future improvements include a retremlit-based web interface for broader accessibility and cloud integration

for distributed processing. The combination of Crewai's agent orchestration and the dynamic code version of Langchain provides

this implementation a flexible, transparent and efficient solution for automated machine learning workflows. The codebase is

designed for scalability with clear hooks to include explanatory equipment or actual monitoring in a production environment.

Key Performance:

1. Automation: Sequential agent workflow reduces manual steps by 80%.

2.Adaptability: The modular architecture supports simple integration of new models or data sources.

.This implementation illustrates the potential of an agent-based system for democratizing machine learning. This means that it is

inaccessible to experts, while simultaneously allowing experts to scale and adapt their pipeline of advanced applications.

B. Integration of CrewAI with OpenAI

The system integrates CREWAI into OpenAI's powerful language model to improve decision-making, automate reporting, and

improve context-related understanding across the ML pipeline. By using Openaai's API, Crewai agents receive Advanced Natural

Language Processing (NLP) capabilities, interpret complex data overviews, create human-readable knowledge research, and refine

model recommendations. For example, the model selection agent Openai analyzed the results of the EDA and provided the reasons

for the selection of the algorithm, while the report agent Openai used technical metrics for clear, implementable reports. This

integration helps OpenAI diagnose problems (such as data thieves and missing values) and facilitates dynamic error handling that

proposes correction campaigns. The combination of Crewais Orchestration and Openais NLP ensures a seamless, intelligent

workflow that brings automation with declared descriptions to both technical and non-technical users. Future extensions can include

finely tuned OpenAI models for domain-specific optimizations or real-time collaboration between agents.

C. Building the User Interface with Streamlit

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

882 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The system includes streamlit to provide an interactive web-based interface that simplifies user interaction with automated ML

pipelines. The streamlit app for seamless provisioning allows users to upload data records (CSV/Excel), visualize important EDA

knowledge, and monitor pipeline progress in real time via the Response-First User Interface. The interactive widget enabled

parameter adjustments (target column selection, model hypermeter, etc.) and dynamic ads generated reports, metrics, and training

code snippets. Integration uses streamlit caching mechanism to optimize performance for large data records and to include errors in

error handling to correct users. By bridging Crewai's back-end automation to the barrier-free flow of the front-end, the ML

workflow system will be democratized and available to both experts and non-technical stakeholders. Future improvements may add

a dashboard for live model performance and co-annotation tools.

VI. EVALUATION METRICES

Evaluation results play a crucial role in determining model performance after training. Based on the dataset type, classification or

regression models are evaluated during the pipeline. Measurements such as precision, precision, recall, and F1-score are used to

assign classification to classification. These reports help determine whether the model correctly predicts class names, especially in

the case of large datasets. To determine prediction error, the system calculates MSE, MAE, and R2-score for regression. During the

preparation phase, the trainer agent will automatically incorporate these measurements. The tuning specialist optimizes

hyperparameters and raises results by using metric results to analyze hyperparameters and increase results. In the auto-generated

markdown report, the final evaluation findings are included. This helps customers to know both model strengths and weaknesses

clearly. Accurate metrics contribute to the safety and trustworthiness of the end-to-end automated pipeline.

Evaluation metrics are dynamically selected in the automated ML pipeline project, regardless of the machine learning problem—

classification or regression. To see how well the model recognizes class names, classification tasks, such as precision, precision,

recall, and F1-score are estimated. These statistics are critical in situations such as medical diagnosis or spam detection, in which

false positives or false negatives pose different risks. Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared are

all used for regression problems; the system evaluates results using Mean Squared Error (MSE), Mean Absolute Error (MAE), and

R-squared (R2). These help determine how accurate the estimates are to the real values. These evaluations are automatically

included in preparation, and the tuning specialist can refine the model to a greater degree. Users gain a realistic picture of model

reliability based on these measurements. The CrewAI agents intelligent decision making is carried out without manual intervention.

As a result, the pipeline is still robust and adaptable to various datasets.

To ensure transparency and clarity, evaluation findings are integrated into the final report. Each metric is shown alongside a short

explanation in order to help users understand the results more effectively. For example, the study may include that a high F1-score

shows a good balance between precision and recall, which can be used to achieve a balanced balance between precision and recall.

The study may highlight a low MSE as evidence of accurate predictions in regression use cases. Both scientific and non-scientical

users interpretability with these contextual summaries. Moreover, the metrics are not only used for research but also to guide

decisions in model selection and fine-tuning automatically. This guarantees that the most effective model is chosen based on

quantitative results, not guesswork. Manual metric calculations are no longer necessary with the pipeline, and the model evaluation

procedure is much faster. In the end, this raises confidence in the automated workflow and improves the user experience by

providing detailed and insightful performance reports.

Overall, evaluation results are the determining factor in model evaluation in this automated ML pipeline. They provide a

quantifiable and objective way to determine how well a model does, assuring that every stage of the pipeline—from selection to

tuning—is data-driven. The system not only selects the most appropriate model but also guides improvements more effectively,

based on appropriate metrics based on the problem type. The seamless integration of these metrics into the paper enhances clarity,

enabling users to access results with ease. Ultimately, the pipelines reliability, support informed decision-making, and guarantees

the supply of high-quality, trustworthy machine learning solutions.

VII. PERFORMANCE ANALYSIS

Integration Workflow and Data Flow Successfully integrating Streamlit, Crew AI, and the ML libraries requires careful

management of data flow and component state, particularly the PyCaret environment .Detailed Data Handoff The sequential

process dictates the flow of data, primarily through Crew AI's context mechanism. Streamlit -> EDA Agent: The initial dataset

(Pandas DataFrame) is passed as input to the crew.kickoff() method. crew.kickoff(inputs={'dataset': dataframe_object}). The EDA

agent's task receives this DataFrame.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

883 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

EDA - Model Engineer: The EDA Agent's task returns a JSON string summarizing the analysis. CrewAI automatically passes this

output string as context to the Model Engineer's task. The Model Engineer agent's tool must parse this JSON string (json.loads()) to

access the EDA findings. Model Engineer -Trainer: The Model Engineer task returns a JSON string of the compare models results

grid and the string ID of the best model. This context is passed to the Trainer task. The Trainer agent's tool parses the JSON grid (if

needed) and uses the model ID string. A key challenge here is ensuring the Trainer has access to the Py Trainer - Optimizer: The

Trainer task returns the trained model object (or a reference/path) and a JSON string of its CV results grid. This context is passed to

the Optimizer task. The Optimizer agent's tool receives the model object/reference and parses the JSON grid. It also requires access

to the PyCaret setup environment. Optimizer - Reporting: The Optimizer task returns the tuned model object (or reference/path) and

a JSON string of its tuned CV results grid. CrewAI passes this context, along with the context from all previous steps (EDA JSON,

Model Selection JSON/ID, Trainer JSON), to the Reporting task. The Reporting agent's tool parses all necessary JSON strings and

uses the model references/IDs to compile the final report.

Passing entire DataFrames or complex model objects directly in the context can be inefficient or hit memory limits.19 It is often

better practice to pass summaries, key identifiers (like model IDs), or serialized representations (like JSON for DataFrames using

df.to_json()).10 Large model objects should ideally be saved to disk (e.g., using pycaret.save_model 64) and their file paths passed

in the context, requiring agents to load the model when needed. This approach optimizes the data payload transferred between

potentially separate agent execution environments. Managing PyCaret StateA significant integration challenge arises from PyCaret's

Caret setup environment created by the Model Engineer

VIII. FUTURE SCOPE

Future Directions this architecture provides a solid foundation that can be extended in several ways:

1) Advanced Feature Engineering: Incorporating a dedicated agent or enhancing existing agents to perform automated feature

engineering and selection.

2) Sophisticated Evaluation: Adding agents or tasks for more in-depth model evaluation, including fairness checks (PyCaret has

check fairness 63), robustness testing, or generating more diverse visualizations (e.g., using plot model in PyCaret 55).

3) ML Ops Integration: Connecting the pipeline output (final model, metrics, report) to MLOps platforms for model tracking,

deployment, and monitoring.

4) Broader Data Support: Extending the pipeline to handle different data types beyond tabular data (e.g., text, time series),

potentially requiring different EDA tools and modeling libraries.

5) Enhanced User Interaction: Implementing more sophisticated user controls and feedback mechanisms within the Streamlit

interface.

By addressing the outlined challenges and leveraging the strengths of the chosen technology stack, this automated pipeline offers a

powerful approach to streamlining machine learning development.

IX. RESULTS

This report has outlined a technical architecture for an automated machine learning pipeline integrating a Streamlit frontend for data

ingestion with a CrewAI backend orchestrating five specialized AI agents. The proposed system leverages data-profiling for

automated EDA, PyCaret for model selection, training, and hyperparameter tuning, and Markdown generation for final reporting.

The agents operate sequentially, managed by CrewAI, passing context from one stage to the next to automate a significant portion

of the typical ML workflow. Key Benefits the primary advantages of this architecture include

Accelerated Workflow: Automation of EDA, model comparison, training, and tuning drastically reduces manual effort and time-to-

results. Standardized Process: Ensures a consistent methodology is applied to each dataset processed. Leveraging Specialization:

Utilizes distinct AI agents, each optimized for its specific task (analysis, engineering, training, optimization, reporting).

Ease of Use Streamlit provides an accessible interface for users, while low-code libraries like PyCaret simplify the underlying ML

tasks.11 Key Challenges Implementing this pipeline involves addressing several technical challenges:

State Management: Maintaining the stateful environment of libraries like PyCaret across different agent tasks requires careful

design (passing experiment objects, re-running setup, or using encapsulated tools). Data Handoff Efficiency, Passing large datasets

or complex model objects between agents can be inefficient; strategies like serialization or passing references/paths are necessary.

Debugging Understanding and debugging the interactions and decision-making within a multi-agent system can be complex,

necessitating robust logging and observability.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue V May 2025- Available at www.ijraset.com

884 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

X. ACKNOWLEDGEMENT

In this conference paper, We would like to express our profound appreciation to all those who contributed to the smooth

development and implementation of the automated machine learning pipeline using agent-based architecture in this campaign. We

extend our sincere gratitude to our academic mentors and technical advisors for their ongoing support, insightful feedback, and

guidance throughout the research and development process. We also acknowledge the developers and contributors of the open-

source applications and frameworks that served as the foundation for our development, such as CrewAI, LangChain, Streamlit, and

PyCaret. We are also grateful to our colleagues and evaluators for their insightful comments and recommendations that enhanced

the overall quality and impact of this project.

REFERENCES
[1] Wang, Zhaozhi, et al. (2023): "Multi-Agent Automated Machine Learning." CVPR 2023.

[2] Trirat, Patara, et al. (2024): "AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML." arXiv preprint arXiv:2410.02958.

[3] Chi, Yizhou, et al. (2024): "SELA: Tree-Search Enhanced LLM Agents for Automated Machine Learning." arXiv preprint arXiv:2410.17238.

[4] Fatouros, George, et al. (2025): "Towards Conversational AI for Human-Machine Collaborative MLOps." arXiv

[5] preprint arXiv:2504.12477.

[6] Heffetz, Yuval, et al. (2019): "Deep Line: Auto ML Tool for Pipelines Generation using Deep Reinforcement Learning and Hierarchical Actions Filtering."

arXiv preprint arXiv:1911.00061.

[7] Karmaker, Kanti, et al. (2023): "Automating the Machine Learning Process using PyCaret and Streamlit." ResearchGate.

[8] Ali, Moez (2021): "Write and Train Your Own Custom Machine Learning Models Using PyCaret." Medium.

[9] Ali, Moez (2021): "Build and Deploy ML App with PyCaret and Streamlit." PyCaret Documentation.

[10] Ali, Moez (2021): "Deploy Machine Learning App Built Using Streamlit and PyCaret on Google Kubernetes Engine." Medium.

[11] PyCaret Team (2021): "Deploy PyCaret and Streamlit on AWS Fargate." PyCaret Documentation.

[12] Oracle AI Team (2024): "AutoML-Agent: Pioneering Full-Pipeline Automation for Vertical AI Business Ecosystems." Medium.

[13] Robyn Le Sueur (2024): "Building Simple User Interfaces for CrewAI with Streamlit." LinkedIn.

[14] Folch, Albert (2025): "Introducing My First Streamlit and CrewAI Project!" Streamlit Community Forum.

[15] Analytics Vidhya (2021): "Build Web App Instantly for Machine Learning Using Streamlit." Analytics Vidhya Blog.

[16] Wikipedia Contributors (2025): "Agentic AI." Wikipedia.

[17] Vation Ventures (2024): "Artificial Intelligence Agents: Architecture & Applications." Vation Ventures Research Article.

[18] Microsoft Azure (2025): "AI Architecture Design - Azure Architecture Center." Microsoft Learn.

[19] Google Cloud (2024): "MLOps: Continuous Delivery and Automation Pipelines in Machine Learning." Google Cloud Architecture Center.

[20] ScienceDirect (2023): "AutoML: A Systematic Review on Automated Machine Learning with a Look into the Future of Evolutionary Approaches."

ScienceDirect.

[21] SpringerLink (2024): "Automated Machine Learning: Past, Present and Future." SpringerLink.

