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Abstract: The growing integration of decentralized energy technologies such as distributed generation units, microgrids, and 
systems with bidirectional power flow has significantly complicated the task of maintaining grid stability. Conventional 
centralized control strategies often fall short when addressing the localized, rapidly changing dynamics of decentralized 
electrical networks. This paper explores the use of traditional machine learning technics and advanced deep learning models 
namely Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Networks (CNN) to forecast stability 
conditions in such distributed systems. A dataset of UCIs from kaggle repository is taken into consideration of simulated 
measurements like tau[x], p[x], g[x], stab, stabf, and node-based interactions, is employed for model development and evaluation. 
The RF algorithm proves effective in handling diverse input features and offers interpretable results achieving a peak prediction 
accuracy of 98.95%, while the SVM model excels at classifying distinct stability states with an accuracy of 96.75%, whereas 
CNNs classifies confusion matrix with 81% accuracy. The findings demonstrate that decentralized deployment of intelligent, 
data-driven models can enable autonomous decision-making and enhance system robustness. Overall, this study highlights 
machine learning as a promising tool for ensuring stability in next-generation decentralized power infrastructures. 
Keywords: Decentralized power systems, stability forecasting, machine learning, Random Forest, Support Vector Machine, 
Convolutional Neural Networks, smart grid resilience. 
 

I. INTRODUCTION 
The worldwide transition to renewable energy sources has brought tremendous challenges to ensuring the stability of contemporary 
power systems. In contrast to traditional centralized systems, electrical smart grids in a decentralized configuration employ 
heterogeneous and dynamic resources such as solar, wind, and battery storage systems that change in production and consumption 
behavior. Such variability requires strong, real-time stability analysis and control mechanisms [1][3][7]. One of the new paradigms 
here is Decentralized Smart Grid Control (DSGC), which ventures into grid frequency and other local measurements-based 
localized decision-making instead of traditional centralized coordination [2][12]. Although DSGC improves privacy, scalability, and 
robustness, it also adds complexity through the dependency among distributed nodes. Assumptions such as fixed inputs and 
symmetric conditions used in simplification within the DSGC model diminish its applicability in real-world scenarios [4][16].To 
overcome these constraints, Machine Learning (ML) and Deep Learning (DL) methods have emerged as strong contenders for grid 
stability analysis and forecasting. Data-driven models like these are capable of handling non-linear relationships, dealing with high-
dimensional input spaces, and learning dynamic changes in grid behavior without the imposition of tight assumptions [5][6][10]. 
ML algorithms like Random Forest, Support Vector Machines, and ensemble techniques have achieved high predictive accuracy for 
numerous smart grid applications like load forecasting and stability analysis[9][11]. More complex DL models—such as 
Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM) networks—
are specifically well-suited to time-series data common in electrical grids. These models are able to learn temporal patterns and 
dependencies from grid signals and provide accurate classification of stable versus unstable states even with missing or noisy data 
conditions [2][8][13]. Recent research has also incorporated optimization techniques, federated learning, and edge computing to 
improve real-time response and security in decentralized grid systems [17][18][19]. As computational infrastructure has made great 
progress, ML/DL-based solutions are growing more and more viable for implementation in decentralized environments, making the 
grid operation more resilient and intelligent [14][20]. This work explores and compares the performances of different ML and DL 
models in predicting and classifying smart grid stability under decentralized setups. Utilizing real-world data sets and simulation 
platforms, this work seeks to create a scalable, adaptive framework that will further the future of secure, efficient, and smart energy 
systems. 
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II. LITERATURE SURVEY 
Traditional methods for grid stability assessment, such as time-domain simulations and small-signal analysis, are accurate but 
computationally intensive, limiting real-time applications. With the rise of data from PMUs and SCADA systems, machine learning 
(ML) has emerged as a viable alternative for fast and reliable stability prediction. Supervised learning models like SVMs and 
Random Forests have been used effectively to classify system states as stable or unstable. Gradient Boosting techniques (e.g., 
XGBoost) have shown high performance on large, real-time datasets. Deep learning models, especially LSTMs and CNNs, have 
proven capable of capturing complex temporal patterns in grid dynamics. Unsupervised methods assist in anomaly detection, while 
reinforcement learning has been explored for adaptive voltage and frequency control strategies. Hybrid models combining 
simulation and ML predictions, along with ensemble learning approaches, enhance accuracy and reliability. Despite progress, 
challenges like data scarcity, model interpretability, and generalization persist. Future work aims to integrate explainable AI, 
transfer learning, and federated modeling to enhance deployment in real-world power systems. 
To address the limitations of input rigidity and inequality in decentralized smart grid control (DSGC) architectures, Breviglieri et al. 
proposed an enhanced deep learning framework. Their implementation of advanced deep neural network models eliminated the 
dependency on fixed input values, thereby increasing the system's adaptability and improving stability assessment capabilities. 
Concurrently, Massaoudi et al. introduced a Stratified Ensemble Classification (SEC) approach specifically designed for forecasting 
stability in decentralized smart grids. This supervised learning-based method demonstrated superior accuracy in detecting grid 
instabilities, highlighting its potential for practical deployment in modern smart energy systems. 
 

III. METHODOLOGY 
The proposed methodology employs supervised machine learning techniques to predict the stability of an electrical power grid 
based on real-time system parameters. The workflow involves data preprocessing, model training, evaluation, and deployment 
readiness analysis. The implementation was carried out using Python in a Google Colab environment, leveraging libraries such as 
pandas, scikit-learn, and matplotlib. 
 
A. Classification Approach and Architecture 
The research begins with the analysis of the 4-node original datasets. Various ML and DL algorithms were applied to derive results. 
The selected algorithms include: 
1) Dataset Description 
4-Node Original Data: Contains 10,000 records 

 
Fig.1. Architecture of the four-node star DSGC system 

 
The dataset used in this work was adopted from UC Irvine Machine Learning Repository. The simulated data consists of 10,000 
records of parameters (features) related to grid stability. The number of parameters in each record is 14, with 11 of these parameters 
are features capturing grid states, 1 being a derived feature from other features, 1 represents the numerical value indicating grid 
stability, and the last parameter is the record label (i.e., stable/unstable).  
Attribute Description: There are 11 predictive variables, 1 auxiliary (non-predictive) variable (`p1`), and 2 target outputs: tau[x]: 
Denotes participants' response time in seconds between 0.5 and 10. In particular, `tau1` is the response time of the power generator. 
p[x]: Refers to nominal power, negative for consumption, positive for production. For consumers, values range between -0.5 and -2 
(in s⁻²).  
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The value of `p1` is found as the absolute sum: `p1 = |p2 + p3 + p4|`. g\[x]: Represents the gamma coefficient, related to price 
elasticity, whose values range between 0.05 and 1 (in s⁻¹). The producer's coefficient is given as `g1`. stab: This is the target variable 
which is the greatest real component of the system's characteristic equation roots. A positive value reflects that the system is linearly 
unstable. Based on the preceding discussion, stabf has been identified as the target variable for the machine learning and deep 
learning models utilized in this study. The dataset used in this study is a standard open-access dataset for grid stability, which 
includes features such as voltage, phase angle, and load values. Each instance is labeled as either stable or unstable. The data 
consists of numerical attributes, facilitating the use of multiple ML algorithms without the need for encoding categorical variables. 

 
Fig.2. Architecture Framework of Machine Learning 

B. Data Preprocessing 
Prior to being utilized in the machine learning and deep learning models, the dataset underwent essential pre-processing, which 
involved three key steps: 
1) Normalization:  All numerical features were scaled to values within the range of 0 to 1 using the min-max normalization 

technique. This process ensures that no individual feature disproportionately influences the learning algorithm, promoting equal 
treatment of all numerical inputs. 

2) Encoding the Target Variable:  The categorical target feature, stabf, was converted into a numerical format. Specifically, 
"stable" was mapped to 0, and "unstable" was mapped to 1, enabling the models to interpret the labels effectively. 

3) Splitting the Dataset: To evaluate model performance on unseen data, the dataset was divided into training and testing sets. The 
split was chosen to be 80%-20%, meaning that 80% of the available records (that is, 8,000 records) are used for training the 
models and 20% (that is, 2,000 records) are used for testing. The split was stratified to ensure the original proportion of stable 
and unstable instances was preserved in both subsets. 

 
C. Model Training 
Three classification models were trained and evaluated: 
1) Random Forest Classifier (RFC) – An ensemble learning method based on decision trees, suitable for handling non-linear 

relationships. 
2) Support Vector Machine (SVM) – Applied with an RBF kernel for maximum margin classification in high-dimensional feature 

space. Or A robust classification model that identifies the optimal hyperplane to separate classes in the feature space, 
particularly effective in high dimensional spaces. 

3) Convolutional neural network (CNN) – are deep learning algorithms which learn automatically from structured data by 
extracting features. In smart grids, they are employed for fault detection and load forecasting by examining time-series patterns. 

 
D. Evaluation Metrics 
The models were evaluated using the following metrics: 
1) Accuracy: This is one of the most commonly used ways to measure how well a model performs. It tells us the percentage of 

predictions the model got right both when it correctly identified stable and unstable conditions out of all the predictions it made. 
2) Precision:  Precision helps us understand how many of the cases the model predicted as “unstable” were actually correct. It 

focuses only on the positive predictions and checks how many of those were true, which is especially useful when false alarms 
are a concern. 
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3) Recall:  Recall looks at how good the model is at catching all the actual unstable cases. It measures how many of the real 
unstable conditions were correctly identified, making it important when missing a true unstable case is risky. 

4) F1-Score:  The F1-score brings precision and recall together into a single number. Since there's often a trade-off between 
catching all true cases (recall) and avoiding false alarms (precision), the F1-score balances the two, giving a better overall 
picture of a model’s performance. 

 
E. Visualization and Interpretation 
Matplotlib and seaborn were used to generate: 
 Correlation matrices. 
 Confusion matrices. 
 Distribution plots of feature importance (for the Random Forest model). 
 Histograms. 
These visualizations provided insights into model behavior and feature relevance. 
 
F. Deployment Readiness 
The trained model exhibiting the best performance (Random Forest) was saved using joblib, making it suitable for deployment in a 
real-time power grid monitoring system. The model can be integrated with PMU or SCADA data streams for real-time prediction of 
grid stability status. 

 
 
A 1D CNN was constructed using the Sequential API of Keras to classify power grid stability into two classes. It contains two 
convolutional layers with 32 and 64 filters, respectively, and max-pooling layers to decrease temporal resolution. The feature maps 
are flattened and fed into a dense layer of 128 units and a dropout layer to increase generalization and avoid overfitting. The output 
layer contains 2 softmax activated neurons to make predictions for stable versus unstable grid states. The model transforms from 
sizes like (None, 11, 32) to (None, 2) and contains 14,914 trainable parameters, which makes it appropriate for application in real-
time or computationally restricted environments. 
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IV. MODEL PERFORMANCE OVER 20 EPOCHS  
(Accuracy and Loss on Training and Validation Sets) 

 
Fig.3. Training and validation accuracy and loss plotted over 20 epochs 

 
The training and validation graphs give us a good sense of how well the model is learning over time. On the left, we can see the 
accuracy steadily improving for both the training and validation sets across the 20 epochs. The training accuracy increases quickly 
and eventually levels off around 82%, while the validation accuracy follows a similar trend with some small fluctuations. This 
suggests the model is learning meaningful patterns without overfitting too much. 
On the right, the loss curves show how the model’s prediction error decreases over time. The training loss drops consistently, and 
the validation loss generally decreases as well, although it fluctuates slightly. These ups and downs in validation loss are common 
and can be due to randomness in the data batches or smaller validation size. 
Overall, the curves show that the model is training well; it improves performance without diverging or getting stuck, and the gap 
between training and validation metrics is small indicating good generalization to unseen data. 
 

V. RESULTS AND DISCUSSION 
A. Data Visualization (KDE plot) 

 
Fig.4. Statistical Distribution of Features across Stability State 
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Fig.4. shows the distributions of important system features under stable and unstable operating conditions in a decentralized 
electrical smart grid. Each histogram compares feature values for the two classes, where stable instances are represented in orange 
and unstable instances in blue. Time constant parameters (tau1 to tau4) show a clear tendency for increased values to be most 
common among the unstable cases, with a strong relationship to system dynamics during these events. p1 to p4 parameters 
demonstrate modest differentiation, with stable cases tending to group within well-defined ranges of values and limited but clear 
discriminative ability. Conversely, gain features (g1 to g4), specifically g3 and g4, show better separation with unstable cases 
lumped in the higher values. The stab metric shows the most prominent separation between the two states with stable conditions 
bunched around lower values and unstable ones biased towards higher values, further substantiating its status as a principal indicator 
of system stability. In general, these distributions of features are helpful in choosing informative variables and in training models for 
predicting grid stability. 
 
B. Analysis of Heatmap and Correlation 

 

 
Fig.4. Heat map and Correlation Matrix output 

 
The heatmap shows that the time constants (tau1 to tau4) and generation capacities (g1 to g4) have a moderate positive relationship 
with the system's stability index (stab), with correlation values around 0.28 to 0.31. Notably, g3 stands out with the strongest link at 
0.31. On the other hand, the power measurements (p1 to p4) are highly negatively correlated with one another (roughly -0.57 to -
0.58), yet they exhibit little to no direct connection with the stability index. Overall, the results suggest that the time constants and 
generation capacities play a more significant role in influencing system stability than the power variables. 
 
C. Metrics of Methods Used 
STABLE-0 
UNSTABLE-1 
Table I shows that Random Forest exhibits exceptional performance in predicting smart grid stability, achieving an accuracy of 
98.95% along with high precision of 0.98, recall of 0.96, and F1-score of 0.98. Support Vector Machine(SVM) follows with an 
accuracy of 96.75%. While remaining are comparatively weaker. 
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Table I. STABLE STATE CONDITION METRICS 

 

 
Under unstable grid conditions as shown in Table II, all models showed improved performance. Random Forest achieved the 
highest accuracy of 98.95% with a precision of 0.99, recall of 0.97 and an F1-score of 0.99. Support Vector Machine (SVM) 
followed, excelling with precision of 0.96, recall and F1-score of 0.98 respectively.  

 
Table II. UNSTABLE STATE CONDITION METRICS 

 
 

D. Model Evaluation and Error Analysis 
To compare the accuracy of various machine learning models, three main evaluation metrics were utilized: Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). These evaluations were applied to gauge the 
predictive quality of Random Forest, Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) models on a shared 
test dataset. To facilitate an equitable and consistent comparison, a special Python function was created to decode one-hot encoded 
outputs into equivalent class labels. 

Table III. ERROR METRICS OF MODEL EVALUATION 
Model MSE RMSE MAE 
Random Forest 0.0005 0.0224 0.0005 
SVM 0.0462 0.2150 0.1605 
LSTM 0.2501 0.5001 0.5001 

 
Among the three models tested, Random Forest model achieved the most accurate results, showing extremely low MSE, RMSE, and 
MAE values. The SVM model showed moderately well performance but with higher error rates compared to Random Forest, while 
the LSTM model had the least accurate predictions, reflected in its high error values. Based on these outcomes, Random Forest 
appears to be the most appropriate model for this particular dataset and task.  
 

VI. CONCLUSION  
This paper presents a data-driven methodology for predicting electrical grid stability, utilizing both traditional machine learning 
techniques and more sophisticated deep learning models. A performance comparison based on accuracy, precision, recall, and F1-
score—was conducted to evaluate how these models perform in the context of assessing and forecasting grid stability in complex 
power systems. The goal was to highlight the effectiveness of AI in enabling real-time grid condition prediction and guiding 
necessary actions during disturbances to maintain stability. The analysis identified the Random Forest model as the most reliable, 
achieving a high accuracy of 98.95%, followed by Support Vector Machines (SVM) with an average accuracy of 96.75%. While the 
Convolutional Neural Network (CNN) model reached an accuracy of 81%, the Long Short-Term Memory (LSTM) model 
underperformed, suggesting that it may require additional training data or further tuning of hyperparameters. Based on the 
evaluation metrics, Random Forest is recommended for immediate deployment or further optimization, while SVM could serve as a 
viable alternative or a backup. In summary, traditional machine learning models demonstrate strong performance, particularly when 
there is a need to strike a balance between model complexity and predictive accuracy. 
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VII. FUTURE WORK 
Implementing these models in actual grid control systems using real-time data pipelines will be a major step toward operational 
integration including more diverse or larger datasets, especially with real-world events or anomalies would strengthen the model's 
generalization capability. Incorporating interpretability frameworks will help stakeholders understand model decisions, which is 
critical for deployment in critical infrastructure. 
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