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Abstract: Transmission lines forms the backbone of the transmission and distribution networks which powers the nation. No 
modern society can imagine its existence without power supplies which runs everything ranging from consumer electronics to 
bullet trains. This research paper focuses on classifying faults on electric power transmission lines. fault classification has been 
achieved by using decision tree and study on their result is done. The simulation studies have been carried out by using 
MATLAB fuzzy-logic toolbox. 
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I. INTRODUCTION 
This document is a template.  For questions on paper guidelines, please contact us via e-mail. The use of high capacity electrical 
generating power plants and concept of grid, i.e. synchronized electrical power plants and geographical displaced grids, required 
fault detection and operation of protection equipment in minimum possible time so that the power system can remain in stable 
condition. The faults on electrical power system transmission lines are supposed to be first detected and then be classified correctly 
and should be cleared in least fast as possible time. The protection system used for a transmission line can also be used to initiate the 
other relays to protect the power system from outages.  
A good fault detection system provides an effective, reliable, fast and secure way of a relaying operation. Therefore, a transmission 
system should have design in accordance with the process of fault classification where it could be classifying easily and it would be 
possible to isolate the faulty section easily. Application of machine learning algorithms on the transmission line for fault 
classification and location identification has been explored in many research. Decision tree is one of the most popular supervised 
learning models for knowledge discovery. Decision trees are used to make decisions for the unseen cases with the help of the model 
build with the trained classes.  

II. DECISION TREE 
The first applications of DT in power systems were concerned with voltage security assessment. Transient stability analysis, power 
transformer protection and high impedance fault detection. This method provides a useful tool for fault analysis independent of the 
protection system. DTs that utilize voltage and current phasors as predictor variables and the target variable is the fault point. 
DT is constructed in a top-down recursive divide-and-conquer manner. Each tree consists of many nodes. These nodes are divided 
into two kinds: internal nodes and terminal nodes. Each internal node is generated from another internal node and is surely generator 
of two or many internal or terminal nodes. Terminal node also known as leaf node is generated from an internal node but does not 
generate any node and as compared to other algorithms decision trees requires less effort for data preparation during pre-processing. 
It does not require normalization of data and scaling of data as well.  
Missing values in the data also does not affect the process of building a decision tree to any considerable extent. Decision trees give a 
straightforward visualization of data.  Figure 2.1 illustrates an example of a decision tree. 

 
Fig 1 Simple Decision Tree 
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A. Flowchart & Algorithm 
Dataset was divided into two datasets (75%/25%, training/testing) to avoid any bias in training and testing. Of the data, 75% was used to 
train the ML model, and the remaining 25% was used for testing the performance of the proposed activity classification system. 
Algorithm of Decision Tree: 
1) Step 1 - Creating a Power Transmission Line Models in MATLAB Simulink, obtaining data for various types of faults by 

manually adjusting the resistances; and saving the fault data in an MS-Excel File. 
2) Step 2 - Importing the libraries and packages in Google Colab. 
3) Step 3 - Mounting the fault data to Google Colab server. 
4) Step 4 - Merging all the data into a 2D Data Structure (Data Frame) 
5) Step 5 - Finding all entries of unique fault types and assigning class labels to all types of faults. 
6) Step 6 -Separating/ Splitting the train data and test data, i.e., current values and fault types by specifying division of all data   

(75:25). 
7) Step 7 - Importing Random Forest Classifier with specific estimators and depth. 
8) Step 8 - Fitting the data into the compiled model, i.e., training the model using the initially defined parameters. 
9) Step 9 - Training the model on the given set of data and testing on the other set of data separated out from the original data. 
10) Step 10-Predicting the values using the trained model and finding the accuracy based on how many times the data was predicted 

correctly. 
11) Step 11-Print the Accuracy Score, Classification Report and Confusion Matrix of the training process. 

 
III. DESIGNING OF DECISION TREE MODEL 

We have developed our own model based on decision tree architecture, and have used it to train the standard dataset values without 
any pre-processing, i.e., the input data have not been manipulated. The sample data set of these numbers are as shown below 

 

 
The hyper parameters that are kept constant are as follows: Class weight=None; criterion='gini’; max depth = 100; max features = 
auto; max leaf nodes = None; max samples = None; min samples split = 2 n; estimators = 1000. In this research paper fault analysis 
for two different cases (LL fault and LG fault) at various fault resistance are considered. 
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1) Case I: Fault analysis for LL fault at various fault resistance 
a) Fault analysis of LL (AB, BC, CA) at fault resistance 25Ω: 

 
TABLE I 

TRAINING AND TESTING SAMPLES FAULT ANALYSIS OF LL 
No. of Training Samples 2703 

No. of Testing samples 903 

No. of Output Classes 3(AB,BC,CA) 

Accuracy 0.495 

 
The Classification Report of the testing on Dataset based on the training data: 

 
TABLE II 

CLASSIFICATION REPORT FOR AB, BC, CA AT 25Ω FAULT RESISTANCE 
Class Precision Recall F1-Score Support 
Zero 0.39 0.49 0.43 84 
One 0..55 0.55 0.59 107 
Two 0.45 0.46 0.46 110 

Avg/total 0.50 0.49 0.49 301 
 

Here, Precision is the number of correct positive results divided by the number of all positive results returned by the classifier, 
Recall is the number of correct positive results divided by the number of all relevant samples (all samples that should have been 
identified as positive), F1-Scoreis a measure of test accuracy and is the harmonic average of Precision and Recall. The Support 
values are the number of samples of that particular class that have been analysed while testing. A Confusion Matrix displays the 
number of data correctly classified according to their class. The Confusion Matrix of the testing data is: 
 

TABLE III 
CONFUSION MATRIX OF THE MODEL FOR LL FAULT 

 ZERO ONE TWO 

ZERO 41 12 31 

ONE 24 59 24 

TWO 40 21 49 

 
b) Fault analysis of LL (AB, BC, CA) at fault resistance 25Ω ,50Ω: 

 
TABLE IV 

TRAINING AND TESTING SAMPLES FAULT ANALYSIS OF LL 
No. of Training Samples 10827 

No. of Testing samples 3609 

No. of Output Classes 3(AB,BC,CA) 

Accuracy 92.18 
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The Classification Report of the testing on Dataset based on the training data: 
 

TABLE V 
 CLASSIFICATION REPORT FOR AB, BC, CA AT 25Ω AND 50Ω,75Ω,100Ω 

Class Precision Recall F1-Score Support 
Zero 0.91 0.94 0.93 408 
One 0.92 0.91 0.92 386 
Two 0.93 0.91 0.92 409 

Avg/total 0.92 0.92 0.92 1203 
 
A Confusion Matrix displays the number of data correctly classified according to their class. The Confusion Matrix of the testing 
data is: 
 

TABLE VI 
 CONFUSION MATRIX OF THE MODEL FOR LL FAULT 

 ZERO ONE TWO 
ZERO 385 12 11 
ONE 18 353 15 
TWO 21 17 371 

 
c) Fault analysis of LL (AB, BC, CA) at 25Ω,50Ω,75Ω,100Ω,150Ω fault resistance 

 
TABLE VII 

TRAINING AND TESTING SAMPLES FAULT ANALYSIS OF LL 
No. of Training Samples 16239 
No. of Testing samples 5415 
No. of Output Classes 3(AB,BC,CA) 

Accuracy 94.84 
 
The Classification Report of the testing on Database based on the training data is: 

 
TABLE VIII 

 CLASSIFICATION REPORT FOR AB, BC, CA AT 25Ω, 50Ω,75Ω,100Ω,150Ω. 
Class Precision Recall F1-Score Support 
Zero 0.95 0.96 0.96 597 
One 0.96 0.94 0.95 604 
Two 0.93 0.95 0.94 604 

Avg/total 0.95 0.95 0.95 1805 
 
A Confusion Matrix displays the number of data correctly classified according to their class. The Confusion Matrix of the testing 
data is: 

 
TABLE IX 

 CONFUSION MATRIX OF THE MODEL FOR LL FAULT 
 ZERO ONE TWO 

ZERO 573 5 19 
ONE 17 565 22 
TWO 13 17 574 
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d) Fault analysis of LL (AB, BC, CA) at 25Ω,50Ω,75Ω,100Ω,150Ω,200Ω fault resistance: 
 

TABLE X 
 TRAINING AND TESTING SAMPLES FAULT ANALYSIS OF LL 

No. of Training Samples 18945 

No. of Testing samples 6318 

No. of Output Classes 3(AB,BC,CA) 

Accuracy 94.25 

 
The Classification Report of the testing on Dataset based on the training data is: 

 
TABLE XI 

CLASSIFICATION REPORT FOR AB, BC, CA AT 25Ω, 50Ω,75Ω,100Ω,150Ω,200Ω 
Class Precision Recall F1-Score Support 
Zero 0.93 0.97 0.95 679 
One 0.96 0.93 0.94 729 
Two 0.94 0.93 0.93 701 

Avg/total 0.94 0.94 0.94 2106 
 
A Confusion Matrix displays the number of data correctly classified according to their class. The Confusion Matrix of the testing 
data is: 

TABLE XII 
CONFUSION MATRIX OF THE MODEL FOR LL FAULT 

 ZERO ONE TWO 

ZERO 655 8 13 

ONE 21 676 32 

TWO 27 20 654 

 
TABLE XIII 

 ACCURACY TABLE OF FAULT CLASSIFICATION AT LL FAULT: 
FAULT TYPE RESISTANCE ACCURACY 

AC ,BC,CA 25Ω 49.50 
AC ,BC,CA 25Ω,50 Ω 82.39 
AC ,BC,CA 25Ω,50Ω ,75Ω 89.59 
AC ,BC,CA 25Ω,50 Ω ,75Ω,100 Ω 92.18 
AC ,BC,CA 25Ω,50 Ω ,75Ω,100 Ω,150Ω 94.84 
AC ,BC,CA 25Ω,50 Ω, 75Ω,100 Ω,150Ω 200Ω 94.25 
AC ,BC,CA 25Ω,50 Ω, 75Ω,100 Ω,150Ω 200Ω,300Ω 94.15 
AC ,BC,CA 25Ω,50 Ω, 75Ω,100 Ω,150Ω 200Ω,300Ω, 400Ω 88.52 
AC ,BC,CA 25Ω,50 Ω, 75Ω,100 Ω,150Ω 200Ω,300Ω, 400Ω, 500Ω 89.91 
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TABLE XIV 
ACCURACY AT FAULT CLASSIFICATION OF AB, BC, CA AT COMBINE FAULT RESISTANCE 

Fault Type Resistance Accuracy 
AB, BC, CA 25 Ω 49.50 
AB, BC, CA 50 Ω 48.83 
AB, BC, CA 75 Ω 47.74 
AB, BC, CA 100 Ω 46.17 
AB, BC, CA 150 Ω 46.84 
AB, BC, CA 200 Ω 48.17 
AB, BC, CA 300 Ω 47.34 
AB, BC, CA 400 Ω 47.17 
AB, BC, CA 500 Ω 48.17 

 
2) Case II: Fault analysis for LG fault at various fault resistance 
a) Fault analysis of LG (AG, BG, CG) at 25Ω fault resistance: 
 

TABLE XV 
 TRAINING AND TESTING SAMPLES FAULT ANALYSIS OF LG 

No. of Training Samples 2706 

No. of Testing samples 903 

No. of Output Classes 3(AG,BG,CG) 

Accuracy 0.47 

 
The Classification Report of the testing on Dataset based on the training data is 

 
TABLE XVI 

CLASSIFICATION REPORT FOR AG, BG, CG AT 25Ω FAULT RESISTANCE 
Class Precision Recall F1-Score Support 

Zero 0.43 0.49 0.46 84 

One 0.50 0.47 0.48 107 

Two 0.49 0.46 0.47 110 

Avg/total 0.47 0.47 0.47 301 

 
A Confusion Matrix displays the number of data correctly classified according to their class. The Confusion Matrix of the testing 
data is: 

TABLE XVII 
CONFUSION MATRIX OF THE MODEL FOR LG FAULT 

 ZERO ONE TWO 
ZERO 41 21 22 
ONE 25 353 15 
TWO 29 10 51 
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b) Fault analysis of LG (AG, BG, CG) at 25Ω ,50,75Ω,100Ω,150Ω,200 fault resistance 
 

TABLE XVIII 
TRAINING AND TESTING SAMPLES FAULT ANALYSIS OF LG 

No. of Training Samples 16239 
No. of Testing samples 5415 
No. of Output Classes 3(AG,BG,CG) 

Accuracy 0.94 
The Classification Report of the testing on Dataset based on the training data is: 

 
TABLE XIX 

CLASSIFICATION REPORT FOR AG, BG, CG AT 25Ω ,50Ω,75Ω,100Ω,150Ω,200Ω 
Class Precision Recall F1-Score Support 
Zero 0.94 0.96 0.95 597 
One 0.96 0.92 0.94 604 
Two 0.92 0.94 0.93 604 

Avg/total 0.94 0.94 0.94 1805 
 
A Confusion Matrix displays the number of data correctly classified according to their class. The Confusion Matrix of the testing 
data is as shown below: 
 

TABLE XX 
 CONFUSION MATRIX OF THE MODEL FOR LG FAULT 

 ZERO ONE TWO 
ZERO 571 4 22 
ONE 20 557 27 
TWO 17 17 570 

 
c) Fault classification (AG, BG, CG) at 25Ω, 50Ω, 75Ω, 100Ω, 150Ω, 200Ω, 300Ω fault resistance: 

 
TABLE XXI 

TRAINING AND TESTING SAMPLES FAULT ANALYSIS OF LG 
No. of Training Samples 18945 
No. of Testing samples 6318 
No. of Output Classes 3(AG,BG,CG) 

Accuracy 0.93 
 
The Classification Report of the testing on Database based on the training data is 

 
TABLE XXII 

CLASSIFICATION REPORT FOR LG AT 25Ω AND 50Ω,75Ω,100Ω,150Ω,200Ω,300Ω 
Class Precision Recall F1-Score Support 
Zero 0.94 0.95 0.94 708 
One 0.94 0.93 0.94 701 
Two 0.93 0.94 0.93 697 

Avg/total 0.94 0.94 0.94 2106 
 
 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue X Oct 2023- Available at www.ijraset.com 
     

 
1168 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

A Confusion Matrix displays the number of data correctly classified according to their class. The Confusion Matrix of the testing 
data is 

TABLE XXIII 
CONFUSION MATRIX OF THE MODEL FOR LG FAULT 

 ZERO ONE TWO 
ZERO 671 16 21 
ONE 21 651 29 
TWO 22 23 6521 

 
TABLE XXIV 

ACCURACY TABLE OF FAULT CLASSIFICATION FOR LG FAULT 
Fault Type Resistance Accuracy 

AG, BG, CG 25 Ω 47.17 
AG, BG, CG 50 Ω 48.17 
AG, BG, CG 75 Ω 47.84 
AG, BG, CG 100 Ω 48.83 
AG, BG, CG 150 Ω 47.84 
AG, BG, CG 200 Ω 46.84 
AG, BG, CG 300 Ω 45.18 
AG, BG, CG 400 Ω 46.17 
AG, BG, CG 500 Ω 46.17 

 
TABLE XXV 

 ACCURACY TABLE AT COMBINE FAULT RESISTANCE 
FAULT TYPE RESISTANCE ACCURACY 

AG ,BG,CG 25Ω 47.17 

AG ,BG,CG 25Ω,50 Ω 82.89 

AG ,BG,CG 25Ω,50Ω ,75Ω 89.03 

AG ,BG,CG 25Ω,50 Ω ,75Ω,100 Ω 92.93 

AG ,BG,CG 25Ω,50 Ω ,75Ω,100 Ω ,150Ω 93.88 

AG ,BG,CG 25Ω,50 Ω, 75Ω,100 Ω ,150Ω 200Ω 94.15 

AG ,BG,CG 25Ω,50 Ω, 75Ω,100 Ω ,150Ω, 200Ω,300Ω 93.44 

AG ,BG,CG 25Ω,50 Ω, 75Ω,100 Ω ,150Ω, 200Ω,300Ω, 400Ω 93.14 

AG ,BG,CG 25Ω,50 Ω, 75Ω,100 Ω ,150Ω, 200Ω,300Ω, 400Ω, 500Ω 94.12 

 
IV. CONCLUSIONS 

Decision tree approach has been presented for the classification of different types of fault faults. Simulation was carried out on a 
400kV, 3 phase and 300km line to support the results of the proposed technique for getting dataset of different types of fault current. 
To improve the accuracy of the fault diagnosis, especially in case of network topology variations, random forest (RF) containing 
DTs is used to increase robustness of diagnosis. the proposed technique gives quick, correct, robust fault classification of the LL, 
LG type of short circuit event occur in transmission line using data collected at post fault current. Uniqueness of this technique is 
that large no data is collected to classify different type of fault; optimized value of random forest classifier is used to improve the 
accuracy of model to classify different type of faults. The simulation result shows that maximum accuracy for LG fault 
classification is (94.15%) for LL fault classification is (94.84%). 
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