
 

11 XI November 2023

https://doi.org/10.22214/ijraset.2023.57056



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue XI Nov 2023- Available at www.ijraset.com 
    

 
2318 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Deepfake Video Detection Using LSTM and 
XRESNET 

 
Varun P Shrivathsa 

:Dayananda Sagar University, Bengaluru, India varunpshrivathsa@gmail.com 
 
Abstract: As the rapid evolution of Artificial Intelligence continues, it becomes increasingly crucial to implement robust 
measures for monitoring and combating the proliferation of Deepfake videos. In this proposed method, frame-level features are 
extracted from videos using the XResNet convolutional neural network. These extracted features serve as the foundation for 
training the LSTM (Long Short-Term Memory) Recurrent Neural Network, enabling it to classify videos as either real or 
fake. Our dataset originates from Meta DFDC (Deepfake Detection Challenge) videos, selected for both the training and testing 
phases of our model. This model is able to predict a video with an accuracy of 83.3%. 
Index Terms: XResnet, LSTM, Recurrent Neural Networks, Convolution Neural Networks 
 

I.      INTRODUCTION 
This project amalgamates two potent neural network ar- chitectures: XResNet, an evolution of ResNet designed for 
efficiency and performance, and LSTM (Long Short-Term Memory), known for its ability to understand temporal depen- dencies 
in sequential data. By combining these technologies, the project aims to create a comprehensive system capable of analyzing 
spatial and temporal features within video data, enhancing the accuracy and reliability of deepfake detection. XResNet is vital in the 
initial stages of the pipeline, utilizing its prowess in feature extraction. With a focus on facial features crucial for deepfake 
identification, XResNet captures intricate details and patterns, providing a strong foundation for subsequent analysis. The 
architecture’s efficiency is par- ticularly advantageous, ensuring that deep learning models can operate effectively even in 
resource-constrained envi- ronments. The 128 facial landmarks serve as key points of reference, enabling a deeper 
understanding of facial dynamics and expressions in various real-world scenarios. In essence, the fusion of XResNet with 128 
facial landmark detection advances the accuracy of feature extraction. Complementing XResNet, the project leverages LSTM to 
analyze the temporal dynamics of video sequences. Videos are inherently sequen- tial, and LSTM’s ability to retain information 
over extended sequences proves invaluable. The temporal analysis augments the spatial understanding provided by XResNet, 
offering a holistic perspective on video content. The dataset employed in this project is sourced from the Meta Deepfake 
Detection Challenge (DFDC), which provides a diverse range of au- thentic and manipulated videos for training and 
evaluation. The neural networks are trained to discern subtle patterns indicative of deepfake manipulations, achieving an 
accuracy rate of 83.3%. Continuous monitoring and updates ensure the system’s adaptability to evolving deepfake techniques. 
 

II.      XRESNET AND RELU ACTIVATION FUNCTION 
XResNet builds upon the foundational concepts of ResNet, enhancing them with key features to optimize performance. 
At the core lies the deployment of residual blocks, which have proven instrumental in training exceptionally deep net- works. These 
blocks introduce shortcut connections, address- ing the vanishing gradient problem and facilitating the smooth flow of gradients 
through the network. This enables the successful training of models with an extended number of layers. 
A distinguishing feature of XResNet is the incorporation of a ”stem block” at the beginning of the architecture. This block serves as 
the initial layer, efficiently capturing essential fea- tures from the input data and setting the stage for subsequent operations. 
Convolutional layers play a central role in XResNet’s ar- chitecture, responsible for learning hierarchical features from the input 
data. These layers contribute to the network’s ability to understand complex spatial patterns and representations in the data. By 
focusing on the intricacies of facial patterns and expressions, it empowers deep fake detection systems with the ability to discern 
subtle variations indicative of manipulations. 
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Fig. 1.  Representation of XResNet Architecture 
 
This application of the activation function is fundamental for introducing non-linearities into the network, allowing it to capture 
intricate features in the input data. By replacing negative values with zero, ReLU facilitates the model’s ability to learn and adapt to 
patterns, contributing to the network’s representational power. The rectification operation ensures that the gradient remains non-zero 
for positive values, facilitating the backpropagation of errors during training. This is particu- larly crucial in the training of deep 
neural networks where the flow of gradients through many layers can be a challenge. The simplicity and efficiency of ReLU 
contribute to the efficient learning of manipulated content. XResNet, with ReLU activa- tions, can quickly adapt to the distinctive 
patterns associated with deepfake content, enhancing its detection capabilities. 

Fig. 2.  Representation of ReLU function. 
 

III.      LONG-SHORT TERM MODEL 
Long Short-Term Memory (LSTM) represents a pivotal advancement in recurrent neural network (RNN) architecture, specifically 
tailored to surmount challenges associated with capturing long-term dependencies within sequential data. At its core, an LSTM 
integrates a memory cell that spans the entirety of the sequence, affording the model the ability to selectively retain and retrieve 
information over prolonged intervals. This innovative approach effectively addresses the vanishing gradi- ent problem encountered 
in conventional RNNs and facilitates the nuanced learning of complex dependencies inherent in sequential datasets.  
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It integrates a memory cell that spans the entirety of the sequence, affording the model the ability to selectively retain and 
retrieve information over prolonged intervals. This innovative approach effectively addresses the vanishing gradient problem 
encountered in conventional RNNs and facilitates the nuanced learning of complex dependencies inherent in sequential datasets. The 
distinctiveness of LSTMs lies in their incorporation of three gates—forget, input, and output gates—which orchestrate the flow of 
information. The forget gate assesses what information from the cell state should be discarded or preserved, the input gate regulates 
the inclusion of new information into the cell state, and the output gate dictates what information should be outputted based on the 
cell state. Activation functions, such as sigmoid and tanh, play a crucial role in these operations, imparting non-linearity to the 
model. 

Fig. 3.  Representation of LSTM Architecture. 
 
During the training phase, the LSTM model is exposed to a dataset comprising both authentic and deepfake videos. Through the 
process of backpropagation, the model fine-tunes its parameters to distinguish between the temporal patterns present in genuine 
videos and those introduced by deepfake generation techniques.Its key contribution to deepfake detec- tion lies in its ability to detect 
temporal anomalies. 
Once trained, the LSTM model is deployed for testing and inference on new video data. By scrutinizing the temporal dynamics of 
the sequence, the model provides predictions on whether the content is authentic or potentially a deepfake. Continuous monitoring 
and adaptation are crucial, as deepfake techniques evolve, necessitating regular updates and retrain- ing to maintain the model’s 
effectiveness against emerging manipulation methods. Deepfake generation often introduces artifacts or imperfections in the 
synthesized content. 
 

IV.      DESIGN AND IMPLEMENTATION 

Fig. 4.  Design Flowchart. 
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A. Data Collection 
The composition of the Meta DFDC dataset likely encom- passes a diverse array of videos, featuring both authentic and deepfake 
content. This diversity is instrumental for training a robust deepfake detection model, enabling it to general- ize effectively 
across various scenarios and against different manipulation techniques. An additional consideration is the availability of ground 
truth labels within the Meta DFDC dataset. These labels signify whether each video is authentic or a deepfake, serving as crucial 
annotations for supervised learning. Understanding the ground truth is fundamental in training a model that can effectively 
distinguish between genuine and manipulated content. 
 
B. Preprocessing 
Preprocessing is a fundamental stage in readying the data for effective training and inference. The first critical step involves frame 
extraction, breaking down videos into individual frames to establish a temporal sequence. Subsequently, face detection algorithms 
are applied to precisely locate and extract facial regions in each frame, and facial landmark detection is em- ployed to identify key 
points, facilitating consistent alignment across frames. 

Fig. 5.  Preprocessing and Cropping. 
 
Once individual frames are obtained, image preprocessing steps are applied. This includes resizing frames to a consistent resolution, 
cropping to focus on the facial region, and normal- izing pixel values to a standard range. This normalization aids convergence 
during training and maintains numerical stability. 
 
C. Training And Testing 

Fig. 6.  Testing. 
 
The training procedure includes the fine-tuning of hyper- parameters, such as learning rate and batch size, based on the model’s 
performance on a validation set. Regularization techniques, including dropout, are incorporated to prevent overfitting and 
enhance the model’s generalization capabili- ties. This rigorous training phase ensures that the XResNet- LSTM model is well-
equipped to discern the intricate patterns associated with deepfake content 
Moving to the testing phase, a separate test dataset, un- seen during training, is essential for an unbiased evaluation of the 
model’s performance. Consistency is maintained by applying the same preprocessing steps to the test data as used during 
training. The model is evaluated using metrics such as accuracy, precision, recall, and F1-score, providing a comprehensive 
assessment of its ability to classify authentic and deepfake sequences. Overall, this systematic approach ensures the effective 
training and evaluation contributing to its robustness and reliability. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue XI Nov 2023- Available at www.ijraset.com 
    

 
2322 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Fig. 7.  CSV file for validation. 
 
A dataset comprising 32 videos, a strategic partitioning of the data is undertaken, allocating 24 videos for the training of the 
model and reserving 6 videos for subsequent testing. This division is essential to gauge the model’s ability to gen- eralize its 
learning to new and unseen data. The training set, consisting of the majority of videos, serves as the foundation for developing and 
fine-tuning the deepfake detection model. 

Fig. 8.  Splitting Data into training and testing. 
 
In the testing phase of the deepfake detection model, which involved the evaluation of 6 videos not seen during training, the 
model demonstrated a commendable performance by correctly classifying 5 out of the 6 videos. This success underscores the 
model’s ability to generalize its learning from the training set to previously unseen data, a critical aspect in assessing its real-world 
applicability. 

 
Fig. 9.  Representation of Training and Validation loss. 

 
The training loss, reflecting the error between the model’s predictions and the actual labels within the training set, is fundamental 
for gauging how well the model is adapting to the intricacies of the training data.  
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A diminishing training loss over epochs implies that the model is effectively learning the features associated with both authentic and 
deepfake videos in the training dataset, continuously refining its predictive capabilities.the validation loss is computed on a distinct 
sub- set—the validation set—that the model has not encountered during training. This loss provides insights into the model’s ability 
to generalize to unseen data. The goal is to minimize both training and validation losses, ensuring the model not only learns from the 
training data but also extends its predic- tive accuracy to new instances.Thus this graph states that the loss in training and validation 
are stabilizing simultaneously as the model is learning form multiple training sets. 

Fig. 10.  Representation of Training and Validation accuracy 
 
The training accuracy and validation accuracy graphs serve as essential tools for evaluating the performance and gener- alization 
capabilities of a deepfake detection model during its training process. The training accuracy, expressed as a percentage, 
reflects how well the model is learning to classify examples within the training dataset. An increasing training accuracy across 
epochs suggests that the model is becoming adept at correctly categorizing samples within the training set. model selection often 
corresponds to the epoch where validation accuracy is maximized while training accuracy continues to increase. This balance 
ensures that the model not only fits the training data well but also generalizes effectively to new, unseen examples. 

Fig. 11.  Heat Map. 
 
This heat map reveals which regions within a video frame play a pivotal role in the model’s classification decision, whether it 
identifies content as authentic or manipulated. 
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Fig. 12.  Accuracy matrix. 
 
An accuracy matrix, often derived from a confusion matrix, provides a comprehensive overview of a classification model’s 
performance. It includes the following elements: True Positive (TP): The number of instances correctly predicted as posi- tive. True 
Negative (TN): The number of instances correctly predicted as negative. False Positive (FP): The number of in- stances incorrectly 
predicted as positive. False Negative (FN): The number of instances incorrectly predicted as negative. 
 
D. Prediction 
The prediction process itself involves applying the loaded model to the preprocessed video data. The XResNet com- ponent extracts 
spatial features, capturing intricate details in each frame, while the LSTM processes temporal patterns, considering the sequential 
nature of the frames in a video. The model outputs probability scores for each class (authentic or deepfake) based on these features. 
 

V.      CONCLUSION 
In conclusion, the deepfake video detection project employ- ing XResNet and LSTM showcases a promising fusion of spatial and 
temporal feature extraction techniques for robust model performance. The utilization of XResNet facilitates ef- fective extraction of 
spatial features, capturing intricate details within each frame, while the LSTM contributes by modeling temporal dependencies, 
considering the sequential nature of video data. The project, trained and tested on the Meta DFDC dataset, achieved a 
commendable accuracy of 83.3%, indicating the model’s ability to discern between authentic and deepfake content. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 13.  Result-1. 
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The model is able to predict of the video is authentic or a fake and it also gives a optical flow chart indicating with red color 
on the presences of anomalies.Finally, the output of the LSTM, whether it be a refined feature representation or a prediction, 
is highlighted. The optical flow chart serves as a valuable tool for understanding the intricate changes and information dynamics 
within the LSTM network, providing an intuitive visual representation of its capabilities in handling sequential data. 

Fig. 14.  Result-2 
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