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Abstract: Cardiovascular disease (CVD) remains the leading cause of mortality globally, responsible for approximately 17.9 
million deaths annually. Conventional diagnostic approaches are constrained by inter-observer variability, shortages of 
specialists, and limited accessibility in resource-constrained environments. This systematic review evaluates the efficacy, design, 
and clinical implementation of deep learning (DL) models for CVD detection across diverse imaging and signal modalities. In 
accordance with PRISMA 2020 guidelines, we performed a comprehensive literature search in PubMed, IEEE Xplore, Scopus, 
and Web of Science for studies published between January 2015 and October 2025. Eligible studies employed deep neural 
network architectures for CVD detection and reported quantitative diagnostic performance metrics. Methodological quality and 
reporting transparency were assessed using the QUADAS-2 and CLAIM frameworks. Of the 127 studies included, convolutional 
neural networks were most frequently utilized (64.6%), followed by hybrid and recurrent models. Reported diagnostic accuracy 
ranged from 87.3% to 99.2%, with electrocardiogram-based arrhythmia detection achieving a mean accuracy of 97.1%. These 
findings underscore the considerable potential of DL-based systems for automated cardiovascular diagnosis. Nevertheless, only 
23.6% of studies conducted prospective clinical validation, and 73.2% did not report race or ethnicity, raising concerns regarding 
generalizability, bias, and fairness. Although deep learning demonstrates high diagnostic performance in controlled research 
settings, substantial gaps persist in real-world validation, equity assessment, and clinical adoption. Future investigations should 
prioritize large-scale multicenter prospective studies, standardized fairness assessments, transparent reporting, and clearer 
regulatory guidance to facilitate the safe and effective integration of DL-based cardiovascular diagnostic tools into clinical 
practice. 
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I. INTRODUCTION 
A. Clinical Burden and Current Diagnostic Challenges 
Cardiovascular diseases (CVD) account for about 31% of global deaths, making them the greatest public health challenge 
worldwide [1]. In the United States, the economic burden is over $863 billion annually and continues to rise [2]. Traditional 
diagnostic methods have clear limitations. Electrocardiogram (ECG) interpretation shows inter-observer variability of 10% to 30% 
depending on rhythm complexity [3]. Echocardiographic assessment needs substantial training, and results vary with image quality 
and interpretation accuracy [4]. 
There is a global shortage of cardiac specialists, especially in developing regions. This results in large gaps in diagnostic access [5]. 
The disparity highlights the urgent need for automated diagnostic systems. Such systems could deliver expert-level assessments in 
resource-limited settings. 
 
B. Deep Learning Revolution in Healthcare 
Artificial intelligence, especially deep learning, has advanced medical image analysis significantly over the last decade [6]. 
Traditional machine learning relies on manual feature engineering. In contrast, deep neural networks (DNNs) extract hierarchical 
representations from raw data through many processing layers [7]. This enables the detection of subtle abnormalities that may 
escape human observers. Convolutional neural networks (CNNs) show superior performance in many medical imaging specialties 
[8]. Esteva et al. demonstrated dermatologist-level accuracy in skin cancer classification. Their study prompted more deep learning 
research in clinical diagnostics [9]. In cardiology, DNNs show strong results in ECG interpretation, echocardiographic analysis, and 
cardiac MRI [10]. 
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C. Objectives and Review Scope 
This systematic review examines deep learning applications for cardiovascular disease detection, with emphasis on architecture 
effectiveness, dataset characteristics, validation methods, and clinical translation potential across imaging modalities. The objectives 
are to: 
1) Systematically identify and characterize DNN applications for cardiac disease detection. 
2) Compare DNN architecture performance across pathologies and diagnostic tasks. 
3) Analyze dataset characteristics and quality. 
4) Evaluate validation rigor and clinical translation readiness. 
5) Assess study quality and identify research gaps. 

 
II. METHODS 

A. Search Strategy and Study Selection 
Following PRISMA 2020 guidelines [11], we conducted comprehensive searches in PubMed/MEDLINE, IEEE Xplore, Scopus, and 
Web of Science from January 2015 to October 2025. Our search strategy combined three concept groups using Boolean operators. 
The deep learning group included terms such as "deep learning," "deep neural network*," "convolutional neural network*," "CNN," 
"recurrent neural network*," "LSTM," and "transformer." 
The cardiac group included terms such as "cardiac," "heart," "cardiovascular," "arrhythmia," "atrial fibrillation," "myocardial," and 
"cardiomyopathy." 
The diagnostic group included terms such as "diagnosis," "detection," "classification," "screening," and "prediction." 
 
B. Inclusion Criteria: 
 Studies were included if they were peer-reviewed original research or conference papers, 
 applied deep neural networks with at least three layers for cardiac disease detection, 
 provided a clear description of the network architecture with quantitative performance metrics, 
 used human subject data or validated public datasets, 
 and were published in English. 

 
C. Exclusion Criteria: 
 Review articles, editorials, and case reports. 
 studies without a diagnostic component, 
 studies that used only traditional machine learning methods, 
 studies with insufficient methodological detail, 
 and duplicate publications. 
Inter-rater agreement for study selection: Cohen's κ = 0.89 (95% CI: 0.85-0.93), indicating almost perfect agreement [Two 
reviewers independently assessed all included studies using the following tools:ed all included studies using: 
 
D. QUADAS-2 Framework [13]: 
 Patient Selection domain 
 Index Test domain 
 Reference Standard domain 
 Flow and Timing domain 

 
E. CLAIM Checklist [14]: 
 The checklist evaluated 42 items across six sections. 
 Overall reporting quality calculated as a percentage of adequately reported items 
Studies were categorized as high quality if they had low bias across all domains and at least 80% CLAIM completeness, moderate 
quality for 60-79% CLAIM completeness, and low quality for less than 60% CLAIM completeness. 
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III. ARCHITECTURE DISTRIBUTION AND PERFORMANCE ANALYSIS 
A. DNN Architecture Classification 
The diagram illustrates a high-level taxonomy of deep neural network architectures employed in the study, classifying them into 
four principal categories within Deep Neural Networks. Convolutional Neural Networks (CNNs) are the most prevalent, comprising 
64.8% of usage, and include widely adopted architectures such as ResNet, VGG, and DenseNet for spatial feature extraction from 
images. Recurrent Neural Networks (RNNs) represent 18.3% of the total, primarily utilizing LSTM and Bidirectional LSTM models 
to capture temporal dependencies in sequential data. Transformer-based models account for 9.4%, with Vision Transformers (ViT) 
noted for their self-attention mechanisms and capacity for global feature modeling. Hybrid models make up 8.0%, integrating 
multiple architectures, such as CNN–LSTM combinations and multimodal fusion frameworks, to improve performance through 
joint learning of spatial, temporal, and contextual representations. 

 
Fig.1 DNN Architecture Classification 

 
Key Finding: Hybrid architectures combining CNNs with LSTMs or attention mechanisms demonstrated superior performance for 
temporal data analysis, improving accuracy by 3.2-7.8% compared to single-architecture models [15]. 
 
B. Specific Architecture Analysis 

 
Table 2. Common CNN Architectures and Performance 

Architecture Studies Using Typical Depth Best Achieved Accuracy Key Application 
ResNet 34 50-152 layers 99.2% MI detection 
VGG 18 16-19 layers 97.8% Arrhythmia detection 
Inception 12 22 layers 96.3% Heart failure 
DenseNet 9 121-169 layers 98.1% Valvular disease 
EfficientNet 7 Scalable 94.0% AS detection 

 
IV. DATASET CHARACTERISTICS AND PUBLIC RESOURCES 

A. Dataset Distribution 
 

Table 3: Study Distribution by Data Modality 
Modality Studies (n) Percentage Mean Sample Size Range 
ECG 58 45.7% 24,582 287-1,015,322 
Echocardiography 36 28.3% 8,934 154-78,456 
Cardiac MRI 21 16.5% 1,247 89-12,865 
Cardiac CT 12 9.4% 2,156 198-9,423 
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B. Commonly Used Public Datasets 
The predominance of ECG-based studies reflects three factors: (1) widespread clinical availability, (2) large public datasets enabling 
model development, and (3) well-defined diagnostic standards [16]. Frequently utilized public datasets include: 
 
C. ECG Datasets: 
 MIT-BIH Arrhythmia Database (used in 28 studies, 48.3% of ECG research) 
 PhysioNet Challenge datasets (23 studies, 39.7%) 
 PTB Diagnostic ECG Database (19 studies, 32.8%) 

 
D. Imaging Datasets: 
 UK Biobank Cardiac Imaging (8 studies, 6.3%) 
 EchoNet-Dynamic (9 echocardiography studies) 
 ACDC Challenge for cardiac MRI (6 studies) 

 
E. Sample Size Distribution 

 
Fig.2 Sample Size Distribution 

 
Median dataset size was 5,673 samples (IQR: 1,247-18,934). The largest study included 1,015,322 ECG recordings [17], while the 
smallest included 89 cardiac MRI examinations [18]. 
 

V. PERFORMANCE METRICS BY DIAGNOSTIC TASK 
A. Task-Specific Performance Summary 

 
Table 4. Performance Across Major Diagnostic Tasks 

Diagnostic Task Modality Best Architecture Mean Accuracy Mean AUC-ROC Range 
Arrhythmia detection ECG CNN (ResNet-34) 97.1% 0.985 92.3-99.1% 
MI diagnosis ECG CNN (DenseNet) 95.3% 0.972 87.3-99.2% 
Atrial fibrillation ECG CNN-LSTM 96.8% 0.961 91.7-98.9% 
LV dysfunction Echo 3D CNN + LSTM 93.7% 0.948 88.4-97.2% 
Valvular disease Echo EfficientNet-B4 91.4% 0.932 85.1-96.8% 
Myocardial scar MRI U-Net + ResNet 94.6% 0.957 89.7-97.3% 
Coronary disease CT 3D CNN 89.2% 0.903 83.6-94.1% 

Critical Finding: ECG-based arrhythmia detection achieved the highest overall performance with a mean accuracy of 97.1% and 
AUC-ROC of 0.985, likely reflecting well-defined diagnostic criteria and extensive publicly available training datasets [19]. 
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B. Transfer Learning Benefits 
Transfer learning, where models were pre-trained on ImageNet before fine-tuning on cardiac data, was employed in 63 studies 
(76.8% of CNN-based research). Transfer learning demonstrated particular benefit when training data was limited, improving 
performance by 3.7-8.2 percentage points compared to training from scratch [20]. 
 

VI. VALIDATION METHODOLOGIES AND CLINICAL TRANSLATION 
A. Validation Study Design Distribution 

 
Fig.3 Validation Study Design Distribution 

 
Only 30 studies (23.6%) conducted prospective validation, and merely 10 studies (7.9%) performed randomized clinical trials 
comparing DNN-assisted diagnosis with standard care. External validation on independent datasets from different institutions 
occurred in only 34 studies (26.8%) [21]. 
 
B. Quality Assessment Results 
 

Table 5: QUADAS-2 Risk of Bias Assessment 
Domain Low Risk (n) Unclear Risk (n) High Risk (n) 
Patient Selection 67 (52.8%) 38 (29.9%) 22 (17.3%) 
Index Test 71 (55.9%) 42 (33.1%) 14 (11.0%) 
Reference Standard 89 (70.1%) 28 (22.0%) 10 (7.9%) 
Flow and Timing 58 (45.7%) 51 (40.2%) 18 (14.2%) 

 
C. CLAIM Reporting Completeness: 
Quality (<60%): 36 studies (28.3%) 

 
D. Critical Reporting Gaps 
Only 18.9% of studies made source code publicly available, and only 32.3% used exclusively public datasets or shared proprietary 
data, severely limiting reproducibility [22]. Additionally, 74.0% of studies did not report performance stratified by relevant 
demographic subgroups including age, sex, and disease severity [23]. 
 

VII. DEMOGRAPHIC CHARACTERISTICS AND FAIRNESS ANALYSIS 
A. Demographic Reporting 

 
Table 6: Demographic Reporting in Included Studies 

Characteristic Reported Not Reported Stratified Analysis 
Age 104 (81.9%) 23 (18.1%) 45 (35.4%) 
Sex 112 (88.2%) 15 (11.8%) 28 (22.0%) 
Race/Ethnicity 34 (26.8%) 93 (73.2%) 8 (6.3%) 
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B. Observed Performance Disparities 
The limited stratified performance reporting prevented comprehensive fairness assessment. However, among studies providing 
demographic breakdowns: 
 One study found 6.8% lower atrial fibrillation sensitivity in Black patients versus White patients [24] 
 Another reported 4.4% reduced MI detection accuracy in women versus men [25] 
 Performance degradation in patients aged >75 years occurred in 3 studies [26] 
These disparities raise significant ethical concerns regarding potential exacerbation of existing health inequities if biased systems 
are deployed clinically. 
 

VIII. CLINICAL IMPLEMENTATION BARRIERS 
A. Regulatory and Deployment Challenges 

 
Fig.4 Clinical Deployment Challenges 

 
The diagram identifies several significant barriers to the adoption of advanced AI systems in healthcare. Regulatory approval is a 
persistent challenge, as only a limited number of studies have received FDA or CE approval, which restricts clinical application. 
Generalizability remains problematic, with models demonstrating a 5–15% decrease in performance when applied across different 
institutions. Integration into existing clinical workflows is insufficient, as few studies address this requirement. Physician trust is 
limited, primarily due to inadequate training and unfamiliarity with AI systems. Additionally, ambiguous reimbursement and policy 
pathways further impede large-scale implementation, underscoring the multifaceted obstacles to clinical translation. 
 
B. Infrastructure Requirements 

Table 7: Computational Resources and Deployment Considerations 
Architecture Type Training Time GPU Memory Inference Time Deployed Systems 
Lightweight CNN (MobileNet) 4-8 hours 4-6 GB 15-30 ms 3 mobile apps 
Standard CNN (ResNet-50) 12-24 hours 8-12 GB 30-60 ms 12 clinical systems 
Deep CNN (ResNet-152) 24-48 hours 16-24 GB 60-100 ms 2 research only 
LSTM/RNN 18-36 hours 10-16 GB 40-80 ms 4 clinical systems 
Transformer 36-72 hours 24-32 GB 80-150 ms 0 deployed 

 
Only 18 studies (14.2%) explicitly reported inference times, and only 7 studies (5.5%) discussed hardware requirements for clinical 
deployment [27]. 

IX. INTERPRETABILITY AND EXPLAINABILITY 
A. Implementation of Explainable AI Techniques 
Fifty-eight studies (45.7%) employed interpretability techniques. The most commonly used approaches included: 
1) Gradient-based Methods (42 studies): Gradient-weighted Class Activation Mapping (Grad-CAM) provided heatmaps 

highlighting diagnostically relevant regions, with clinicians finding highlighted regions aligned with diagnostic criteria in 78-
92% of cases [28]. 

2) Attention Visualization (23 studies): Particularly useful for temporal data, revealing which ECG beats or echocardiographic 
frames models emphasized during diagnostic decisions. 
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3) Feature Importance Analysis (15 studies): SHAP values quantified contribution of clinical variables in multimodal models. 
However, interpretability techniques have limitations as they provide post-hoc explanations that may not faithfully represent actual 
model reasoning [29]. 

X. FUTURE RESEARCH DIRECTIONS 
A. Emerging Opportunities 
1) Federated Learning: Enables collaborative training across institutions without sharing sensitive patient data. Three included 

studies used federated approaches, demonstrating feasibility for privacy-preserving model development [30]. 
2) Continual Learning: Models that adapt to new data without catastrophic forgetting could maintain performance as patient 

populations and clinical protocols evolve. 
3) Multimodal Integration: The 6 multimodal studies showed performance improvements of 4-9% over single-modality 

approaches by combining ECG, imaging, and biomarker data [31]. 
4) Foundation Models: Large-scale pre-training on diverse cardiac data followed by task-specific fine-tuning could substantially 

reduce dataset requirements for specialized diagnostic tasks. 
 

XI. STUDY QUALITY AND LIMITATIONS 
A. Quality Assessment Summary 
The inverse relationship between study quality and reported performance suggests publication bias in lower-quality studies: 
 High quality studies: Mean accuracy = 93.8% (SD = 3.2%) 
 Moderate quality: Mean accuracy = 95.1% (SD = 4.7%) 
 Low quality: Mean accuracy = 96.7% (SD = 5.3%) 

 
B. Review Limitations 
This review's limitations include: (1) restriction to English-language publications, (2) heterogeneity precluding meta-analysis, (3) 
potential publication bias favoring positive results, and (4) inability to access individual patient data for subgroup analyses. 
 
C. Included Studies Limitations 
The predominance of retrospective single-center studies (77.2%) limits generalizability to community practice settings. Dataset 
limitations included class imbalance, homogeneous demographics, and small sample sizes in 26.8% of studies. 

 

XII. CONCLUSIONS AND RECOMMENDATIONS 
A. Key Findings Summary 
This systematic review of 127 studies demonstrates that deep learning achieves high diagnostic accuracy (87.3-99.2%) across 
various cardiac pathologies and imaging modalities. Arrhythmia detection from ECG achieved the highest performance, with a 
mean accuracy of 97.1% and an AUC-ROC of 0.985, closely matching expert cardiologist performance [32]. Nonetheless, 
significant gaps persist in prospective validation, demographic equity, and clinical translation readiness. 
 
B. Recommendations for Researchers 
1) Researchers should prioritize prospective multicenter validation using independent test cohorts from multiple institutions. 
2) It is essential to ensure demographic diversity in training and validation cohorts, with mandatory performance reporting 

stratified by subgroup. 
3) Explainability techniques should be integrated, and their clinical relevance must be validated. 
4) Standardized datasets and metrics should be adopted to facilitate fair cross-study comparisons. 
5) Clinical utility should be assessed beyond diagnostic accuracy, including evaluation of workflow impact and cost-effectiveness. 
6) Researchers are encouraged to share code, models, and data publicly to enhance reproducibility. 

 
C. Clinical Implementation Guidance 
Deep neural networks (DNNs) demonstrate sufficient accuracy for clinical decision support, particularly in arrhythmia detection and 
myocardial infarction diagnosis. However, prospective clinical validation and regulatory approval are necessary prerequisites for 
widespread implementation. Current DNN systems should be regarded as decision support tools that require expert oversight, rather 
than as autonomous diagnostic agents. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 14 Issue I Jan 2026- Available at www.ijraset.com 
     

418 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

D. Policy Recommendations 
Regulatory agencies should establish clear approval pathways for adaptive artificial intelligence and machine learning (AI/ML) 
systems, require demographic diversity in validation cohorts, and develop post-market surveillance frameworks for ongoing 
performance monitoring and fairness assessment. Healthcare payers should implement reimbursement structures that incentivize 
high-quality AI adoption. 
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