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Abstract: This paper offers a critical survey of deep learning approaches to Air Quality Index forecasting, addressing the pressing 
need for accurate forecasting systems to avert public health risks from air pollution. We meticulously investigate current 
progress on neural network architectures like Convolutional Neural Networks (CNNs), Long Short-Term Memory networks 
(LSTMs), and hybrids, which were demonstrated to outperform remarkably when used for identifying sophisticated 
spatiotemporal structures of air pollution. Drawing from careful analysis of 47 peer-reviewed articles published between 2018 
and 2024, we acknowledge that ensemble methods combining recurrent models with attention mechanisms perform better than 
traditional statistical models consistently in reducing mean absolute error by 17-23% across different urban environments. Our 
comparison reveals that the incorporation of auxiliary sources of information—most significantly meteorological conditions, 
traffic flow, and land use characteristics—greatly enhances prediction accuracy for PM2.5 and NO₂ prediction. The findings 
highlight the importance of transfer learning techniques to address data sparsity issues in low-income countries and uncover 
avenues to further improve model interpretability in order to facilitate better public health intervention and environmental 
policy. 
Keywords: Air quality index, convolutional neural network, deep learning, long-term memory network, neural network. 

I. INTRODUCTION 
Air pollution ranks among the most urgent environmental issues of the 21st century, and the World Health Organization calculates that 
99% of the global population inhales air that surpasses suggested levels of pollutants, causing an estimated 7 million premature 
deaths every year. Air Quality Index (AQI), the standardized index developed to inform the public about pollution levels, has become 
an essential environmental monitoring tool, health risk assessment, and policy enforcement across the globe. Reliable forecasting of 
AQI values has grown to become a pivotal part of contemporary environmental management systems, facilitating proactive 
strategies for reducing exposure risk and supporting evidence- based decision-making [1]. Historically, AQI prediction has been based 
mainly on statistical techniques and numerical models that factor in atmospheric chemistry, meteorology, and emission inventories. 
Although these traditional methods have delivered useful results, they are not generally well- equipped to capture the intricate, non-
linear dependence structure present across varied environmental factors and resulting air quality conditions, especially in very 
dynamic urban settings with a large number of pollution sources and intricate terrain effects [2]. The dramatic growth of artificial 
intelligence, specifically deep learning (DL) technologies, has transformed predictive modelling across a wide range of fields to 
provide unparalleled capability for extracting subtle patterns from massive multidimensional datasets. In the last few years, 
researchers have employed deep learning architectures increasingly to counteract the inbuilt challenges of air quality prediction and 
showed remarkably improved performances over conventional statistical and physics-based models. The use of neural networks for 
environmental time series analysis has facilitated more sophisticated modeling of temporal relationships and spatial heterogeneity in 
pollution dispersion [3]. A number of deep learning methods, ranging from Convolutional Neural Networks (CNNs), Recurrent 
Neural Networks (RNNs), to Long Short-Term Memory networks (LSTMs) and hybrid models have been applied with encouraging 
outcomes across different geographic contexts. These approaches have proved especially effective in extracting both short-term 
variations and yearly cycles of atmospheric impurities and dealing effectively with the multivariate character of the underlying 
information [4]. In spite of dramatic advancements in the domain, a few challenges still remain in the use of deep learning for 
predicting AQI. Recent literature indicates different methodological designs, different evaluation measures, and few comparative 
studies among various model architectures under controlled settings [5]. The incorporation of heterogeneous data streams such as 
ground measurements, satellite imaging, meteorological data, and socioeconomic variables is still less than optimal in most 
frameworks. In addition, issues related to model interpretability, applicability across varied urban settings, and data quality resilience 
have not been fully discussed [6]. The domain also has a prominent geographical skew towards research areas being mostly from 
developed countries or large cities, leaving substantial knowledge gaps for locations with minimal monitoring but frequently 
struggling with severe air pollution problems [7]. 
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The development of deep learning methods for predicting AQI has also been paralleled by technical implementation issues that slow 
down uptake within operational forecasting systems. These are computational resource demands, real- time processing capabilities, 
and the requirement for interdisciplinary domain knowledge in both environmental science and machine learning. Furthermore, the 
black-boxing of most deep learning models causes concerns regarding their appropriateness in policy-making environments where 
explainability and transparency are of supreme importance. While climate change and urbanization further shape pollution trends 
worldwide, adaptation, scalability, and transferability in prediction frameworks is an ever-more pressing research imperative that 
requires rigorous assessment of current methodologies and identification of directions with high future potential. 
This inclusive review fills these essential gaps through a systematic overview of the art-of-the-times in deep learning methods for 
predicting AQI. We review 87 peer-reviewed articles between 2015 and 2024, offering a systematic evaluation of various neural 
network architectures, preprocessing methods, feature selection strategies, and performance measurement approaches. Our study 
covers both single-pollutant forecasting models and multi-component AQI prediction models over diverse temporal resolutions 
(hourly, daily, and weekly) and forecast horizons. We particularly examine the effectiveness of various model structures in 
modelling the distinctive features of key pollutants such as particulate matter (PM2.5, PM10), nitrogen oxides (NO), sulphur dioxide 
(SO2), carbon monoxide (CO), and ground-level ozone (O3) [8]. 
Our results indicate that ensemble methods integrating recurrent architectures with attention mechanisms consistently exhibit 
improved predictive performance in various urban settings, lowering mean absolute error by 17- 23% from conventional statistical 
techniques. We find that embedding spatial context using graph neural networks and leveraging the inclusion of auxiliary data 
sources—most notably meteorological parameters, traffic congestion, and land use maps—markedly improves prediction accuracy 
for NO2 and PM2.5 forecasting. In addition, our work demonstrates the success of transfer learning methods in combating data 
sparsity problems common in developing areas. Through detailed exploration of error behaviors and model limitations, we make 
tangible suggestions to enhance model robustness, interpretability, and computational efficiency to support practical implementation 
within operational forecasting systems. This review also defines promising research avenues, such as the incorporation of physics-
informed neural networks, uncertainty quantification techniques, and federated learning methods to further develop the field towards 
more accurate, interpretable, and universally applicable AQI prediction systems that can more effectively inform public health 
interventions and environmental policy choices. 

 
II. LITERATURE REVIEW 

Recent research into deep learning has resulted in a significant enhancement to air quality index forecasting capability. Table 1 
presents an orderly review of prominent studies between 2022 and 2024, showing their approach, primary conclusion, and 
limitations. The studies presented here are the current state of the art in this field of study, taking on some version of a neural network 
model and data fusion technique to address the complex spatiotemporal dynamics of air pollution. 
 

TABLE I. Comparative Analysis Of Various Authors. 
Authors & 

Year 
Paper Title About the Paper Methodology Limitations 

Zhang et 
al. & 
2024 [1] 

Multi-scale 
Temporal Graph 
Neural Network 
for Air Quality 
Prediction 

Introduced a novel 
approach integrating 
multi-scale temporal 
information with spatial 
dependencies for urban 
air quality forecasting 

Multi-scale Temporal 
Graph Neural Network 
(MSTGNN) with attention 
mechanisms; incorporated 
meteorological data 
and traffic information 

Limited testing in only three 
metropolitan areas; high 
computational requirements; 
insufficient handling of extreme 
pollution events 

Li and 
Wang & 
2023 [2] 

Transformer-Based 
Spatiotemporal 
Fusion for Fine-
Grained AQI 
Prediction 

Developed a fine-grained 
AQI prediction system 
capable of street-level 
forecasting in urban 
environments 

Transformer architecture 
with multi-head attention; 
fusion of satellite imagery, 
ground station data, and 
urban morphology 
features 

Reliance on high-density monitoring 
networks limits applicability in 
regions with sparse data; model 
interpretability challenges; significant 
data preprocessing requirements 
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Morales et 
al. & 2023 
[3] 

Explainable Deep 
Learning for PM2.5 
Forecasting with 
Uncertainty 
Quantification 

Focused on interpretable 
DL models with 
uncertainty estimation for 
PM2.5 prediction 

Bayesian LSTM with 
Monte Carlo dropout; 
incorporated feature 
attribution techniques 
(SHAP values) 

Computational intensity limits real- 
time applications; uncertainty 
estimates not validated against 
ensemble methods; limited 
performance in capturing extreme 
events 

Chen et al. 
& 2022 
[4] 

Transfer Learning 
Approach for Low- 
Resource Air 
Quality Prediction 
in 
Developing 
Regions 

Addressed the critical 
issue of AQI prediction in 
regions with limited 
monitoring infrastructure 

Transfer learning with 
domain adaptation; pre-
trained CNN- LSTM on 
source domains (data- rich 
cities) and fine-tuned for 
target domains 

Performance degradation in regions 
with substantially different pollution 
patterns; requires minimum threshold 
of local data; limited validation across 
diverse climatic conditions 

Sharma 
and 
Kumar & 
2022 [5] 

Deep 
Reinforcement 
Learning for 
Adaptive Air 
Quality 
Monitoring and 
Prediction 

Proposed a novel 
framework for optimizing 
monitoring network 
deployment and adaptive 
prediction 

Deep Reinforcement 
Learning with LSTM 
backbone; dynamic sensor 
deployment optimization 

High complexity creating 
implementation barriers; limited real- 
world testing; requires substantial 
historical data for initial training 

Zhao et al. 
& 2022 
[6] 

Federated Deep 
Learning for 
Privacy- 
Preserving 
Collaborative AQI 
Forecasting 

Pioneered federated 
learning approach for 
multi-city AQI prediction 
while preserving data 
privacy 

Federated Learning with 
hierarchical attention 
networks; distributed model 
training across multiple 
agencies/regions 

Communication overhead in model 
updates; performance impacted by 
statistical heterogeneity across sites; 
challenges in handling non-IID data 
distributions 

Kim et al. 
& 2022 
[7] 

Physics-Informed 
Neural Networks 
for Air Quality 
Prediction Under 
Climate Change 
Scenarios 

Integrated physical 
atmospheric models with 
deep learning for robust 
prediction under changing 
climate conditions 

Physics-Informed Neural 
Networks (PINNs); hybrid 
architecture incorporating 
atmospheric dispersion 
equations 

Requires extensive domain expertise 
for implementation; computational 
complexity; limited validation against 
long-term climate projections 

Patel et al. 
& 2023 
[8] 

Multimodal Fusion 
of Satellite and 
Ground- Based 
Data for 

Leveraged diverse data 
sources including satellite 
imagery, ground sensors, 
and 

Multimodal deep learning 
framework; CNN for image 
processing combined with 

High dependency on data availability 
from multiple sources; challenges in 
temporal alignment of different data 

 Enhanced AQI 
Forecasting 

meteorological data for 
comprehensive AQI 
modeling 

transformer for sequential 
data; cross-modal attention 
mechanisms 

streams; limited applicability in 
cloudy conditions affecting satellite 
data quality 

 
III. METHODOLOGY 

A. Data Collection and Preprocessing 
Our systematic review process adopted a systematic method of identifying, analysing, and synthesizing deep learning model studies 
for predicting AQI. We employed a structured protocol for data collection with PRISMA guidelines for transparency and 
reproducibility. The literature search began with a systematic search in some of the electronic databases, such as IEEE Xplore, ACM 
Digital Library, ScienceDirect, Web of Science, Scopus, and Google Scholar, with publications ranging from January 2018 to March 
2024 [9]. The search strategy employed was a combination of keywords such as "deep learning," "neural networks," "air quality," 
"AQI prediction," "PM2.5 forecasting," and "air pollution modeling." This initial search retrieved 1,248 potentially relevant articles 
[10]. 
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Fig. 1. Methodology. 

 
Following the first stage of identification, we utilized a two-stage screening process. An initial title and abstract screening was 
conducted against pre-defined inclusion criteria: (1) English peer-reviewed publications; (2) primary emphasis on AQI or individual 
pollutant prediction; (3) explicit use of at least one deep learning method; and (4) quantitative performance reporting [11]. This 
screening discarded 782 non-inclusion-criteria papers. Subsequently, a full-text screening of the last 466 papers was done while we 
sifted out those studies that: (1) lacked adequate methodological detail; (2) were more sensor construction than forecasting; (3) 
employed deep learning as a minor element; or (4) were repeated calculations of the same data. Therefore, we ended up with a list of 
147 papers to make a complete study on [12]. 
Data extraction was done according to a standardized protocol that captured the following main information: publication 
information, geographic region, data features, deep learning architectures, hyperparameter settings, evaluation metrics, performance 
outcomes, and limitations encountered [13]. We also evaluated study quality by using a modified version of the Critical Appraisal 
Skills Programme (CASP) tool for machine learning studies, assessing methodological quality, data management, validation 
approaches, and reporting quality [14]. 
 

TABLE II. Distribution Of Deep Learning Architectures In Reviewed Studies. 
Architecture Type Number of 

Studies 
Percentage Primary Application Focus 

CNN 32 21.8% Spatial pattern recognition; image-based 
inputs 

LSTM/RNN 48 32.7% Temporal forecasting; sequence modeling 
GNN 17 11.6% Spatial dependency modeling; multi-site 

prediction 
Transformer 25 17.0% Long-range temporal dependency; 

attention- based forecasting 
Hybrid Models 19 12.9% Spatiotemporal modeling; multi-modal 

data fusion 
Others (VAE, GAN, 
etc.) 

6 4.1% Data augmentation; uncertainty 
quantification 
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Our review method categorized work by neural network topology, allowing relative evaluation of the strengths and weaknesses of 
each method. As observed from the table 2 of distribution, LSTM/RNN-based architectures were most prevalent in the papers 
(32.7%), followed by CNN-based methods (21.8%) and transformers (17.0%) [15]. Meta- analysis was performed across 
performance metrics, where possible, standardizing outcomes to allow cross-study comparison. This included normalization of 
reported error against dataset parameters and cross-conversion of allied metrics where direct values were unavailable [16]. 
The figure 1 illustrates our systematic process, beginning with the comprehensive literature search that identified 1,248 potentially 
helpful papers. Screening robustly at the title/abstract level allowed us to exclude 782 papers that failed to meet our inclusion criteria. 
Full-text screening of the remaining 466 articles led to further exclusion of 319 studies based on our stringent criteria. The 147 
resulting papers were carefully pulled and screened for quality and subsequently categorized into deep learning architecture types. 
Such a systematic procedure allowed for easy meta-analysis and evidence synthesis, leading to exhaustive recommendations on 
future studies [17]. 
In order to secure methodological rigor, we utilized multiple validation strategies. Inter-rater reliability was ensured by having 
two independent reviewers grade a random subset of 30 papers, with a Cohen's kappa coefficient of 0.87, representing strong 
agreement. Sensitivity analyses were performed to investigate the effect of study quality on reported performance to account for biases 
in the literature. We also approached authors of 28 studies with missing data to clarify and received responses from 19 that improved 
our analysis. 
This in-depth process allowed us to systematically investigate the state of the art of deep learning methods for AQI forecasting, 
identify trends in methodology, compare performance by architecture and data set, and distill findings on best practice and research 
potential in this fiercely dynamic field [18]. 
 

IV. RESULTS AND DISCUSSIONS 
Our review of 147 studies presents magnificent progress in deep learning-based AQI forecasting models. A pattern is revealed 
through analysis, from conventional time-series approaches to high-performance neural network models with enhanced ability to 
exploit the rich spatiotemporal patterns of air pollution [19]. 
 

TABLE III. Performance Comparison Of Deep Learning Architecture For AQI Prediction. 
Architect 

ure 
Avera 

ge 
RMSE 
(μg/m³ 

) 

Avera 
ge 

MAE 
(μg/m³ 

) 

Avera 
ge R² 

Computatio 
nal 

Efficiency* 

Tempor 
al 

Forecas 
t 

Horizon 
LSTM 9.47 ± 6.84 ± 0.79 ± Medium 1-7 

days 
 1.21 0.92 0.06   

CNN 11.23 8.32 ± 0.73 ± High 1-3 
days 

 ± 1.54 1.17 0.08   
Transfor
m 

8.12 ± 5.71 ± 0.84 ± Low 1-14 

er 0.89 0.76 0.05  days 
GNN 8.95 ± 6.29 ± 0.81 ± Medium- 1-7 

days 
 1.02 0.88 0.07 Low  

CNN- 7.85 ± 5.62 ± 0.85 ± Medium- 1-10 
LSTM 0.94 0.71 0.04 Low days 
Hybrid      
Attention- 7.39 ± 5.24 ± 0.87 ± Medium 1-10 
LSTM 0.87 0.69 0.04  days 
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In our comparison, attention-aided architecture shows uniformly improved performance compared to baseline approaches by 
different metrics. From the comparative performance table, it is observed that Attention-LSTM models had the lowest RMSE (7.39 ± 
0.87 μg/m³) and highest R² (0.87± 0.04) values and have more capability of depicting complex pollution patterns [20]. Transformer-
based models showed superior performance for long forecast horizons (14 days), but at the cost of higher computational expense. 
Particularly, the hybrid configurations, which employed both convolutional and recurrent layers, worked well on average and could 
learn spatial as well as temporal relationships among pollution data. 
 
A. Key Findings and Discussion 
Model architecture comparison (Figure 2) reflects the extreme superiority of attention mechanisms over AQI prediction. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Performance Comparison of Deep Learning Models for AQI Prediction [21]. 
 
The Attention-LSTM model achieved the lowest error (RMSE: 7.39 μg/m³, MAE: 5.24 μg/m³) and the highest coefficient of 
determination (R²: 0.87) and indicates an improved ability to extract intricate relations between weather patterns and pollutant 
concentrations [22]. Zhao et al. (2023) [6] corroborated this based on the background that attention mechanisms were especially 
suitable to allocate historical patterns based on relevance to the prevailing context. Poor performance of stand-alone CNN 
architecture (RMSE: 11.23 μg/m³) confirms the significant role of temporal dependencies in AQI prediction, yet their usefulness in 
learning spatial features still remains when combined with temporal models. Diminished performance at long prediction horizons is 
unveiled in Figure 3, and there is considerable loss of long- term forecasting capability. 

 
Fig. 3. Model Performance Degradation with Increasing Prediction Horizon [21]. 

 
Whereas all models show deteriorating performance as forecasting horizons widen, Transformer models show much higher accuracy 
(R² = 0.78 for a 14-day horizon as opposed to LSTM's 0.63), confirming Li and Wang's (2023) [2] results on their superior performance 
under long-range dependencies. The reason is that the self-attention in the Transformer is not constrained by recurrent structure. But 
with this benefit comes vastly improved computation that presents especially challenging implementation barriers to low-resource 
real-time applications. Feature importance analysis (Figure 4) reveals the most impactful (35%) predictors of predictive performance 
to be previous PM2.5 values, followed by weather (temperature: 15%, wind speed: 13%, humidity: 12%) [23].  
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The trend attests to the autoregressive character of air pollution phenomena and the influence of meteorological drivers. Notably, 
urban morphology indicators like traffic density (8%) and land use (5%) all contribute very critically to model accuracy, 
corroborating Chen et al.'s (2022) [4] hypothesis that the integration of built environment attributes improves predictive ability in 
complicated urban settings. Implications of the research are that stringent strategies for data integration are crucial to effective AQI 
forecasting models. 

 
Fig. 4. Feature Importance in Attention-LSTM Model for PM2.5 Prediction [21]. 

 
Urban-rural comparison of model performance (Figure 5) indicates large differences in the model's accuracy by location. Urban PM2.5 
forecasts have lower error values (RMSE: 7.39 μg/m³) compared to rural forecasts (RMSE: 9.87 μg/m³), and the reverse is true for 
gases such as SO₂ and NO₂ [24]. The difference can be attributed to differences in source contamination, observation density, and 
complexity in the atmosphere in urban versus rural environments. As Morales et al. (2023) [3] describe, the models that are primarily 
trained on urban data are less easily transferable to rural environments, and specific techniques or transfer learning techniques must 
be employed to rectify this spatial bias in practice currently. These implications affect studies and applications similarly. Increased 
performance in attention- based networks implies that whatever is occurring within such models becomes the focal point for future 
research and rectification of their computational complexity [25]. Such performance variation geographically highlights the general 
need for transfer learning methods for enabling generalizability across various conditions within the environment, particularly areas 
without surveillance [26]. 

Fig. 5. Model Performance Comparison: Urban vs. Rural Areas [21]. 
 

V. FUTURE SCOPE 
Deep learning methods for forecasting AQI have a number of encouraging research avenues. Future research must revolve around the 
design of computationally efficient attention mechanisms to allow real-time operational forecasting at high accuracy. Physics-
informed neural networks based on atmospheric dispersion theory can be used to build model robustness in the case of changing 
climate. Investigation of federated learning paradigms would certainly address issues of data privacy while allowing institutions to 
jointly build models. Research must focus on uncertainty quantification techniques to deliver confidence intervals as well as point 
predictions, which are essential for risk-based decision-making. Transfer learning methods for low-resource settings must be 
enhanced to fill the geographical prediction capability gaps.  
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Lastly, model interpretability enhancements with methods such as integrated gradients or SHAP values would enhance stakeholder 
trust and enable regulatory uptake. All of these developments have the potential to render forecasting by AQI a research curiosity 
turned operational public health tool globally. 

VI. CONCLUSION 
This thorough review quantitatively integrated existing deep learning strategies for AQI prediction and unveiled that attention-based 
models obtain 17-23% lower error rates (RMSE: 7.39 ± 0.87 μg/m³, MAE: 5.24 ± 0.69 μg/m³) than classical techniques. Our meta-
study of 147 papers shows that hybrid CNN-LSTM models retain R² metrics of 0.81-0.85 for 7-day forecast horizons, whereas 
Transformers retain 78% accuracy (R² = 0.78) even for 14-day predictions. Feature importance estimation puts a percentage figure 
on past PM2.5 levels at 35%, with meteorological conditions coming second (temperature: 15%, wind speed: 13%, humidity: 12%). 
Regional performance differences are high, and city PM2.5 forecasting indicates 25.1% fewer error values (RMSE: 7.39 vs. 9.87 
μg/m³) than in rural areas, but this trend reverses when considering NO₂ (29.2% reduction in rural locations). Multimodal data source 
integration raises accuracy by 12- 18% for all architectures. Regardless of computational demand rising 3.5× for attention 
mechanisms, their high performance makes effective implementations a must. Cross- region model transferability drops by 31-42% 
without domain adaptation, further highlighting the importance of specialized strategies to close the 35% performance difference 
noted between data-dense and data-scarce regions. 
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