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Abstract: Stress has emerged as a critical factor influencing student academic performance, classroom participation, and overall 
emotional well-being. Early identification of stress is essential for implementing adaptive learning strategies and ensuring timely 
intervention to improve both mental health and educational outcomes. Conventional assessment approaches, such as self-report 
questionnaires, observational analysis, and psychological surveys, often lack scalability, objectivity, and the ability to capture 
real-time variations in student behaviour. Recent advances in artificial intelligence, particularly deep learning, have introduced 
powerful tools capable of processing multimodal data—including physiological signals, facial expressions, and speech 
features—to achieve more accurate and dynamic stress detection. This review provides an in-depth analysis of deep learning 
models applied to classroom stress detection. The discussion covers theoretical models of stress, relevant biomarkers, traditional 
assessment methods, and modern architectures such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks 
(RNNs), Long Short-Term Memory (LSTM) models, and Transformer frameworks. Furthermore, multimodal fusion strategies, 
performance evaluation techniques, and real-time classroom applications are examined. The paper also highlights challenges 
related to data privacy, scalability, and ethical considerations, while outlining future directions with emphasis on explainable AI 
and integration into smart classroom systems. 
Keywords: Stress detection, deep learning, multimodal data, classroom environments, CNN, RNN, LSTM, transformer models, 
explainable AI. 

I. INTRODUCTION 
Stress is an increasingly common phenomenon in academic settings and has been closely associated with student performance, 
motivation, and classroom engagement [1]. In educational environments, unmanaged stress can impair memory, concentration, and 
decision-making ability, thereby reducing the quality of learning [2]. Addressing this issue requires timely and accurate detection of 
stress, enabling educators to adopt adaptive teaching methods and provide psychological support. 
Traditional approaches to stress detection, such as psychological questionnaires and behavioral observations, have been widely used 
but are limited by their subjectivity and inability to capture real-time variations [3]. Physiological signal–based methods, including 
heart rate variability (HRV), galvanic skin response (GSR), and electroencephalography (EEG), offer greater objectivity but suffer 
from challenges of intrusiveness and scalability [4]. The emergence of deep learning provides a promising solution, as it enables the 
analysis of complex multimodal data and allows for robust pattern recognition of stress-related indicators [5]. Models such as 
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and hybrid CNN–LSTM architectures have 
demonstrated effectiveness in identifying subtle cues from biosignals, speech, and facial expressions [6], [7]. More recently, 
transformer-based models and multimodal fusion strategies have further enhanced accuracy and reliability, paving the way for 
deployment in real-time classroom environments [8], [9]. 
This review article explores the theoretical foundations, data modalities, and deep learning methodologies used for stress detection. 
It also examines evaluation metrics, real-world applications in classroom settings, and existing challenges. The paper concludes by 
identifying future research directions, including privacy-preserving approaches, explainable AI, and integration with adaptive 
learning systems. 
 

II. THEORETICAL BACKGROUND 
A. Stress Models 
The conceptualization of stress has evolved through both psychological and physiological perspectives. One of the most influential 
frameworks is the Transactional Model of Stress and Coping, introduced by Lazarus and Folkman [10], which emphasizes that 
stress arises when perceived demands exceed available coping resources. This model highlights the role of cognitive appraisal, 
where individuals evaluate a situation as either a challenge or a threat, ultimately influencing their emotional and behavioral 
responses.  
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On the physiological side, Selye’s General Adaptation Syndrome (GAS) describes stress as a biological process comprising three 
stages: the alarm phase, where the body recognizes stressors; the resistance phase, where adaptive mechanisms are activated; and 
the exhaustion phase, where prolonged exposure depletes resources and may lead to health complications [11]. Together, these 
models provide a foundation for understanding how stress manifests in academic environments, where cognitive overload, peer 
pressure, and high-stakes assessments act as significant triggers. 
 
B. Stress Biomarkers 
Biomarkers are measurable indicators that reflect an individual’s stress state. These can be broadly categorized as physiological, 
behavioral, and multimodal. Physiological biomarkers include electroencephalography (EEG), electrocardiography (ECG), heart 
rate variability (HRV), galvanic skin response (GSR), and cortisol levels [12], [13]. EEG is widely used in stress detection as it 
directly captures variations in brain activity linked to cognitive and emotional processing [14]. ECG and HRV are reliable indicators 
of autonomic nervous system balance and are frequently employed to monitor stress-induced cardiac variations [15]. Similarly, 
GSR reflects sympathetic nervous system activation and is particularly useful for detecting short-term stress fluctuations [16]. On 
the behavioral side, micro-expressions, speech intonation, eye-gaze dynamics, and body posture provide rich insights into stress 
responses [17]. Recent multimodal approaches combine these biomarkers, such as fusing EEG with facial expressions or ECG with 
voice analysis, to achieve higher robustness and accuracy. In classroom environments, where stress is influenced by both internal 
(cognitive load) and external (teacher–student interaction) factors, multimodal biomarkers offer an effective solution for real-time 
monitoring. 

 
C. Traditional Stress Detection Methods 
Conventional methods of stress detection have primarily relied on self-reported psychological scales and observational approaches. 
Tools such as the Perceived Stress Scale (PSS), the State– Trait Anxiety Inventory (STAI), and the Depression Anxiety Stress Scales 
(DASS) remain popular due to their simplicity and ease of administration [18]. However, they are inherently subjective and unable to 
provide continuous stress monitoring, which limits their applicability in dynamic settings such as classrooms. Teacher-led 
behavioral observations and manual performance assessments offer additional insights but are prone to bias, inconsistency, and 
observer fatigue [19]. While sensor-based techniques, including EEG headbands, ECG chest straps, and wristworn GSR devices, 
provide more objective insights, their intrusive nature often reduces student comfort and natural classroom behavior. These 
limitations underscore the importance of developing non-intrusive, automated, and scalable methods for stress detection. In this 
regard, deep learning–based approaches show significant promise, as they are capable of handling multimodal data streams, 
reducing reliance on subjective inputs, and enabling real-time analysis for educational applications. 

.  
Fig 1 Personalized Stress Detection Technique Using A Deep Learning Model 
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III. DATA SOURCES AND MODALITIES 
The reliability of deep learning–based stress detection in classroom environments is significantly determined by the type and 
quality of data used for model training and validation. Stress manifests in multiple domains, including physiological, behavioral, 
and multimodal signals. Each modality captures different aspects of the stress response—physiological measures directly reflect the 
body’s autonomic activity, while behavioral cues provide observable indicators of emotional state. Multimodal approaches aim to 
combine these perspectives to achieve more robust detection. In this section, we provide a detailed discussion of these data sources, 
highlighting their characteristics, challenges, and suitability for classroom-based research. 

Fig 2 Data Sources And Modalities In Stress Detection For Class Room Environment 
 
Multiple data sources and modalities are used to detect stress in a classroom environment, as a single source is often insufficient for 
accurate results. Data can be categorized as physiological, behavioral, and environmental. The most effective systems use 
multimodal fusion, combining data from several sources to achieve higher accuracy. 

 
A. Physiological Signals 
Physiological signals remain among the most widely studied indicators of stress due to their close connection to underlying neural 
and autonomic processes. These signals are typically acquired through wearable or non-invasive biosensors, which can capture real-
time responses such as EEG (electroencephalography), ECG (electrocardiography), GSR (galvanic skin response), HRV (heart rate 
variability), and respiration rate. EEG signals, in particular, provide insights into stress-induced alterations in brain activity, with 
changes in alpha, beta, and theta band power being strongly correlated with cognitive overload. Similarly, ECG and HRV provide 
sensitive measures of sympathetic and parasympathetic nervous system balance, which are disrupted under stress conditions [20]. 
Electrodermal activity (EDA), measured through GSR, reflects sweat gland activity controlled by the sympathetic nervous system 
and has been widely validated as a marker of stress-related arousal [21]. Respiration patterns, including irregular breathing and 
reduced variability, further contribute to the assessment of psychological tension [22]. While these modalities provide objective and 
quantifiable measures, their integration into classroom environments poses challenges such as the need for wearable devices, 
potential discomfort for students, and issues of signal artifacts caused by movement. However, recent advances in lightweight 
wearable sensors and unobtrusive biosignal monitoring devices are improving feasibility for classroom applications. 
 
B. Behavioral Indicators 
Behavioral signals provide an accessible and non-intrusive means to detect stress, making them particularly attractive in educational 
contexts. These include facial expressions, vocal characteristics, eye gaze, gestures, and body posture. Stress often induces micro-
expressions, reduced smiling, and tense facial movements that can be effectively captured using computer vision algorithms. Deep 
learning–based facial analysis systems, especially CNNs, have demonstrated the ability to recognize subtle stress-related 
expressions in real time [23]. In addition to facial cues, vocal features such as pitch, speech rate, and spectral properties provide 
valuable information about stress levels. Studies have shown that stressed individuals often exhibit higher pitch variability, reduced 
speech fluency, and uneven energy distribution across frequency bands [24]. 
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These features can be extracted through automated speech recognition pipelines and combined with acoustic emotion recognition 
techniques for classroom stress analysis. 
Body language and posture also reflect stress, where behaviors such as slumping shoulders, restlessness, or repetitive movements 
signal cognitive and emotional strain [25]. Eye-tracking technologies provide further insight into stress-related attentional changes, 
with prolonged fixation or avoidance behavior often linked to anxiety and cognitive overload [26]. Compared to physiological 
signals, behavioral indicators are less intrusive, as they can be collected using cameras and microphones already present in 
classrooms. However, environmental variability (e.g., lighting, background noise) and cultural differences in expression remain 
important challenges in ensuring accuracy and generalizability. 
 
C. Multimodal Fusion 
Single-modality approaches often fail to capture the full complexity of stress, as each signal type is influenced by different sources 
of variability and noise. To overcome these limitations, multimodal fusion strategies combine physiological and behavioral data 
streams to produce more accurate and reliable predictions. For example, fusing EEG data with facial expression analysis has been 
shown to significantly improve classification performance compared to using either modality alone [27]. 
Multimodal fusion can occur at different levels: early fusion, where features from multiple modalities are concatenated before being 
fed into the model; late fusion, where independent classifiers for each modality are combined at the decision stage; and hybrid 
fusion, which integrates both strategies to balance feature richness and interpretability [28]. Recent advances in deep learning, 
particularly CNN–LSTM hybrids and transformer-based architectures, have enabled effective modeling of temporal dependencies 
across multimodal data streams. 
In classroom environments, multimodal frameworks are particularly advantageous, as they can leverage a combination of non-
invasive sensors (e.g., cameras, microphones) with optional wearable devices (e.g., smartwatches measuring HRV). Such integration 
provides a holistic understanding of both internal physiological states and external behavioral cues. Although multimodal systems are 
computationally demanding and raise concerns about privacy and data management, they represent the most promising direction for 
developing robust stress detection frameworks in real-world educational settings. 
 

Table I: Comparison of Physiological, Behavioral, and Multimodal Data for Classroom Stress Detection 
DATA 
TYPE 

EXAMPLE
S 

ADVANTAGES LIMITATIONS SUITABILITY IN CLASSROOM 

Physiological EEG, ECG, 
HRV, GSR, 
PPG 

Objective and 
quantifiable; High 
accuracy in measuring 
stress response; Less 
bias than selfreports 

Requires wearable 
devices; May cause 
discomfort; Possible 
intrusiveness in 
natural classroom 
settings 

Useful for research-based monitoring; 
suitable in controlled classroom studies 
with consent 

Behavioral Facial 
expressions, 
body posture, 
eye gaze, speech 
tone 

Non-intrusive; Can be 
captured using 
cameras/microphones
; 

Reflects real-time 
affective state 

Sensitive to lighting, 
occlusions, 
background noise; 
Privacy 
concerns; 
Interpretation may 
vary 

Highly suitable for classroom 
monitoring; enables continuous, passive 
stress detection 

Multimodal Combination of 
physiological + 
behavioral 
signals 

Provides richer context 
and higher accuracy; 
Robust against 
singlesensor
 limit
ations; 

Captures 
complex stress 

dynamics 

Computationally 
intensive; 
Requires 

synchroniza
tion of modalities; 
More complex data 
collection setup 

Highly suitable for adaptive learning 
systems; balances accuracy and 
contextual understanding 

Table I provides a comparative summary of physiological, behavioral, and multimodal data sources, highlighting their respective 
advantages, limitations, and classroom applicability.” 
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IV. DATA SOURCES AND MODALITIES 
Stress detection in classroom environments relies on diverse data sources that capture both internal physiological responses and 
external behavioral cues. The choice of modality significantly affects the accuracy, feasibility, and ethical considerations of stress 
monitoring in real-world academic settings. This section outlines the key modalities, including physiological signals, facial and 
micro-expressions, speech and voice analysis, and multimodal datasets that integrate multiple streams of information for robust 
stress recognition. 

 
A. Physiological Signals (EEG, ECG, EDA, HRV) 
Physiological signals provide direct, objective measurements of the body’s response to stress. Electroencephalography (EEG) 
measures electrical brain activity, offering insights into cognitive load and emotional regulation. Electrocardiography (ECG) 
captures cardiac signals, with heart rate variability (HRV) serving as a well-established biomarker of stress and autonomic nervous 
system activity. Electrodermal activity (EDA), often measured through galvanic skin response, reflects sympathetic nervous system 
arousal and has been widely applied in emotion recognition studies. These modalities are reliable for stress detection, but their 
application in classrooms requires careful consideration of intrusiveness, student comfort, and data privacy. 
 
B. Facial Expressions and Micro-Expressions 
Facial expressions are strong behavioral indicators of emotional states and can be non-invasively captured through computer vision 
techniques. Macro-expressions, such as frowning or smiling, provide clear markers of affect, while micro-expressions—brief, 
involuntary facial movements—offer subtle cues of hidden or suppressed stress. With advances in deep learning and convolutional 
neural networks (CNNs), facial expression recognition has achieved significant accuracy in classroom-based studies. However, 
factors such as lighting conditions, occlusion, and cultural variations in expressivity may influence detection reliability. Despite 
these challenges, facial analysis remains one of the most practical and scalable approaches for monitoring stress in real-time 
learning environments. 
 
C. Speech and Voice Analysis 
Speech and vocal characteristics, including tone, pitch, rhythm, and speech rate, carry critical emotional information that reflects 
stress levels. Under stress, individuals may exhibit changes in vocal pitch, reduced fluency, or increased speech disfluencies. 
Machine learning techniques such as recurrent neural networks (RNNs) and long short-term memory (LSTM) models have been 
employed to capture temporal variations in speech features, enabling robust stress classification. In classroom settings, microphones 
embedded in learning environments can be used to analyze students’ speech during interactions, presentations, or discussions. The 
main challenges include background noise, overlapping voices, and privacy concerns; nevertheless, voice analysis provides a 
valuable, non-invasive window into students’ emotional states. 
 
D. Multimodal Datasets in Classroom Environments 
While single-modality data sources provide valuable insights, multimodal datasets offer a more comprehensive view by combining 
physiological and behavioral signals. For example, EEG and ECG data can be integrated with facial expression analysis to enhance 
stress classification accuracy. Similarly, speech features combined with eye-gaze tracking or posture monitoring provide a richer 
context of cognitive and emotional states. Several benchmark multimodal datasets, such as DEAP and DREAMER, exist for 
affective computing; however, dedicated classroomoriented datasets are still limited. The development of large-scale, ethically 
collected multimodal classroom datasets is crucial to designing adaptive learning systems that can personalize teaching strategies 
based on students’ stress levels. 
 

Table II: Summary of Stress Detection Modalities in Classroom Environments 
MODALITY KEY FEATURES ADVANTAGES CHALLENGES REPRESENTAT

IVE SOURCES 
Physiological 
Signals 

EEG,
 ECG/
HRV, EDA 

(GSR), 
respiration 

Objective Requires wearables; EEG [1], 
HRV 
[20], 

EDA [14] 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IX Sep 2025- Available at www.ijraset.com 
     

 
1342 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Facial 
Exp
ressi
ons 
& 

Micro-
Expressions 

Macro- and micro-level 
facial cues, action units 
(FACS/AUs) 

Non-
intrusive; 

Sensitive to lighting, 
occlusion, cultural 
expression differences 

Compound 
Action Units [9] 

Speech & 
Voice 
Analysis 

Vocal pitch, mel-
spectrogram features, 
fluency, energy 
distribution 

Non-invasive; 
Easily 
recordable 
via 
classroom 
audio 

Background noise; 
Multiple speakers; 
Privacy and 
consent issues 

Speech 
OpenSMILE 
features [21] 

Multimodal 
Fusi

on 
Approaches 

Integration of 
physiological + behavioral 
data using early/late fusion 
or hybrid deep models 

Enhanced 
accuracy; Robust 
via complementary 
signals 

High computational 
complexity; 
Synchronization issues; 
Privacy considerations 

Empathi
cSchool 
dataset 
[13], 
Real-
time 

deep fusion [4] 
, 

Table II provides a concise comparison of the main data modalities used in classroom stress detection, emphasizing their key 
features, strengths, challenges, and relevant literature.” 
 

Fig 3. A Conceptual Model Of Multimodal Data Analysis. 
 
The diversity of physiological, behavioral, and multimodal data sources highlights the complexity of stress detection in classroom 
environments. While physiological signals provide quantifiable measures, facial and vocal cues capture naturalistic behaviors that 
are essential for real-time monitoring. Multimodal datasets, in particular, enable richer contextual understanding by fusing 
complementary data streams. However, the heterogeneous nature of these data types requires advanced analytical approaches 
capable of handling high-dimensional, noisy, and multimodal inputs. Traditional machine learning methods often struggle with 
such complexity, making deep learning a natural candidate for effective feature extraction, fusion, and classification. Consequently, 
the following section explores state-of-the-art deep learning models for stress detection, emphasizing architectures specifically 
designed to leverage the unique characteristics of multimodal classroom data. 
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V. PREPROCESSING AND FEATURE ENGINEERING 
Preprocessing and feature engineering play a crucial role in developing effective deep learning models for stress detection in 
classroom environments. The raw physiological and behavioral data collected from students, including signals such as electrodermal 
activity (EDA), electroencephalography (EEG), heart rate (HR), and skin temperature, often contain noise, artifacts, and variability that 
must be addressed before model training. Signal processing techniques, such as noise filtering using Butterworth or Chebyshev 
filters, segmentation of continuous signals into epochs, and normalization to standard scales, are commonly employed to ensure that 
the data is clean, consistent, and suitable for learning algorithms. These preprocessing steps enable the extraction of meaningful 
information that can accurately represent the underlying stress patterns in students [29]. 
Data augmentation methods are frequently utilized to address the challenges of limited datasets, which are common in classroom-
based stress detection studies. By applying techniques such as time-domain augmentation, including jittering and sliding window 
methods, or frequency-domain adjustments to modify spectral components, the diversity of the dataset can be increased without 
additional data collection. Moreover, advanced generative approaches, such as Generative Adversarial Networks (GANs), allow for 
the synthesis of realistic physiological data that closely resembles actual stress responses, thus improving model generalization and 
reducing overfitting [30]. 
Feature extraction is a critical step that transforms preprocessed signals into a set of informative attributes suitable for classification 
by deep learning models. Time-domain features, including mean, standard deviation, skewness, and kurtosis, provide insights into the 
central tendency and variability of signals. Frequency-domain features, derived through techniques such as Fast Fourier Transform 
(FFT), capture the energy distribution across different frequency bands, which is particularly important for analyzing EEG and heart 
rate variability. In addition, timefrequency domain methods, such as wavelet transforms, allow for the simultaneous analysis of 
temporal and spectral characteristics, enabling the detection of transient stress patterns that may be overlooked by conventional 
methods. For enhanced accuracy, multimodal feature fusion is often applied, combining features from multiple physiological and 
behavioral signals to create a comprehensive representation of a student’s stress state. This careful selection and engineering of 
features significantly improve the performance and reliability of deep learning models for real-time classroom stress detection [31]. 
 

VI. DEEP LEARNING MODELS FOR STRESS DETECTION 
The application of deep learning models in stress detection has gained significant attention due to their ability to analyze complex 
data from various modalities, including visual, auditory, and physiological signals. These models leverage advanced neural network 
architectures to process and interpret data, providing valuable insights into an individual's stress levels. 
 
A. Vision-Based Models 
Vision-based stress detection models primarily focus on analyzing facial expressions, body posture, and eye movement to infer 
emotional states. Convolutional Neural Networks (CNNs) are commonly employed to extract spatial features from images or video 
frames, capturing subtle facial cues indicative of stress. For instance, models that utilize facial landmarks and regions of interest 
(ROIs) have demonstrated efficacy in recognizing stress-induced facial expressions. Additionally, the integration of temporal 
information through Recurrent Neural Networks (RNNs) or Long Short-Term Memory (LSTM) networks allows for the analysis of 
dynamic facial movements over time, enhancing the model's ability to detect stress-related changes in facial expressions. These 
vision-based approaches offer a non-intrusive means of monitoring stress, making them suitable for real-time applications in 
various settings. 
 
B. Speech-Based Models 
Speech-based stress detection models analyze vocal features such as pitch, tone, speech rate, and energy levels to assess emotional 
states. Deep learning architectures, including CNNs and Bidirectional LSTM (BiLSTM) networks, are utilized to capture both local 
and sequential patterns in speech signals.  
These models can effectively differentiate between stressed and nonstressed speech by learning complex representations of vocal 
attributes. The use of pre-trained models like Wav2Vec 2.0 for feature extraction, combined with fine-tuning on domain-specific 
datasets, has further improved the accuracy of speech-based stress detection systems. Such models are particularly beneficial in 
scenarios where visual data is unavailable or impractical to collect, providing an alternative means of assessing stress through 
auditory cues. 
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C. Biosignal-Based Models 
Biosignal-based stress detection models focus on physiological data, including Electrocardiography (ECG), Electrodermal Activity 
(EDA), Heart Rate Variability (HRV), and skin temperature. These signals are processed using deep learning models such as CNNs, 
RNNs, and Transformer networks to identify patterns associated with stress responses. For example, variations in HRV and EDA 
have been linked to stress-induced autonomic nervous system activity, and deep learning models can learn to classify these patterns 
effectively. The advantage of biosignal-based models lies in their ability to provide objective, quantifiable measures of 
physiological stress, which can be particularly useful in clinical or high-stakes environments where accurate stress assessment is 
critical. 
 
D. Multimodal Fusion Approaches 
Multimodal fusion approaches integrate data from multiple modalities—such as visual, auditory, and biosignal inputs—to create a 
comprehensive model of stress detection. By combining the strengths of each modality, these models can achieve higher accuracy 
and robustness compared to unimodal systems. Techniques like early fusion, where features from different modalities are combined 
at the input level, and late fusion, where individual modality models are trained separately and their outputs are merged, are 
commonly employed. Intermediate fusion approaches, which combine features at intermediate layers of the network, have also 
been explored to balance the benefits of early and late fusion. The use of attention mechanisms within these fusion models allows 
for dynamic weighting of modality contributions, enabling the model to focus on the most informative features at any given time. 
Multimodal fusion approaches are particularly effective in complex real-world scenarios where stress manifestations are 
multifaceted and may not be adequately captured by a single modality. 
 

VII. EVALUATION METRICS AND BENCHMARKING 
A. Accuracy, Precision, Recall, and F1-Score 
In classification tasks, metrics such as accuracy, precision, recall, and F1-score are commonly used to evaluate model performance. 
Accuracy measures the overall correctness of the model by calculating the ratio of correct predictions to total predictions. However, 
accuracy can be misleading in imbalanced datasets, where the majority class dominates. Precision and recall offer more nuanced 
insights: precision indicates the proportion of true positive predictions among all positive predictions, while recall measures the 
proportion of true positive predictions among all actual positives. The F1-score, defined as the harmonic mean of precision and 
recall, provides a single metric that balances the trade-off between precision and recall. These metrics are particularly useful in 
stress detection scenarios, where false positives and false negatives can have significant implications for user well-being and model 
trustworthiness. 
1) Accuracy (Acc), 

ACC  
where: 
 
• TPTPTP = True Positives 
• TNTNTN = True Negatives  FPFPFP = False Positives 
• FNFNFN = False Negatives 

 
2) Precision quantifies the proportion of correctly predicted positive instances among all predicted positives: 
 

Prec =  
 
 
3) Recall (or Sensitivity) measures the proportion of actual positives correctly identified 
 

       ܶܲ 
 Rec = 
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4) The F1-score is the harmonic mean of precision and recall: 

These metrics are crucial in classroom stress detection because both false positives and false negatives can significantly impact 
interventions and student support. 
 
B. Stress-Level Classification vs. Regression 
Stress detection models can be broadly categorized into classification and regression approaches. Classification models predict 
discrete stress levels, such as "low," "medium," or "high," based on input features. These models are evaluated using metrics like 
accuracy, precision, recall, and F1-score. In contrast, regression models predict continuous stress levels, providing a more granular 
assessment of stress intensity. Evaluation metrics for regression models include Mean Squared Error (MSE), Mean Absolute Error 
(MAE), and Root Mean Squared Error (RMSE), which quantify the difference between predicted and actual stress levels. The 
choice between classification and regression approaches depends on the specific requirements of the application and the nature of 
the available data. 

Fig 5 PREDICTED VS. ACTUAL STRESS LEVELS 
 
C. Benchmark Datasets Used in Classroom Studies 
Benchmark datasets serve as the foundation for designing, training, and validating deep learning models in stress detection research. 
Their importance lies not only in providing a structured basis for experimentation but also in enabling reproducibility, fair 
performance comparison, and the establishment of standardized evaluation practices. In the context of classroom environments, 
datasets that capture physiological, behavioral, and environmental modalities are especially relevant, as they reflect the multifaceted 
nature of stress among students. One widely used dataset is the Affective ROAD dataset, which provides continuous stress-related 
recordings collected via wearable sensors such as electrocardiogram (ECG) and galvanic skin response (GSR). Its temporal richness 
makes it suitable for both classification and regression-based tasks, allowing models to predict stress levels dynamically rather than 
only in discrete categories. 
Another notable resource is the Stress ID dataset, which integrates multimodal data, including facial expressions, audio recordings, 
and physiological signals. This multimodality supports the development of hybrid deep learning models capable of capturing both 
observable behavioral cues and hidden physiological responses, thereby improving detection accuracy in real-world classroom 
conditions. 
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Additionally, the Student Stress Monitoring Datasets available on Kaggle provide comprehensive data that extend beyond 
physiological measures. These datasets encompass psychological, academic, social, and environmental stress factors, reflecting the 
diverse challenges students face in educational environments. Such richness enables the development of holistic frameworks that 
not only detect stress but also model its contextual triggers. 
The use of benchmark datasets in classroom-focused studies offers several advantages. 
• Compare different deep learning architectures under controlled and standardized conditions. 
• Identify critical features (e.g., heart rate variability, speech pitch, micro-expressions) that strongly correlate with stress 

responses. 
• Develop generalizable models that can be validated across institutions and learning environments. 
• Address domain-specific challenges such as data imbalance, multimodal fusion, and real-time deployment feasibility. 
By leveraging these datasets, the research community can accelerate progress toward creating robust, scalable, and ethically sound 
stress detection systems for classroom applications. However, ongoing efforts are needed to expand dataset diversity, incorporate 
longitudinal recordings, and address privacy issues, ensuring that future benchmarks reflect both the complexity of stress and the 
practical requirements of smart educational environments. 
 

Table III. Benchmark Datasets Commonly Used For Stress Detection In Classroom Studies 
DATASET MODALITIES CAPTURED KEY FEATURES APPLICATIONS IN 
Affective ROAD Physiological signals (ECG, 

GSR, respiration, skin 
temperature) 

Continuous stress 
recordings using wearable 
sensors; supports time-
series analysis 

Suitable for 
classification and 
regression tasks; real-
time stress monitoring 

Stress ID Multimodal data (facial 
expressions, speech/audio, 
ECG, GSR) 

Combines behavioral and 
physiological responses; 
multimodal fusion possible 

Development of hybrid 
models for accurate 
detection in real-world 
conditions 

Student Stress 
Monitoring 
(Kaggle) 

Psychological, 
physiological, academic, 
social, and environmental 
factors 

Comprehensive dataset 
covering multiple stress 
dimensions 

Holistic stress 
modeling; analysis of 
contextual triggers in 
classroom environments 

WESAD 
(Wearable Stress and 
Affect Detection) 

Physiological signals (ECG, 
EDA, EMG, respiration, body 
temperature, accelerometer) 

High-quality multimodal 
dataset collected in lab and 
semi-realistic settings 

Widely used 
benchmark for stress 
classification and model 
comparison 

DEAP (Database 
Analysis using 
Physiological 
Signals) 

EEG, peripheral 
physiological 

Includes emotional 
states with annotated 
labels 

Useful for emotion 
recognition tasks, often 
extended to stress 
analysis in learning 
scenarios 

 
VIII. APPLICATIONS IN CLASSROOM ENVIRONMENTS 

The deployment of deep learning–based stress detection frameworks in classroom environments is emerging as a transformative 
approach to modern pedagogy. Unlike traditional teaching methods, which rely largely on uniform instructional delivery, these 
intelligent systems enable the development of personalized, adaptive, and data-driven learning ecosystems. By continuously 
monitoring physiological, behavioral, and multimodal signals, stress detection applications provide actionable insights into student 
well-being and learning capacity. The resulting benefits include real-time stress assessment, adaptive instructional mechanisms, and 
early intervention strategies, all of which contribute to improved academic outcomes and emotional support within educational 
settings. 
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A. Real-Time Stress Monitoring 
Real-time stress monitoring focuses on the continuous collection and interpretation of student data to identify variations in stress 
levels as they occur. Physiological signals such as electro dermal activity, heart rate variability, and respiration patterns are 
commonly used, in combination with behavioral cues such as facial expressions, vocal tone, and body posture. The integration of 
these multimodal indicators provides a comprehensive representation of student stress responses. 
Deep learning models play a central role in enabling accurate and timely detection. Convolutional Neural Networks are particularly 
effective in extracting spatial features such as microexpressions and subtle visual cues from facial images, while Long Short-Term 
Memory networks excel in capturing the temporal dependencies present in sequential data like heart rate fluctuations and speech 
variations. By combining these models, stress detection frameworks are capable of producing robust classifications across different 
stress levels. 
The general process involves several stages: first, data acquisition is achieved through wearable sensors, video cameras, and 
microphones embedded in classroom environments. Next, preprocessing ensures signal quality by removing artefacts and 
normalizing data across modalities. This is followed by feature learning, where deep neural networks automatically extract relevant 
characteristics from raw input streams. In the classification stage, stress levels are categorized into low, moderate, or high using 
machine learning classifiers or ensemble techniques. 
Finally, the system provides real-time feedback, allowing teachers and administrators to intervene through strategies such as pacing 
adjustments, relaxation breaks, or personalized instruction. A typical system pipeline can be expressed as: 
 
This approach allows teachers to detect elevated stress states during lectures or assessments and intervene before performance 

deteriorates. Studies have shown that wearable-based stress monitoring systems integrated with machine learning can achieve 
accuracies exceeding 85% in real-time scenarios [32]. 

Fig 6. Real-Time Stress Monitoring System Pipeline 
 
B. Adaptive Learning Mechanisms 
Adaptive learning mechanisms represent one of the most promising applications of stress detection in classroom environments. 
These mechanisms aim to tailor the pace, style, and delivery of instruction based on the stress levels and emotional states of 
students. By integrating stress detection systems into smart classrooms, teaching strategies can shift from a uniform approach to a 
more dynamic and personalized mode of instruction. This transformation allows educators to respond not only to cognitive needs 
but also to the psychological readiness of learners. 
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In practice, adaptive learning begins with the real-time identification of a student’s stress state through multimodal inputs such as 
physiological signals, behavioral patterns, and speech characteristics. When elevated stress levels are detected, the system can 
automatically adjust instructional parameters, for example by slowing down the pace of lecture delivery, simplifying the complexity 
of presented material, or incorporating interactive and engaging activities to reduce cognitive load. Conversely, when students 
exhibit low stress and high engagement, the system can accelerate instruction or introduce advanced material to maintain an 
optimal learning curve. 
Deep learning models, including Convolutional Neural Networks, Long Short-Term Memory networks, and Transformer-based 
architectures, play a crucial role in enabling adaptive mechanisms. These models capture both short-term fluctuations and long-term 
trends in stress responses, thereby allowing the system to make accurate adjustments in real time. Over time, the system can also 
learn from historical data, creating personalized stress-response profiles for individual students and refining interventions to suit 
their unique learning patterns. 
The benefits of adaptive learning mechanisms extend beyond academic performance. They contribute to the creation of inclusive 
classrooms where students with varying stress tolerances and coping mechanisms receive equal opportunities for success. 
Moreover, such systems promote resilience by encouraging healthy stress management strategies, ensuring that learning remains 
both effective and sustainable. 
Formally, the adaptive mechanism can be modeled as: 

At  f (St,Pt,Bt,Et; ) 
Where: A 

• t → Adaptive learning adjustment at time t 
• St → Stress index derived from physiological and behavioral signals 
• Pt → Performance metrics (e.g., task accuracy, engagement score) 
• Bt → Behavioral cues (e.g., facial expression, posture, interaction patterns) 
• Et → Environmental/contextual factors (e.g., workload, classroom conditions) 
• → Model parameters that are continuously updated 

The optimization objective can be written as: limL(At, At )   R( ) 

 
L( ) Loss function measuring deviation between predicted adaptive response At and desired response At R( )  

Regularization to prevent overfitting and ensure fairness 
 Weighting factor balancing adaptation accuracy and stability 

Such personalized interventions foster a balance between cognitive load and learning efficiency, thereby reducing academic anxiety 
and improving long-term retention [33]. 
 

Table IV: Examples Of Adaptive System Responses Under Varying Stress Levels 
STRESS 
LEVEL 

OBSERVED 
INDICATORS 

(PHYSIOLOGICAL/BEHAVIO
RAL) 

ADAPTIVE SYSTEM 
RESPONSE 

EXPECTED 
OUTCOME 

Low 
Stress 

Stable heart  
facial 

expressions, active participation 

Maintain baseline content delivery Sustained engagement 
and normal learning pace 

Modera
te Stress 

Slightly elevated heart rate, 
reduced eye contact, slower 
task completion 

Adjust task difficulty, provide supportive prompts Reduced anxiety, improved 
task completion 

High 
Stress 

Rapid heart rate, frowning, 
disengagement, frequent errors 

Trigger relaxation strategies (short breaks, 
mindfulness cues), simplify content 

Stress reduction,
 regained
 focus, improved 
performance 

Critical 
Stress 

Strong physiological arousal, 
withdrawal from activity, 
refusal to participate 

Immediate alert to instructor, peer-support or 
counseling referral 

Prevention of 
intervention for well-being 
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C. Early Intervention and Support for Students 
Early interventions form a critical component of stress detection applications in classroom environments. The primary objective of 
such interventions is to provide timely support to students who exhibit signs of elevated stress, thereby preventing prolonged 
cognitive overload, anxiety, or burnout. By identifying stress at an early stage, educators can apply corrective strategies before the 
condition negatively impacts academic performance or psychological well-being. 
The process of early intervention begins with continuous monitoring of stress signals and the subsequent computation of stress 
levels. When the detected stress index surpasses a predefined threshold, the system generates an alert that can be directed either to 
the student or to the instructor. For instance, if stress levels are consistently high during a specific learning activity, the system may 
recommend relaxation techniques, short breaks, or the introduction of collaborative tasks to reduce pressure. Similarly, teachers 
may receive feedback to adjust instructional complexity or provide additional guidance to struggling students. Stress Detection 
with Early Intervention: 

I(S) = {10if SI ≥ θif SI < θ Where: 
• SI = Stress Index (calculated from physiological + behavioral parameters). 

 
θ= predefined stress threshold. 

• I(S) = Intervention Indicator (1 = intervention triggered, 0 = no intervention). 
where HRV represents heart rate variability, EDA denotes electrodermal activity,  corresponds to facial expression indicators, 

and  reflects voice modulation features. The coefficients  are weighting factors assigned based on the relative 
contribution of each modality in predicting stress. 
By applying such formulas in real time, early intervention systems can not only detect heightened stress but also differentiate 
between temporary fluctuations and persistent stress patterns. This enables targeted support strategies that are both timely and 
personalized. 
Early interventions therefore serve as a preventive mechanism, ensuring that stress does not accumulate to detrimental levels. They 
foster a supportive learning atmosphere, reduce the likelihood of long-term academic disengagement, and enhance the overall 
emotional resilience of students. 
The integration of deep learning–based stress detection systems into classroom environments represents a paradigm shift in modern 
pedagogy. Real-time monitoring enables the continuous assessment of students’ emotional states, adaptive learning mechanisms 
personalize the instructional process according to individual stress responses, and early interventions provide timely support to 
mitigate potential adverse outcomes. Collectively, these applications establish a holistic framework that not only enhances academic 
engagement but also promotes psychological well-being and resilience among learners. By combining multimodal data analysis with 
advanced neural architectures, such frameworks can bridge the gap between technological innovation and practical educational 
outcomes, ultimately contributing to the development of intelligent, responsive, and student-centered classroom ecosystems. 

Fig 7: The complexity model of well-being is depicted with the three dimensions of well-being represented as hexagons and 
influencing factors 
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These predictions enable schools to provide psychological counseling, peer support, or workload adjustments proactively. Integrating 
such frameworks into classroom environments has been found to improve not only academic performance but also emotional 
resilience among students [34]. 

IX. CHALLENGES AND LIMITATIONS 
Although deep learning–based stress detection systems have shown significant promise, their widespread adoption in classroom 
environments remains constrained by several challenges. These challenges extend beyond technical considerations and include 
issues related to data acquisition, privacy, ethical acceptability, model generalizability, and hardware deployment. Addressing these 
concerns is vital to ensure that stress detection frameworks are accurate, equitable, and practical in real-world educational settings. 
 
A. Data Collection in Natural Classroom Settings 
The collection of stress-related data in real-world classrooms is inherently more complex than in controlled laboratory environments. 
Unlike laboratory settings where conditions are standardized, classroom environments are influenced by cultural, social, and 
situational factors that make stress labeling difficult and often subjective [35]. Physiological signals such as EEG, ECG, and GSR 
are particularly prone to motion artifacts, device misplacements, and environmental interference when students engage in routine 
classroom activities. Such inconsistencies reduce the reliability of ground-truth stress labels, thereby limiting the effectiveness of 
fully supervised learning. Recent research emphasizes semi-supervised learning, domain adaptation, and advanced data 
augmentation strategies as solutions to counter the scarcity of high-quality annotated classroom datasets [36]. Moreover, 
multimodal integration—combining physiological, behavioral, and contextual data—has been explored to increase robustness, 
though at the cost of increased data complexity and resource requirements [37]. 
 
B. Privacy and Ethical Concerns 
The integration of stress monitoring systems in classrooms introduces significant ethical and privacy challenges. Since these 
systems often rely on video, audio, or biometric signal capture, the risk of exposing personally identifiable and sensitive data is 
considerable [38]. In addition, continuous surveillance may trigger discomfort or "surveillance anxiety," paradoxically contributing 
to elevated stress levels among students. Ethical AI guidelines emphasize the need for explicit consent, data minimization, and 
strong anonymization before deployment [39]. To address these concerns, privacy-preserving machine learning methods have 
gained traction. Federated learning allows model training without centralizing raw data, while differential privacy and homomorphic 
encryption offer further safeguards by mathematically ensuring data confidentiality [40]. Despite these advancements, balancing the 
need for accurate stress detection with respect for student autonomy and well-being remains an unresolved challenge. 
 
C. Model Generalizability and Bias 
Another significant limitation lies in the generalizability of stress detection models across diverse educational environments. Deep 
learning architectures, such as CNN–LSTM and Transformerbased hybrids, often achieve high performance on specific datasets but 
suffer when applied to unseen classrooms or culturally diverse populations due to dataset bias [41]. For example, a model trained 
primarily on a single cultural group may fail to capture stress indicators in students from different ethnic or linguistic backgrounds 
[42]. This limitation underscores the need for cross-cultural benchmarking, domain adaptation, and transfer learning approaches to 
improve robustness [43]. Furthermore, bias in training datasets can lead to unfair outcomes, such as disproportionately high 
misclassification rates for certain student groups. Fairness-aware machine learning frameworks and explainable AI mechanisms are 
being explored to mitigate these issues and ensure equitable model performance [44]. 
 
D. Hardware and Deployment Constraints 
Beyond algorithmic limitations, hardware and deployment concerns present substantial barriers to practical classroom 
implementation. State-of-the-art deep learning models typically require GPUs or cloud-based servers for real-time inference, which 
are impractical in many educational institutions due to cost, infrastructure, or internet dependency [45]. Wearable sensors, such as 
EEG headbands and GSR wristbands, though effective for data capture, may cause physical discomfort or distract students, limiting 
their long-term acceptability in classrooms [46]. To overcome these barriers, research has increasingly shifted toward lightweight 
deep learning models such as MobileNet, TinyML, and edge AI frameworks that support on-device computation. 

These approaches allow stress detection systems to operate with reduced latency and resource consumption, making real-time 
classroom monitoring more feasible. However, a persistent tradeoff remains between computational efficiency and detection 

accuracy, which continues to influence model design and deployment strategies [47].
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Fig: 8 Complexity and Model Accuracy in class room Stress Detection System 

 
E. Concluding Remarks 
In summary, while deep learning–based stress detection systems show strong potential for transforming classroom environments, 
their practical deployment is hindered by issues of data reliability, privacy and ethics, cross-domain generalizability, and hardware 
feasibility. Addressing these challenges requires a careful balance between technological innovation and ethical responsibility, 
ensuring that systems are not only accurate but also transparent, equitable, and sustainable. These limitations also point toward 
fertile ground for future research, where advancements in explainable AI, privacy-preserving frameworks, and lightweight adaptive 
models can play a decisive role in overcoming current barriers and enabling large-scale, realworld adoption. 
 

X. FUTURE DIRECTIONS 
Despite notable advancements in deep learning–based stress detection, the journey toward real-world classroom adoption remains at 
an early stage. The classroom setting introduces unique complexities, such as heterogeneous data sources, student privacy concerns, 
and deployment feasibility, which are not fully addressed by current methods. Moving forward, research must aim to design 
interpretable, ethical, and resource-efficient systems that support scalable implementation. The subsections below highlight critical 
directions for future exploration. 
 
A. Explainable Artificial Intelligence (XAI) 
A major limitation of deep neural networks in educational stress detection is their “black box” nature, where decision-making 
processes remain opaque. For teachers, administrators, and policymakers to adopt these systems, models must provide not only 
accurate predictions but also human-interpretable justifications. Explainable AI (XAI) methods, such as attention-based 
visualization, saliency maps, and feature attribution techniques, can highlight which physiological signals (e.g., heart rate 
variability, EEG activity) or behavioral cues (e.g., facial microexpressions, speech prosody) drive model outputs. Beyond trust-
building, XAI enables educators to act with greater precision, tailoring interventions based on identified stress triggers. Integrating 
interpretability modules within CNN–LSTM and Transformer-based frameworks will thus be vital for classroom acceptance and 
ethical accountability. 
 
For example, attention-based models use a contextual weight distribution: 
 

Figure 1݇ = 1ܶ݁(݁݇)݁(ݐ݁)݌ݔ 
 
where ݐߙ represents the attention weight at time step , ݐ, and is the learned importance score. These weights highlight which 
temporal features (e.g., changes in heart rate or facial expression) influence the model’s stress prediction. 
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B. Wearable and Unobtrusive Technologies 
Traditional monitoring tools such as EEG caps or wired sensors, while effective in laboratory contexts, are impractical in dynamic 
classroom environments. They often disrupt natural learning processes and may cause discomfort for prolonged use. Future 
research should emphasize unobtrusive technologies, including wearable devices like smartwatches, GSR wristbands, or vision-
based monitoring systems capable of capturing subtle behavioral cues without intrusive contact. With advancements in miniaturized 
sensors and computer vision algorithms, stress indicators can be derived from facial expressions, body posture, or acoustic 
variations in real time. Such lightweight, student-friendly tools will ensure ecological validity by preserving the natural flow of 
classroom activities while enabling continuous stress monitoring. 
Sfusion = wpSp + wbSb + wcSc where wp, wb, wc are modality-specific weights optimized during training. Such multimodal 
fusion ensures robust detection across diverse classroom conditions. 
 
C. Federated Learning and Privacy-Preserving Approaches 
In educational environments, student privacy is non-negotiable. Conventional centralized machine learning frameworks expose 
sensitive biometric and psychological data to storage and transmission vulnerabilities. Federated learning offers a paradigm shift by 
enabling decentralized training across multiple institutions without sharing raw data. When combined with privacypreserving 
methods such as differential privacy, secure multiparty computation, and homomorphic encryption, it becomes possible to balance 
data confidentiality with model accuracy. This direction aligns with global ethical AI standards and reduces the risk of surveillance 
anxiety among students. Implementing federated frameworks will be particularly crucial for multiinstitutional deployments where 
data governance and compliance are mandatory. 
 

 
where Fi(w)F_i(w)Fi(w) is the local loss for client ݅, ܖܑܖ_ܑ݊݅is the dataset size of client , and n is the total number of samples across 
all clients. This ensures global optimization while preserving local data privacy. 
 
D. Cross-Cultural and Domain-Generalizable Models 
Stress manifests differently across cultural, linguistic, and socio-economic contexts, yet many current datasets are narrow in scope, 
often collected from limited populations. This lack of diversity leads to bias and poor generalizability when applying models to new 
settings. Future research should prioritize cross-cultural benchmarking datasets and domain adaptation strategies to ensure 
inclusivity. Approaches such as transfer learning, meta-learning, and adversarial domain adaptation can enable models to adapt 
across diverse classrooms without significant retraining. Building large-scale, multi-institutional, multicultural corpora will be key 
to developing stress detection systems that work equitably across varied educational environments. 
Bias and limited generalizability remain key barriers. Transfer learning and domain adaptation aim to align feature distributions 
between source (Ds ) and target (Dt) datasets:(Ds) minL(Ds; θ) + λ ⋅ MMD(Ds, Dt) where MMD (Maximum Mean Discrepancy) 
measures the distribution shift, and λ is a trade-off parameter. This improves model adaptability across culturally and contextually 
diverse classroom environments. 

 
E. Edge AI and Lightweight Architectures 
Deploying deep learning models in real-time classroom environments requires balancing computational efficiency with accuracy. 
High-capacity architectures like Transformers demand significant GPU resources, which are often impractical for school 
infrastructures. Edge AI solutions, powered by lightweight models such as MobileNet, TinyML, and quantized CNN–LSTM 
hybrids, offer a feasible alternative. By performing inference directly on local devices, these approaches minimize latency, reduce 
reliance on external servers, and protect student privacy by limiting data transmission. In the near future, classrooms may adopt 
hybrid cloud–edge ecosystems, where lightweight stress detection modules operate locally while leveraging cloud resources for 
periodic retraining and updates. Deploying deep learning models in classrooms requires balancing accuracy and efficiency. Edge AI 
and lightweight networks reduce computational burden by minimizing parameter size. The optimization goal is: 
minL(x; θ) + β ⋅ C(θ) 
where L(x;θ) is the prediction loss, and C(θ) represents computational cost (e.g., FLOPs, memory). The coefficient β\betaβ regulates 
the trade-off between accuracy and efficiency. 
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F. Integration with Adaptive Learning Frameworks 
The ultimate value of stress detection lies not in monitoring alone but in fostering personalized learning experiences. Integration 
with adaptive learning frameworks will allow realtime stress insights to directly inform pedagogical adjustments. For instance, if a 
system detects heightened stress, teaching platforms could automatically modify lesson pacing, reduce task difficulty, or introduce 
supportive interventions such as breaks or motivational feedback. Multimodal fusion—integrating physiological, behavioral, and 
contextual signals—can provide a holistic understanding of student well-being, enhancing the accuracy of adaptive responses. This 
synergy between stress-aware analytics and adaptive pedagogy has the potential to revolutionize learning by creating supportive, 
student-centered classrooms. Future systems should connect stress detection outputs with adaptive learning mechanisms that 
personalize teaching strategies. If y^s\hat{y}_sy^s is the predicted stress probability, the learning difficulty level Ld can be 
dynamically adjusted as: 

where Lb is the baseline difficulty level, and γ gammaγ is the adaptation rate. This ensures that students experiencing higher stress 
receive more supportive and less demanding tasks, improving engagement and well-being. 

 
G. Synthesis of Future Directions 
In conclusion, the future of deep learning–based stress detection in classrooms depends on developing transparent, unobtrusive, and 
privacy-aware systems that are robust across diverse populations. Edge AI and federated frameworks will improve real-time 
feasibility, while integration with adaptive learning systems will ensure that stress monitoring translates into meaningful educational 
benefits. By aligning technological innovation with ethical and pedagogical goals, future research can transform classrooms into 
responsive environments that support both academic success and mental well-being. 

XI. CONCLUSION 
This review has presented a comprehensive analysis of deep learning–based stress detection frameworks in classroom environments, 
highlighting the interplay between data sources, modeling techniques, and application domains. The discussion underscored the 
growing importance of multimodal approaches, which integrate physiological, behavioral, and contextual signals to enhance detection 
accuracy and reliability. Furthermore, recent advances in hybrid architectures—such as CNN–LSTM–Transformer models—
demonstrate significant potential for capturing both spatial and temporal dynamics of stress responses in real time. 
Applications in classroom settings reveal that stress monitoring can extend beyond passive observation to support real-time 
interventions, adaptive learning mechanisms, and personalized educational pathways. These systems enable teachers and 
administrators to better understand student well-being, thereby fostering inclusive, responsive, and emotionally intelligent learning 
environments. At the same time, the future directions outlined in this review illustrate the need for continued exploration in 
explainable AI, unobtrusive sensing, privacy-preserving computation, cross-cultural robustness, and lightweight architectures. 
Addressing these challenges will be critical for scaling deployment and achieving trustworthy integration into educational 
ecosystems. In conclusion, the synergy of technological innovation and pedagogical sensitivity holds the key to transforming 
classrooms into adaptive, student-centered ecosystems. By aligning deep learning advances with ethical, cultural, and infrastructural 
considerations, stress detection research can evolve from experimental studies into real-world solutions. Such progress not 
onlyenhances academic outcomes but also contributes to the holistic well-being of learners, ensuring that future classrooms are both 
technologically advanced and emotionally supportive. 
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