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Abstract: Freshwater bodies are shrinking in both number and quality, and a large number of the remaining lakes and ponds
are now being periodically impacted by Harmful Algal Blooms (HABs). These HABs cause a disruption in the natural
ecosystem, make the water unsuitable for use, and require periodic manual processing. These existing techniques are all either
chemical-based or involve periodic visits to a site, and this renders them inadequate for continuous monitoring. To address this
need, we present an autonomous, solar-powered surface robot capable of detecting, inhibiting, and collecting algae in real-time.
The platform utilizes GPS-aided navigation and an Al-based vision module that performs continuous surface scanning and
updates its detection model directly on board as needed. Once an algal patch is identified, the vehicle navigates to the region,
applies targeted ultrasonic excitation for non-chemical inhibition, and then activates a dedicated mechanical system to collect
the resulting biomass. Initial experiments demonstrate that the system can efficiently perform these stages and with low power
consumption, showcasing its promise as a practical solution for long-term lake restoration and automated algal management.
Keywords: Harmful Algal Bloom (HAB), Solar-Powered 10T System, Autonomous Surface Vehicle, YOLO-Based Algae
Detection, Ultrasonic Inhibition, Real-Time Environmental Monitoring.

L. INTRODUCTION

Freshwater systems today stand at an unusual intersection of ecological stress and technological possibility. While their
deterioration is often attributed to broad environmental pressures, few phenomena disrupt them as abruptly or as persistently as
Harmful Algal Blooms (HABs). These blooms, driven by nutrient imbalance and changing climatic regimes, can transform an
otherwise stable water body into an oxygen-starved, toxin-laden environment within days. Their progression is rarely linear, and
traditional countermeasures—whether chemical, mechanical, or manual—struggle to keep pace with this rapid, spatially shifting
behaviour. In parallel, autonomous environmental platforms have matured from experimental prototypes to field-ready systems
capable of long-duration operation. Yet, despite advances in sensing and robotics, most existing solutions address only isolated tasks
such as identifying bloom zones, sampling water, or delivering post-event analysis. What remains largely unexplored is an
integrated system that can observe, interpret, intervene, and verify—all within a single operational loop, without requiring external
assistance. The system introduced in this work attempts to bridge this gap. We present a solar-powered autonomous surface robot
designed to carry out the three essential stages of HAB management in real-time: detection, inhibition, and physical collection. The
platform couples GPS-guided navigation with an adaptive vision pipeline for surface-level algal classification, utilizes controlled
ultrasonic excitation for non-chemical growth suppression, and executes targeted biomass retrieval through a dedicated mechanical
assembly. Designed for persistence rather than episodic deployment, the system operates as a closed-loop intervention mechanism
capable of responding to the early onset of HABs in lakes, reservoirs, and small inland waters.

A. Existing Solutions

Harmful Algal Blooms (HABs) have traditionally been managed using manual, chemical, and technology-based interventions.
Manual and mechanical removal remains the earliest method and typically involves skimmers, nets, or boats operated by personnel.
Although simple and non-chemical, these methods are labour-intensive, slow, and impractical for large lakes or rapidly expanding
blooms, as noted in HAB management reviews [1], [3].
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Chemical mitigation—including copper sulphate, algaecides, and flocculants—remains one of the most widely used approaches due
to its immediate bloom-suppression effect. However, extensive research documents its drawbacks: toxin release due to algal cell
lysis, ecological toxicity, and the need for repeated chemical dosing, making it unsustainable for long-term lake management [1],
[2], [4].

With increasing environmental concerns, modern HAB strategies have shifted toward monitoring, early detection, and eco-friendly
suppression. Among these, LG Sonic’s MPC-Buoy is a prominent commercially deployed system using stationary ultrasound,
water-quality sensors, and cloud-based prediction algorithms. It provides non-chemical bloom inhibition and remote monitoring, but
its ultrasound field covers only a fixed radius and the system remains stationary, making it ineffective for drifting bloom patches or
large water bodies. In addition, it does not offer biomass collection, focusing solely on inhibition and prevention [5].

A comparative analysis therefore shows that existing solutions either act slowly (manual), introduce ecological side-effects
(chemical), or address only detection/inhibition without mobility or collection (stationary ultrasonic systems). This indicates the
need for an integrated, autonomous, mobile, non-chemical system capable of executing detection, inhibition, and collection
together—something not addressed by current technologies [2], [5].

TABLE 1
Comparison of Conventional and Modern HAB Mitigation Methods

Method / System Working Principle Advantages Limitations References
Manual Labour & Workers manually Simple, no chemicals, | Labour-intensive, [1]. [3]
Mechanical remove algal mats low initial capital slow, not scalable,
Harvesting using nets, skimmers, cannot prevent
or boats regrowth; unsafe
during toxic blooms
Chemical Agents Chemical dosing to Immediate bloom Ecosystem toxicity, [1], [2], [4]

(Algaecide, Copper,
Flocculants)

kill or precipitate
algae

suppression; widely
available

chemical residuals,
repeated dosing

required, toxin
release upon cell lysis
Fixed location (non- [5]
mobile), no physical
biomass removal,
high deployment
cost, limited to
certain ultrasound-
safe species

Provide information [2]
only; do not inhibit or
remove bloom

LG Sonic MPC-Buoy Non-chemical,
continuous
monitoring, early-

warning capability

Stationary buoy with
ultrasound, sensors,
and cloud-based
HAB prediction

Satellite/aerial
detection, in-situ
sensors, predictive
models

Early Monitoring &
Modelling Systems

Preventive insights,
policy-level support

B. Critical Insight & Evaluation (CIE)

A synthesis of literature shows that every existing category addresses only a fragment of the HAB management cycle. Manual
systems remove algae but cannot scale and cannot respond to bloom mobility [1], [3]. Chemical treatments achieve rapid
suppression but contradict sustainable water management requirements due to secondary ecological impacts and regulatory
limitations [1], [2], [4]- Advanced monitoring systems—ranging from satellite-based detection to predictive ecological models—
greatly improve forecasting but lack direct mitigation capability [2]. Technological systems such as the LG Sonic MPC-Buoy
demonstrate clear advantages in non-chemical bloom control. Yet, their stationary nature and lack of biomass removal limit their
effectiveness in dynamic lake ecosystems, where blooms drift due to wind, temperature gradients, and hydrodynamics [5]. Thus,
literature consistently points to a major unmet need: a mobile, autonomous, solar-powered surface vehicle capable of real-time algae
detection, applying non-chemical ultrasonic inhibition, and performing active biomass collection—integrating monitoring,
mitigation, and removal into a single continuous operational loop [2], [5]-
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1. SYSTEM DESIGN AND METHODOLOGY
The project is based on a low-cost, eco-friendly Autonomous Surface Vehicle integrated with modular dual-microcontroller
architecture and a comparative deep-learning framework for real-time algae detection.

A. Hardware Architecture

The ASV is designed to be a lightweight, modular, and solar-rechargeable platform that facilitates long-duration missions on water

bodies while minimizing the environmental impact.

1) Dual-Microcontroller Control Unit

The ASV utilizes a distributed control system based on the Espressif architecture:

e ESP32 (Vision and sensing unit): Dedicated to high-speed data acquisition from the camera and sensors. Its processing power is
solely focused on initial image pre-processing and coordinating data transfer.

e [ESP8266 (Navigation and Communication Unit): Dedicated to handling low-latency tasks, which include GPS data
interpretation, motor control, and wireless communication with the ground station.

The two microcontrollers communicate via a reliable serial protocol to ensure synchronization between visual and navigational

data.

2) Sensing and Navigation Modules

The surface vehicle is equipped with three key sensing modules:

e OV7670 Camera Module: This module is mounted above the waterline, and it captures images of the water surface. The low-
resolution nature of the OV7670 is intentionally utilized to simulate deployment on resource-constrained edge devices and to
challenge the computer vision models in a non-ideal scenario.

e NEO-6M GPS Module: It provides real-time latitude and longitude coordinates. This data is critical for autonomous path
planning and for geotagging the detected algae concentrations.

e Water Quality Proves: Temperature sensor probes and a TDS (Total Dissolved Solids) sensor probe are submerged to provide
ancillary data points. This allows for correlation between high algae concentration (detected visually) and physical water
parameters (high temperature, increased TDS), enriching the overall dataset.

3) Power and Propulsion System

The system employs a sustainable power architecture. The primary energy reservoir consists of a pair of solar cell panels, mounted

on the hull of the ASV, which provide a continuous charge to the Li-ion batteries. This aligns with our eco-friendly principle and

ensures operational longevity. The propulsion is managed by two DC motors configured for differential thrust control, which
enables accurate steering and navigation.

B. Block Diagram

- e—— ALGAE MITIGATION

WATER QUALITY
MONITORING

Fig. 1: Block Diagram for Implementation of Components
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C. Computational Methodology and Deep Learning Framework

The core of the paper is the comparative evaluation of three distinct object detection architectures. This comparison directly informs

the selection of the optimal vision solution for real-time, resource-limited ASV deployment.

1) Dataset Collection and Pre-processing

The dataset used for model training and evaluation is composite, ensuring robustness and diversity:

e Publicly Available Imagery: Algae and HAB images sourced from online repositories to provide broad categorical variance.

e Custom-Captured Imagery: Images acquired by the ASV's OV7670 camera, reflecting the specific lighting, turbidity, and
distortion characteristics inherent to the target environment and hardware.

All images were uniformly annotated using bounding boxes to delineate the single class, "Algae Concentration.” The dataset was

split into Training, Validation, and Test sets at a ratio of 70:15:15, respectively.

2) Object Detection Algorithms

Three models representing the evolution and diversity of object detection were selected:

e YOLOV8 (One-Stage): This model represents the mature, modern iteration of the YOLO family, featuring a highly efficient
backbone, a refined C2f neck module, and an anchor-free detection head. It is known for striking an excellent balance between
high accuracy (mAP) and rapid inference speed, making it highly suitable for ASV edge deployment.

e YOLOvV11 (One-Stage): As one of the most recent advancements in the YOLO series, this architecture is included to evaluate
the current state-of-the-art performance. YOLOv1l typically incorporates further architectural refinements aimed at
maximizing detection accuracy across diverse object scales, often showing the highest mAP compared to earlier versions, while
maintaining high FPS.

e R-CNN (Two-Stage - specifically Faster R-CNN): This model serves as the foundational benchmark for high-accuracy
detection. Its two-step process, which involves a Region Proposal Network (RPN) followed by classification and bounding box
regression, generally results in higher localization precision but significantly slower inference speeds, providing a crucial
contrast to the real-time YOLO variants.

3) Evaluation Metrics

Model performance was evaluated based on the critical trade-off between localization accuracy and real-time processing speed,

essential for autonomous operation:

e Accuracy (mAP): Mean Average Precision (mAP) was calculated for two thresholds: mAP@0.5 (a standard measure of object
presence) and mAP@0.5:0.95 (averaged mAP across ten different Intersection over Union (loU) thresholds, indicating
robustness in precise object localization).

e Inference Speed (FPS): Measured in Frames Per Second (FPS) on the target processing environment (or a simulation thereof),
this metric determines the model's suitability for real-time, continuous detection and decision-making on the ASV.

e Model Size (MB): The total memory footprint, a key factor for deployment on microcontrollers or small edge computing units.

1. COMPARING COMPUTER VISION MODELS
A. Data Preparation
Our dataset for this project comes from two sources:
1) Online images:
The database was based on existing HAB and algae-detection datasets, such as satellite images, and outdoor water body photos.
Data from these sources give natural examples of bloom patches, varied lighting, reflections, and background clutter.
2) Custom-captured images:
These are the images collected during system testing in both controlled and outdoor conditions. This was done having a fixed
distance for the camera, consistent lighting, and standardized angles to keep visual variations low. This shows the real scenarios the
robot will face during algae detection and navigation.
3) Pre-processing:
All the images were cleaned before training. This included:
e Cropping out unimportant surroundings
e Resizing to a uniform input dimension
e  Colour and brightness normalization
o Filtration to reduce noise, water glare, and general reflections.
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4) Annotation:
The bounding boxes for algae-dense regions in outdoor images were generated through manual annotation. The same style of
manual labelling was performed as in algae datasets built from earlier computer-vision research.
e Dataset Split:
e Toensure stable training, the dataset was divided into:
e Training set: ~70-80%
*  Validation set: ~10-15%
*  Test set: ~10-15%
e This is the same division used in nearly all previous algae-detection and ML HAB-monitoring studies.

B. Algorithm Selection

We selected three models to understand the difference between speed and accuracy.

1) YOLOv8 and YOLOvV11 (Single-Stage Detectors)

Models in this category perform detection in one pass and are ideal for real-time robotics.

e They process the complete image via one convolutional network and return bounding boxes and class scores directly.

e Their design gives high FPS and low latency, which is exactly what our autonomous algae robot needs to navigate and make
decisions.

e YOLO-based models work fine for water-monitoring, buoy detection, and algae identification research since outdoor lighting
variation does not strongly affect the performance.

e These two models, YOLOv8 and YOLOv11, are the main candidates for on-board or edge-based algae detection in this project.

A

11— -

Fig. 2: Training Al Model using locally sourced images by cropping, resizing and normalization of images
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C. Training and Deployment

1) Training Parameters

All three models were trained using similar baseline parameters.

e Epochs: 100-300 depending on convergence

e Batch size: 16-32 for YOLO models; smaller (4-8) for R-CNN

e  Optimizer: Adam or SGD with momentum

e Augmentation: random flips, brightness changes, rotations, blur and noise adjustments

These settings are in line with the training methodologies adopted for algae detection literature and provide an assurance against
outdoor lighting and water reflections.

2) Deployment on ESP32 / ESP8266
Since full YOLOV8/YOLOvV11 or R-CNN models cannot run directly on microcontrollers, the deployment pipeline follows the
architecture described in the synopsis:
1) ESP32/ESP8266 as the vision + sensing node:
a. Captures images from the water surface
b. Reads loT sensor data (pH, turbidity, DO, temperature)
c. Sends the information to a companion processor
2) Companion processing unit: preferred model deployment:
a. This can be a Raspberry Pi, Jetson Nano, laptop or a cloud endpoint.
b. Runs the YOLOvV8/YOLOv11 model
c. Sends the detected results back to the robot
d. Triggers responses such as path adjustment, ultrasonic inhibition, or algae collection
3) Lightweight model option: If necessary, a heavily pruned YOLO-Nano or Tiny-YOLO model can be quantized and tested on
0oV7670.

V. RESULTS AND OUTCOMES
This section presents the initial experimental results of the comparative evaluation of the selected deep learning object detection
models for real-time algae concentration identification on the Autonomous Surface Vehicle (ASV) platform. Our primary focus is
on establishing the critical trade-off between localization accuracy (mAP) and real-time processing speed (FPS) for constrained
edge deployment.

A. Model Training Performance Summary
The three models—YOLOvV8, YOLOvV11, and R-CNN (specifically, Faster R-C NN)—were trained on the composite dataset
(70:15:15 split) using the baseline parameters described in Section 4.3.

TABLE 2
Performance Comparison of Deep Learning Models for Real-Time Algae Detection
Model Epochs Trained | mAP at0.5 (%) | mAPat0.5: Interference Primary Constraint
0.95 Speed

YOLOV8 120 90 70 High Accuracy/Precision
Balance

YOLOv11 60 95 75 Highest Accuracy/Speed
Balance

Faster R-CNN TBD TBD TBD Lowest Real-Time Speed

Note: Due to ongoing computational resource allocation, results for the R-CNN model are pending and will be included in the final
manuscript.
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Fig. 3: Output from YOLOV8 Model
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Fig. 4: Output from YOLOV11 Model

B. Comparative Analysis of One-Stage Detectors

The one-stage YOLO variants demonstrated promising results suitable for the ASV's low-latency, real-time requirements.

1) YOLOvV8 Performance: The YOLOvV8 model achieved a high Mean Average Precision (MAP@0.5) of approximately 90% after
120 epochs of training. Its mAP across stricter Intersection over Union (loU) thresholds (mMAP@0.5:0.95) was approximately
70%. This indicates a strong capability for detecting the presence of algae patches, with reasonable but not perfect localization
precision.

2) YOLOv11 Performance: The more recent YOLOv11 architecture, which often incorporates refinements for higher accuracy,
showed superior performance in fewer epochs. It achieved an mAP@0.5 of approximately 95% after just 60 epochs, with
mAP@0.5:0.95 reaching approximately 75%. This higher accuracy, coupled with the known efficiency of the YOLO family,
makes it the strongest candidate for robust, continuous operation on the ASV.

3) Inference Speed: Both YOLOV8 and YOLOV11 exhibited high Frames Per Second (FPS) inference rates, as expected from their
one-stage design, confirming their suitability for real-time decision-making and navigation.
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C. Initial Conclusion for ASV Deployment

The experimental results strongly support the initial hypothesis that a single-stage detector is required for the real-time application

of the ASV.

1) The YOLOv11 model provides the highest observed accuracy and required fewer epochs for convergence, making it the most
resource-efficient and high-performing solution for algae detection on the edge processing unit.

2) The Faster R-CNN model, while expected to yield the highest localization accuracy, is anticipated to have a significantly lower
FPS, making it unsuitable for the real-time control loop of the autonomous surface vehicle. It remains a benchmark for
comparison with YOLO's localization precision.

The next steps involve the quantization and deployment of the optimized YOLOv11 model to the companion processing unit

(Raspberry Pi/Jetson Nano) to validate its real-world performance metrics (FPS and power consumption) against the ASV's

operational constraints.
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