
 

13 XII December 2025

https://doi.org/10.22214/ijraset.2025.76466



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue XII Dec 2025- Available at www.ijraset.com 
     

 
2190 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

Design and Development of an Autonomous, IoT-
Based, Solar Powered Surface Vehicle for Algae 
Detection, Collection and Mitigation using Deep 

Learning Models 
 

Shreya L1, Supriya K Prasad2, Swathi Bhat3, Vaishnavi S Kale4, Sumangala Gejje5 

1, 2, 3, 4Student, Dept of Electronics and Communication Engineering, Jyothy Institute of Technology, Karnataka, India 
5Assistant Professor, Dept of Electronics and Communication Engineering, Jyothy Institute of Technology, Karnataka, India 

 
Abstract: Freshwater bodies are shrinking in both number and quality, and a large number of the remaining lakes and ponds 
are now being periodically impacted by Harmful Algal Blooms (HABs). These HABs cause a disruption in the natural 
ecosystem, make the water unsuitable for use, and require periodic manual processing. These existing techniques are all either 
chemical-based or involve periodic visits to a site, and this renders them inadequate for continuous monitoring. To address this 
need, we present an autonomous, solar-powered surface robot capable of detecting, inhibiting, and collecting algae in real-time. 
The platform utilizes GPS-aided navigation and an AI-based vision module that performs continuous surface scanning and 
updates its detection model directly on board as needed. Once an algal patch is identified, the vehicle navigates to the region, 
applies targeted ultrasonic excitation for non-chemical inhibition, and then activates a dedicated mechanical system to collect 
the resulting biomass. Initial experiments demonstrate that the system can efficiently perform these stages and with low power 
consumption, showcasing its promise as a practical solution for long-term lake restoration and automated algal management. 
Keywords: Harmful Algal Bloom (HAB), Solar-Powered IoT System, Autonomous Surface Vehicle, YOLO-Based Algae 
Detection, Ultrasonic Inhibition, Real-Time Environmental Monitoring. 

 
I. INTRODUCTION 

Freshwater systems today stand at an unusual intersection of ecological stress and technological possibility. While their 
deterioration is often attributed to broad environmental pressures, few phenomena disrupt them as abruptly or as persistently as 
Harmful Algal Blooms (HABs). These blooms, driven by nutrient imbalance and changing climatic regimes, can transform an 
otherwise stable water body into an oxygen-starved, toxin-laden environment within days. Their progression is rarely linear, and 
traditional countermeasures—whether chemical, mechanical, or manual—struggle to keep pace with this rapid, spatially shifting 
behaviour. In parallel, autonomous environmental platforms have matured from experimental prototypes to field-ready systems 
capable of long-duration operation. Yet, despite advances in sensing and robotics, most existing solutions address only isolated tasks 
such as identifying bloom zones, sampling water, or delivering post-event analysis. What remains largely unexplored is an 
integrated system that can observe, interpret, intervene, and verify—all within a single operational loop, without requiring external 
assistance. The system introduced in this work attempts to bridge this gap. We present a solar-powered autonomous surface robot 
designed to carry out the three essential stages of HAB management in real-time: detection, inhibition, and physical collection. The 
platform couples GPS-guided navigation with an adaptive vision pipeline for surface-level algal classification, utilizes controlled 
ultrasonic excitation for non-chemical growth suppression, and executes targeted biomass retrieval through a dedicated mechanical 
assembly. Designed for persistence rather than episodic deployment, the system operates as a closed-loop intervention mechanism 
capable of responding to the early onset of HABs in lakes, reservoirs, and small inland waters. 
 
A. Existing Solutions 
Harmful Algal Blooms (HABs) have traditionally been managed using manual, chemical, and technology-based interventions. 
Manual and mechanical removal remains the earliest method and typically involves skimmers, nets, or boats operated by personnel. 
Although simple and non-chemical, these methods are labour-intensive, slow, and impractical for large lakes or rapidly expanding 
blooms, as noted in HAB management reviews [1], [3]. 
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Chemical mitigation—including copper sulphate, algaecides, and flocculants—remains one of the most widely used approaches due 
to its immediate bloom-suppression effect. However, extensive research documents its drawbacks: toxin release due to algal cell 
lysis, ecological toxicity, and the need for repeated chemical dosing, making it unsustainable for long-term lake management [1], 
[2], [4]. 
With increasing environmental concerns, modern HAB strategies have shifted toward monitoring, early detection, and eco-friendly 
suppression. Among these, LG Sonic’s MPC-Buoy is a prominent commercially deployed system using stationary ultrasound, 
water-quality sensors, and cloud-based prediction algorithms. It provides non-chemical bloom inhibition and remote monitoring, but 
its ultrasound field covers only a fixed radius and the system remains stationary, making it ineffective for drifting bloom patches or 
large water bodies. In addition, it does not offer biomass collection, focusing solely on inhibition and prevention [5]. 
A comparative analysis therefore shows that existing solutions either act slowly (manual), introduce ecological side-effects 
(chemical), or address only detection/inhibition without mobility or collection (stationary ultrasonic systems). This indicates the 
need for an integrated, autonomous, mobile, non-chemical system capable of executing detection, inhibition, and collection 
together—something not addressed by current technologies [2], [5]. 

 
TABLE 1 

Comparison of Conventional and Modern HAB Mitigation Methods 
Method / System Working Principle Advantages Limitations References 
Manual Labour & 
Mechanical 
Harvesting 

Workers manually 
remove algal mats 
using nets, skimmers, 
or boats 

Simple, no chemicals, 
low initial capital 

Labour-intensive, 
slow, not scalable, 
cannot prevent 
regrowth; unsafe 
during toxic blooms 

[1], [3] 
 

Chemical Agents 
(Algaecide, Copper, 
Flocculants) 

Chemical dosing to 
kill or precipitate 
algae 

Immediate bloom 
suppression; widely 
available 

Ecosystem toxicity, 
chemical residuals, 
repeated dosing 
required, toxin 
release upon cell lysis 

[1], [2], [4] 
 

LG Sonic MPC-Buoy Stationary buoy with 
ultrasound, sensors, 
and cloud-based 
HAB prediction 

Non-chemical, 
continuous 
monitoring, early-
warning capability 

Fixed location (non-
mobile), no physical 
biomass removal, 
high deployment 
cost, limited to 
certain ultrasound-
safe species 

[5] 

Early Monitoring & 
Modelling Systems 

 

Satellite/aerial 
detection, in-situ 
sensors, predictive 
models 

Preventive insights, 
policy-level support 

Provide information 
only; do not inhibit or 
remove bloom 

[2] 

 
B. Critical Insight & Evaluation (CIE) 
A synthesis of literature shows that every existing category addresses only a fragment of the HAB management cycle. Manual 
systems remove algae but cannot scale and cannot respond to bloom mobility [1], [3]. Chemical treatments achieve rapid 
suppression but contradict sustainable water management requirements due to secondary ecological impacts and regulatory 
limitations [1], [2], [4]. Advanced monitoring systems—ranging from satellite-based detection to predictive ecological models—
greatly improve forecasting but lack direct mitigation capability [2]. Technological systems such as the LG Sonic MPC-Buoy 
demonstrate clear advantages in non-chemical bloom control. Yet, their stationary nature and lack of biomass removal limit their 
effectiveness in dynamic lake ecosystems, where blooms drift due to wind, temperature gradients, and hydrodynamics [5]. Thus, 
literature consistently points to a major unmet need: a mobile, autonomous, solar-powered surface vehicle capable of real-time algae 
detection, applying non-chemical ultrasonic inhibition, and performing active biomass collection—integrating monitoring, 
mitigation, and removal into a single continuous operational loop [2], [5]. 
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II. SYSTEM DESIGN AND METHODOLOGY 
The project is based on a low-cost, eco-friendly Autonomous Surface Vehicle integrated with modular dual-microcontroller 
architecture and a comparative deep-learning framework for real-time algae detection. 
 
A. Hardware Architecture 
The ASV is designed to be a lightweight, modular, and solar-rechargeable platform that facilitates long-duration missions on water 
bodies while minimizing the environmental impact.  
1) Dual-Microcontroller Control Unit 
The ASV utilizes a distributed control system based on the Espressif architecture: 
 ESP32 (Vision and sensing unit): Dedicated to high-speed data acquisition from the camera and sensors. Its processing power is 

solely focused on initial image pre-processing and coordinating data transfer. 
 ESP8266 (Navigation and Communication Unit): Dedicated to handling low-latency tasks, which include GPS data 

interpretation, motor control, and wireless communication with the ground station.  
The two microcontrollers communicate via a reliable serial protocol to ensure synchronization between visual and navigational 
data.  
2) Sensing and Navigation Modules 
The surface vehicle is equipped with three key sensing modules: 
 OV7670 Camera Module: This module is mounted above the waterline, and it captures images of the water surface. The low-

resolution nature of the OV7670 is intentionally utilized to simulate deployment on resource-constrained edge devices and to 
challenge the computer vision models in a non-ideal scenario. 

 NEO-6M GPS Module: It provides real-time latitude and longitude coordinates. This data is critical for autonomous path 
planning and for geotagging the detected algae concentrations. 

 Water Quality Proves: Temperature sensor probes and a TDS (Total Dissolved Solids) sensor probe are submerged to provide 
ancillary data points. This allows for correlation between high algae concentration (detected visually) and physical water 
parameters (high temperature, increased TDS), enriching the overall dataset. 

3) Power and Propulsion System 
The system employs a sustainable power architecture. The primary energy reservoir consists of a pair of solar cell panels, mounted 
on the hull of the ASV, which provide a continuous charge to the Li-ion batteries. This aligns with our eco-friendly principle and 
ensures operational longevity. The propulsion is managed by two DC motors configured for differential thrust control, which 
enables accurate steering and navigation. 
 
B. Block Diagram 

 
Fig. 1: Block Diagram for Implementation of Components 
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C. Computational Methodology and Deep Learning Framework 
The core of the paper is the comparative evaluation of three distinct object detection architectures. This comparison directly informs 
the selection of the optimal vision solution for real-time, resource-limited ASV deployment. 
1) Dataset Collection and Pre-processing 
The dataset used for model training and evaluation is composite, ensuring robustness and diversity: 
 Publicly Available Imagery: Algae and HAB images sourced from online repositories to provide broad categorical variance. 
 Custom-Captured Imagery: Images acquired by the ASV's OV7670 camera, reflecting the specific lighting, turbidity, and 

distortion characteristics inherent to the target environment and hardware. 
All images were uniformly annotated using bounding boxes to delineate the single class, "Algae Concentration." The dataset was 
split into Training, Validation, and Test sets at a ratio of 70:15:15, respectively. 
2) Object Detection Algorithms 
Three models representing the evolution and diversity of object detection were selected: 
 YOLOv8 (One-Stage): This model represents the mature, modern iteration of the YOLO family, featuring a highly efficient 

backbone, a refined C2f neck module, and an anchor-free detection head. It is known for striking an excellent balance between 
high accuracy (mAP) and rapid inference speed, making it highly suitable for ASV edge deployment. 

 YOLOv11 (One-Stage): As one of the most recent advancements in the YOLO series, this architecture is included to evaluate 
the current state-of-the-art performance. YOLOv11 typically incorporates further architectural refinements aimed at 
maximizing detection accuracy across diverse object scales, often showing the highest mAP compared to earlier versions, while 
maintaining high FPS. 

 R-CNN (Two-Stage - specifically Faster R-CNN): This model serves as the foundational benchmark for high-accuracy 
detection. Its two-step process, which involves a Region Proposal Network (RPN) followed by classification and bounding box 
regression, generally results in higher localization precision but significantly slower inference speeds, providing a crucial 
contrast to the real-time YOLO variants. 
 

3) Evaluation Metrics 
Model performance was evaluated based on the critical trade-off between localization accuracy and real-time processing speed, 
essential for autonomous operation: 
 Accuracy (mAP): Mean Average Precision (mAP) was calculated for two thresholds: mAP@0.5 (a standard measure of object 

presence) and mAP@0.5:0.95 (averaged mAP across ten different Intersection over Union (IoU) thresholds, indicating 
robustness in precise object localization). 

 Inference Speed (FPS): Measured in Frames Per Second (FPS) on the target processing environment (or a simulation thereof), 
this metric determines the model's suitability for real-time, continuous detection and decision-making on the ASV. 

 Model Size (MB): The total memory footprint, a key factor for deployment on microcontrollers or small edge computing units. 
 

III. COMPARING COMPUTER VISION MODELS 
A. Data Preparation 
Our dataset for this project comes from two sources: 
1) Online images: 
The database was based on existing HAB and algae-detection datasets, such as satellite images, and outdoor water body photos. 
Data from these sources give natural examples of bloom patches, varied lighting, reflections, and background clutter. 
2) Custom-captured images: 
These are the images collected during system testing in both controlled and outdoor conditions. This was done having a fixed 
distance for the camera, consistent lighting, and standardized angles to keep visual variations low. This shows the real scenarios the 
robot will face during algae detection and navigation. 
3) Pre-processing: 
All the images were cleaned before training. This included: 
 Cropping out unimportant surroundings 
 Resizing to a uniform input dimension 
 Colour and brightness normalization 
 Filtration to reduce noise, water glare, and general reflections. 
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4) Annotation: 
The bounding boxes for algae-dense regions in outdoor images were generated through manual annotation. The same style of 
manual labelling was performed as in algae datasets built from earlier computer-vision research. 
 Dataset Split:  
 To ensure stable training, the dataset was divided into: 

• Training set: ~70–80% 
• Validation set: ~10–15% 
• Test set: ~10–15% 

 This is the same division used in nearly all previous algae-detection and ML HAB-monitoring studies. 
 
B. Algorithm Selection 
We selected three models to understand the difference between speed and accuracy. 
1) YOLOv8 and YOLOv11 (Single-Stage Detectors) 
Models in this category perform detection in one pass and are ideal for real-time robotics. 
 They process the complete image via one convolutional network and return bounding boxes and class scores directly. 
 Their design gives high FPS and low latency, which is exactly what our autonomous algae robot needs to navigate and make 

decisions. 
 YOLO-based models work fine for water-monitoring, buoy detection, and algae identification research since outdoor lighting 

variation does not strongly affect the performance. 
 These two models, YOLOv8 and YOLOv11, are the main candidates for on-board or edge-based algae detection in this project. 

 

 
Fig. 2: Training AI Model using locally sourced images by cropping, resizing and normalization of images 
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C.  Training and Deployment 
1) Training Parameters 
All three models were trained using similar baseline parameters. 
 Epochs: 100–300 depending on convergence 
 Batch size: 16–32 for YOLO models; smaller (4–8) for R-CNN 
 Optimizer: Adam or SGD with momentum 
 Augmentation: random flips, brightness changes, rotations, blur and noise adjustments 
These settings are in line with the training methodologies adopted for algae detection literature and provide an assurance against 
outdoor lighting and water reflections. 

 
2) Deployment on ESP32 / ESP8266 
Since full YOLOv8/YOLOv11 or R-CNN models cannot run directly on microcontrollers, the deployment pipeline follows the 
architecture described in the synopsis: 
1) ESP32/ESP8266 as the vision + sensing node: 

a. Captures images from the water surface 
b. Reads IoT sensor data (pH, turbidity, DO, temperature) 
c. Sends the information to a companion processor 

2) Companion processing unit: preferred model deployment: 
a. This can be a Raspberry Pi, Jetson Nano, laptop or a cloud endpoint. 
b. Runs the YOLOv8/YOLOv11 model 
c. Sends the detected results back to the robot 
d. Triggers responses such as path adjustment, ultrasonic inhibition, or algae collection 

3) Lightweight model option: If necessary, a heavily pruned YOLO-Nano or Tiny-YOLO model can be quantized and tested on 
OV7670. 

 
IV. RESULTS AND OUTCOMES 

This section presents the initial experimental results of the comparative evaluation of the selected deep learning object detection 
models for real-time algae concentration identification on the Autonomous Surface Vehicle (ASV) platform. Our primary focus is 
on establishing the critical trade-off between localization accuracy (mAP) and real-time processing speed (FPS) for constrained 
edge deployment. 
 
A. Model Training Performance Summary 
The three models—YOLOv8, YOLOv11, and R-CNN (specifically, Faster R-C NN)—were trained on the composite dataset 
(70:15:15 split) using the baseline parameters described in Section 4.3. 

 
TABLE 2 

Performance Comparison of Deep Learning Models for Real-Time Algae Detection 
Model Epochs Trained mAP at 0.5 (%) mAP at 0.5 : 

0.95 
Interference 
Speed 

Primary Constraint 

YOLOv8 120 90 70 High Accuracy/Precision 
Balance 

YOLOv11 60 95 75 Highest Accuracy/Speed 
Balance 

Faster R-CNN TBD TBD TBD Lowest Real-Time Speed 
 
Note: Due to ongoing computational resource allocation, results for the R-CNN model are pending and will be included in the final 
manuscript. 
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Fig. 3: Output from YOLOv8 Model 

 

 
Fig. 4: Output from YOLOv11 Model 

 
B. Comparative Analysis of One-Stage Detectors 
The one-stage YOLO variants demonstrated promising results suitable for the ASV's low-latency, real-time requirements. 
1) YOLOv8 Performance: The YOLOv8 model achieved a high Mean Average Precision (mAP@0.5) of approximately 90% after 

120 epochs of training. Its mAP across stricter Intersection over Union (IoU) thresholds (mAP@0.5:0.95) was approximately 
70%. This indicates a strong capability for detecting the presence of algae patches, with reasonable but not perfect localization 
precision. 

2) YOLOv11 Performance: The more recent YOLOv11 architecture, which often incorporates refinements for higher accuracy, 
showed superior performance in fewer epochs. It achieved an mAP@0.5 of approximately 95% after just 60 epochs, with 
mAP@0.5:0.95 reaching approximately 75%. This higher accuracy, coupled with the known efficiency of the YOLO family, 
makes it the strongest candidate for robust, continuous operation on the ASV. 

3) Inference Speed: Both YOLOv8 and YOLOv11 exhibited high Frames Per Second (FPS) inference rates, as expected from their 
one-stage design, confirming their suitability for real-time decision-making and navigation. 
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C. Initial Conclusion for ASV Deployment 
The experimental results strongly support the initial hypothesis that a single-stage detector is required for the real-time application 
of the ASV. 
1) The YOLOv11 model provides the highest observed accuracy and required fewer epochs for convergence, making it the most 

resource-efficient and high-performing solution for algae detection on the edge processing unit. 
2) The Faster R-CNN model, while expected to yield the highest localization accuracy, is anticipated to have a significantly lower 

FPS, making it unsuitable for the real-time control loop of the autonomous surface vehicle. It remains a benchmark for 
comparison with YOLO's localization precision. 

The next steps involve the quantization and deployment of the optimized YOLOv11 model to the companion processing unit 
(Raspberry Pi/Jetson Nano) to validate its real-world performance metrics (FPS and power consumption) against the ASV's 
operational constraints. 
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