

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XII Month of publication: December 2025

DOI: <https://doi.org/10.22214/ijraset.2025.76466>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Design and Development of an Autonomous, IoT-Based, Solar Powered Surface Vehicle for Algae Detection, Collection and Mitigation using Deep Learning Models

Shreya L¹, Supriya K Prasad², Swathi Bhat³, Vaishnavi S Kale⁴, Sumangala Gejje⁵

^{1, 2, 3, 4}Student, Dept of Electronics and Communication Engineering, Jyothy Institute of Technology, Karnataka, India

⁵Assistant Professor, Dept of Electronics and Communication Engineering, Jyothy Institute of Technology, Karnataka, India

Abstract: Freshwater bodies are shrinking in both number and quality, and a large number of the remaining lakes and ponds are now being periodically impacted by Harmful Algal Blooms (HABs). These HABs cause a disruption in the natural ecosystem, make the water unsuitable for use, and require periodic manual processing. These existing techniques are all either chemical-based or involve periodic visits to a site, and this renders them inadequate for continuous monitoring. To address this need, we present an autonomous, solar-powered surface robot capable of detecting, inhibiting, and collecting algae in real-time. The platform utilizes GPS-aided navigation and an AI-based vision module that performs continuous surface scanning and updates its detection model directly on board as needed. Once an algal patch is identified, the vehicle navigates to the region, applies targeted ultrasonic excitation for non-chemical inhibition, and then activates a dedicated mechanical system to collect the resulting biomass. Initial experiments demonstrate that the system can efficiently perform these stages and with low power consumption, showcasing its promise as a practical solution for long-term lake restoration and automated algal management.

Keywords: Harmful Algal Bloom (HAB), Solar-Powered IoT System, Autonomous Surface Vehicle, YOLO-Based Algae Detection, Ultrasonic Inhibition, Real-Time Environmental Monitoring.

I. INTRODUCTION

Freshwater systems today stand at an unusual intersection of ecological stress and technological possibility. While their deterioration is often attributed to broad environmental pressures, few phenomena disrupt them as abruptly or as persistently as Harmful Algal Blooms (HABs). These blooms, driven by nutrient imbalance and changing climatic regimes, can transform an otherwise stable water body into an oxygen-starved, toxin-laden environment within days. Their progression is rarely linear, and traditional countermeasures—whether chemical, mechanical, or manual—struggle to keep pace with this rapid, spatially shifting behaviour. In parallel, autonomous environmental platforms have matured from experimental prototypes to field-ready systems capable of long-duration operation. Yet, despite advances in sensing and robotics, most existing solutions address only isolated tasks such as identifying bloom zones, sampling water, or delivering post-event analysis. What remains largely unexplored is an integrated system that can observe, interpret, intervene, and verify—all within a single operational loop, without requiring external assistance. The system introduced in this work attempts to bridge this gap. We present a solar-powered autonomous surface robot designed to carry out the three essential stages of HAB management in real-time: detection, inhibition, and physical collection. The platform couples GPS-guided navigation with an adaptive vision pipeline for surface-level algal classification, utilizes controlled ultrasonic excitation for non-chemical growth suppression, and executes targeted biomass retrieval through a dedicated mechanical assembly. Designed for persistence rather than episodic deployment, the system operates as a closed-loop intervention mechanism capable of responding to the early onset of HABs in lakes, reservoirs, and small inland waters.

A. Existing Solutions

Harmful Algal Blooms (HABs) have traditionally been managed using manual, chemical, and technology-based interventions. Manual and mechanical removal remains the earliest method and typically involves skimmers, nets, or boats operated by personnel. Although simple and non-chemical, these methods are labour-intensive, slow, and impractical for large lakes or rapidly expanding blooms, as noted in HAB management reviews [1], [3].

Chemical mitigation—including copper sulphate, algaecides, and flocculants—remains one of the most widely used approaches due to its immediate bloom-suppression effect. However, extensive research documents its drawbacks: toxin release due to algal cell lysis, ecological toxicity, and the need for repeated chemical dosing, making it unsustainable for long-term lake management [1], [2], [4].

With increasing environmental concerns, modern HAB strategies have shifted toward monitoring, early detection, and eco-friendly suppression. Among these, LG Sonic's MPC-Buoy is a prominent commercially deployed system using stationary ultrasound, water-quality sensors, and cloud-based prediction algorithms. It provides non-chemical bloom inhibition and remote monitoring, but its ultrasound field covers only a fixed radius and the system remains stationary, making it ineffective for drifting bloom patches or large water bodies. In addition, it does not offer biomass collection, focusing solely on inhibition and prevention [5].

A comparative analysis therefore shows that existing solutions either act slowly (manual), introduce ecological side-effects (chemical), or address only detection/inhibition without mobility or collection (stationary ultrasonic systems). This indicates the need for an integrated, autonomous, mobile, non-chemical system capable of executing detection, inhibition, and collection together—something not addressed by current technologies [2], [5].

TABLE 1
Comparison of Conventional and Modern HAB Mitigation Methods

Method / System	Working Principle	Advantages	Limitations	References
Manual Labour & Mechanical Harvesting	Workers manually remove algal mats using nets, skimmers, or boats	Simple, no chemicals, low initial capital	Labour-intensive, slow, not scalable, cannot prevent regrowth; unsafe during toxic blooms	[1], [3]
Chemical Agents (Algaecide, Copper, Flocculants)	Chemical dosing to kill or precipitate algae	Immediate bloom suppression; widely available	Ecosystem toxicity, chemical residuals, repeated dosing required, toxin release upon cell lysis	[1], [2], [4]
LG Sonic MPC-Buoy	Stationary buoy with ultrasound, sensors, and cloud-based HAB prediction	Non-chemical, continuous monitoring, early-warning capability	Fixed location (non-mobile), no physical biomass removal, high deployment cost, limited to certain ultrasound-safe species	[5]
Early Monitoring & Modelling Systems	Satellite/aerial detection, in-situ sensors, predictive models	Preventive insights, policy-level support	Provide information only; do not inhibit or remove bloom	[2]

B. Critical Insight & Evaluation (CIE)

A synthesis of literature shows that every existing category addresses only a fragment of the HAB management cycle. Manual systems remove algae but cannot scale and cannot respond to bloom mobility [1], [3]. Chemical treatments achieve rapid suppression but contradict sustainable water management requirements due to secondary ecological impacts and regulatory limitations [1], [2], [4]. Advanced monitoring systems—ranging from satellite-based detection to predictive ecological models—greatly improve forecasting but lack direct mitigation capability [2]. Technological systems such as the LG Sonic MPC-Buoy demonstrate clear advantages in non-chemical bloom control. Yet, their stationary nature and lack of biomass removal limit their effectiveness in dynamic lake ecosystems, where blooms drift due to wind, temperature gradients, and hydrodynamics [5]. Thus, literature consistently points to a major unmet need: a mobile, autonomous, solar-powered surface vehicle capable of real-time algae detection, applying non-chemical ultrasonic inhibition, and performing active biomass collection—integrating monitoring, mitigation, and removal into a single continuous operational loop [2], [5].

II. SYSTEM DESIGN AND METHODOLOGY

The project is based on a low-cost, eco-friendly Autonomous Surface Vehicle integrated with modular dual-microcontroller architecture and a comparative deep-learning framework for real-time algae detection.

A. Hardware Architecture

The ASV is designed to be a lightweight, modular, and solar-rechargeable platform that facilitates long-duration missions on water bodies while minimizing the environmental impact.

1) Dual-Microcontroller Control Unit

The ASV utilizes a distributed control system based on the Espressif architecture:

- ESP32 (Vision and sensing unit): Dedicated to high-speed data acquisition from the camera and sensors. Its processing power is solely focused on initial image pre-processing and coordinating data transfer.
- ESP8266 (Navigation and Communication Unit): Dedicated to handling low-latency tasks, which include GPS data interpretation, motor control, and wireless communication with the ground station.

The two microcontrollers communicate via a reliable serial protocol to ensure synchronization between visual and navigational data.

2) Sensing and Navigation Modules

The surface vehicle is equipped with three key sensing modules:

- OV7670 Camera Module: This module is mounted above the waterline, and it captures images of the water surface. The low-resolution nature of the OV7670 is intentionally utilized to simulate deployment on resource-constrained edge devices and to challenge the computer vision models in a non-ideal scenario.
- NEO-6M GPS Module: It provides real-time latitude and longitude coordinates. This data is critical for autonomous path planning and for geotagging the detected algae concentrations.
- Water Quality Probes: Temperature sensor probes and a TDS (Total Dissolved Solids) sensor probe are submerged to provide ancillary data points. This allows for correlation between high algae concentration (detected visually) and physical water parameters (high temperature, increased TDS), enriching the overall dataset.

3) Power and Propulsion System

The system employs a sustainable power architecture. The primary energy reservoir consists of a pair of solar cell panels, mounted on the hull of the ASV, which provide a continuous charge to the Li-ion batteries. This aligns with our eco-friendly principle and ensures operational longevity. The propulsion is managed by two DC motors configured for differential thrust control, which enables accurate steering and navigation.

B. Block Diagram

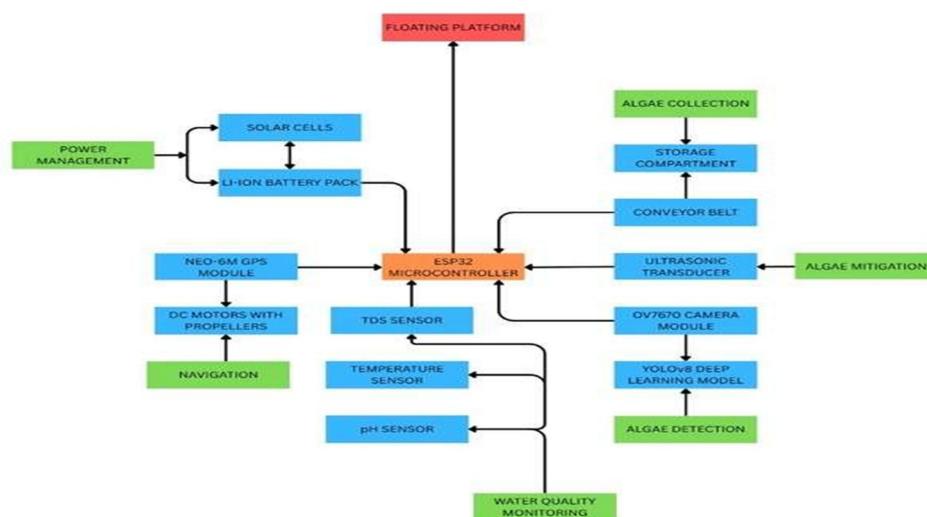


Fig. 1: Block Diagram for Implementation of Components

C. Computational Methodology and Deep Learning Framework

The core of the paper is the comparative evaluation of three distinct object detection architectures. This comparison directly informs the selection of the optimal vision solution for real-time, resource-limited ASV deployment.

1) Dataset Collection and Pre-processing

The dataset used for model training and evaluation is composite, ensuring robustness and diversity:

- Publicly Available Imagery: Algae and HAB images sourced from online repositories to provide broad categorical variance.
- Custom-Captured Imagery: Images acquired by the ASV's OV7670 camera, reflecting the specific lighting, turbidity, and distortion characteristics inherent to the target environment and hardware.

All images were uniformly annotated using bounding boxes to delineate the single class, "Algae Concentration." The dataset was split into Training, Validation, and Test sets at a ratio of 70:15:15, respectively.

2) Object Detection Algorithms

Three models representing the evolution and diversity of object detection were selected:

- YOLOv8 (One-Stage): This model represents the mature, modern iteration of the YOLO family, featuring a highly efficient backbone, a refined C2f neck module, and an anchor-free detection head. It is known for striking an excellent balance between high accuracy (mAP) and rapid inference speed, making it highly suitable for ASV edge deployment.
- YOLOv11 (One-Stage): As one of the most recent advancements in the YOLO series, this architecture is included to evaluate the current state-of-the-art performance. YOLOv11 typically incorporates further architectural refinements aimed at maximizing detection accuracy across diverse object scales, often showing the highest mAP compared to earlier versions, while maintaining high FPS.
- R-CNN (Two-Stage - specifically Faster R-CNN): This model serves as the foundational benchmark for high-accuracy detection. Its two-step process, which involves a Region Proposal Network (RPN) followed by classification and bounding box regression, generally results in higher localization precision but significantly slower inference speeds, providing a crucial contrast to the real-time YOLO variants.

3) Evaluation Metrics

Model performance was evaluated based on the critical trade-off between localization accuracy and real-time processing speed, essential for autonomous operation:

- Accuracy (mAP): Mean Average Precision (mAP) was calculated for two thresholds: mAP@0.5 (a standard measure of object presence) and mAP@0.5:0.95 (averaged mAP across ten different Intersection over Union (IoU) thresholds, indicating robustness in precise object localization).
- Inference Speed (FPS): Measured in Frames Per Second (FPS) on the target processing environment (or a simulation thereof), this metric determines the model's suitability for real-time, continuous detection and decision-making on the ASV.
- Model Size (MB): The total memory footprint, a key factor for deployment on microcontrollers or small edge computing units.

III. COMPARING COMPUTER VISION MODELS

A. Data Preparation

Our dataset for this project comes from two sources:

1) Online images:

The database was based on existing HAB and algae-detection datasets, such as satellite images, and outdoor water body photos. Data from these sources give natural examples of bloom patches, varied lighting, reflections, and background clutter.

2) Custom-captured images:

These are the images collected during system testing in both controlled and outdoor conditions. This was done having a fixed distance for the camera, consistent lighting, and standardized angles to keep visual variations low. This shows the real scenarios the robot will face during algae detection and navigation.

3) Pre-processing:

All the images were cleaned before training. This included:

- Cropping out unimportant surroundings
- Resizing to a uniform input dimension
- Colour and brightness normalization
- Filtration to reduce noise, water glare, and general reflections.

4) Annotation:

The bounding boxes for algae-dense regions in outdoor images were generated through manual annotation. The same style of manual labelling was performed as in algae datasets built from earlier computer-vision research.

- Dataset Split:
- To ensure stable training, the dataset was divided into:

- Training set: ~70–80%
- Validation set: ~10–15%
- Test set: ~10–15%

- This is the same division used in nearly all previous algae-detection and ML HAB-monitoring studies.

B. Algorithm Selection

We selected three models to understand the difference between speed and accuracy.

1) YOLOv8 and YOLOv11 (Single-Stage Detectors)

Models in this category perform detection in one pass and are ideal for real-time robotics.

- They process the complete image via one convolutional network and return bounding boxes and class scores directly.
- Their design gives high FPS and low latency, which is exactly what our autonomous algae robot needs to navigate and make decisions.
- YOLO-based models work fine for water-monitoring, buoy detection, and algae identification research since outdoor lighting variation does not strongly affect the performance.
- These two models, YOLOv8 and YOLOv11, are the main candidates for on-board or edge-based algae detection in this project.

Fig. 2: Training AI Model using locally sourced images by cropping, resizing and normalization of images

C. Training and Deployment

1) Training Parameters

All three models were trained using similar baseline parameters.

- Epochs: 100–300 depending on convergence
- Batch size: 16–32 for YOLO models; smaller (4–8) for R-CNN
- Optimizer: Adam or SGD with momentum
- Augmentation: random flips, brightness changes, rotations, blur and noise adjustments

These settings are in line with the training methodologies adopted for algae detection literature and provide an assurance against outdoor lighting and water reflections.

2) Deployment on ESP32 / ESP8266

Since full YOLOv8/YOLOv11 or R-CNN models cannot run directly on microcontrollers, the deployment pipeline follows the architecture described in the synopsis:

1) ESP32/ESP8266 as the vision + sensing node:

- a. Captures images from the water surface
- b. Reads IoT sensor data (pH, turbidity, DO, temperature)
- c. Sends the information to a companion processor

2) Companion processing unit: preferred model deployment:

- a. This can be a Raspberry Pi, Jetson Nano, laptop or a cloud endpoint.
- b. Runs the YOLOv8/YOLOv11 model
- c. Sends the detected results back to the robot
- d. Triggers responses such as path adjustment, ultrasonic inhibition, or algae collection

3) Lightweight model option: If necessary, a heavily pruned YOLO-Nano or Tiny-YOLO model can be quantized and tested on OV7670.

IV. RESULTS AND OUTCOMES

This section presents the initial experimental results of the comparative evaluation of the selected deep learning object detection models for real-time algae concentration identification on the Autonomous Surface Vehicle (ASV) platform. Our primary focus is on establishing the critical trade-off between localization accuracy (mAP) and real-time processing speed (FPS) for constrained edge deployment.

A. Model Training Performance Summary

The three models—YOLOv8, YOLOv11, and R-CNN (specifically, Faster R-CNN)—were trained on the composite dataset (70:15:15 split) using the baseline parameters described in Section 4.3.

TABLE 2
Performance Comparison of Deep Learning Models for Real-Time Algae Detection

Model	Epochs Trained	mAP at 0.5 (%)	mAP at 0.5 : 0.95	Interference Speed	Primary Constraint
YOLOv8	120	90	70	High	Accuracy/Precision Balance
YOLOv11	60	95	75	Highest	Accuracy/Speed Balance
Faster R-CNN	TBD	TBD	TBD	Lowest	Real-Time Speed

Note: Due to ongoing computational resource allocation, results for the R-CNN model are pending and will be included in the final manuscript.

Fig. 3: Output from YOLOv8 Model

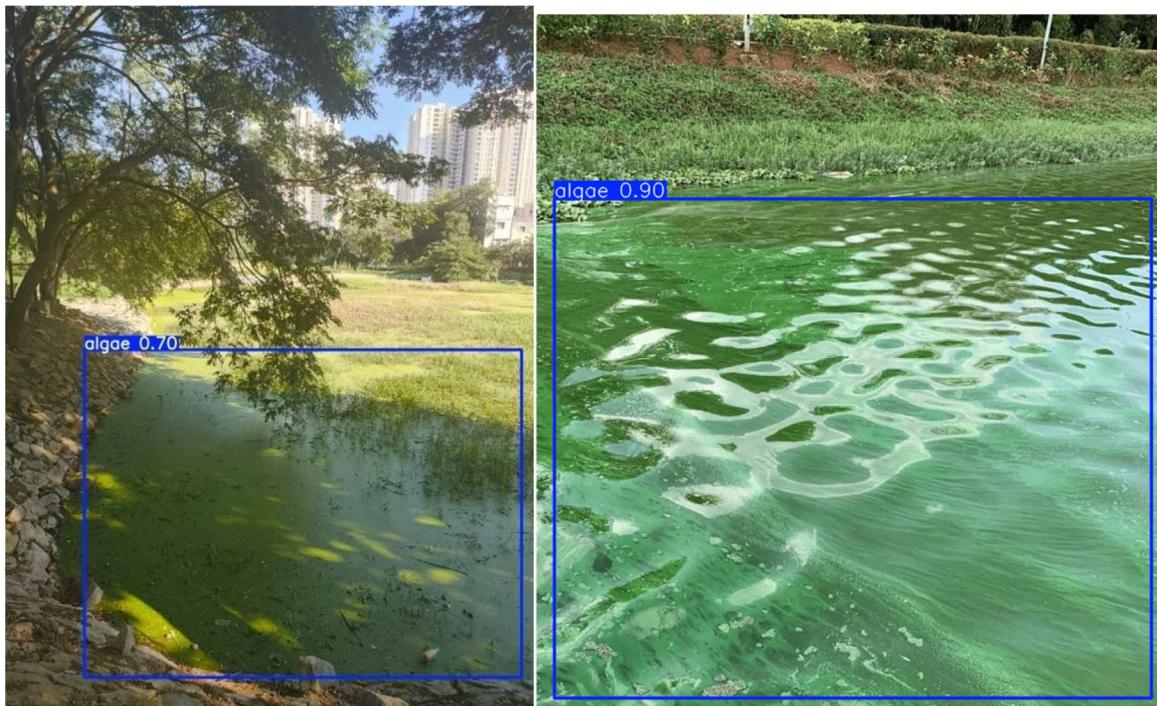


Fig. 4: Output from YOLOv11 Model

B. Comparative Analysis of One-Stage Detectors

The one-stage YOLO variants demonstrated promising results suitable for the ASV's low-latency, real-time requirements.

- 1) **YOLOv8 Performance:** The YOLOv8 model achieved a high Mean Average Precision (mAP@0.5) of approximately 90% after 120 epochs of training. Its mAP across stricter Intersection over Union (IoU) thresholds (mAP@0.5:0.95) was approximately 70%. This indicates a strong capability for detecting the presence of algae patches, with reasonable but not perfect localization precision.
- 2) **YOLOv11 Performance:** The more recent YOLOv11 architecture, which often incorporates refinements for higher accuracy, showed superior performance in fewer epochs. It achieved an mAP@0.5 of approximately 95% after just 60 epochs, with mAP@0.5:0.95 reaching approximately 75%. This higher accuracy, coupled with the known efficiency of the YOLO family, makes it the strongest candidate for robust, continuous operation on the ASV.
- 3) **Inference Speed:** Both YOLOv8 and YOLOv11 exhibited high Frames Per Second (FPS) inference rates, as expected from their one-stage design, confirming their suitability for real-time decision-making and navigation.

C. Initial Conclusion for ASV Deployment

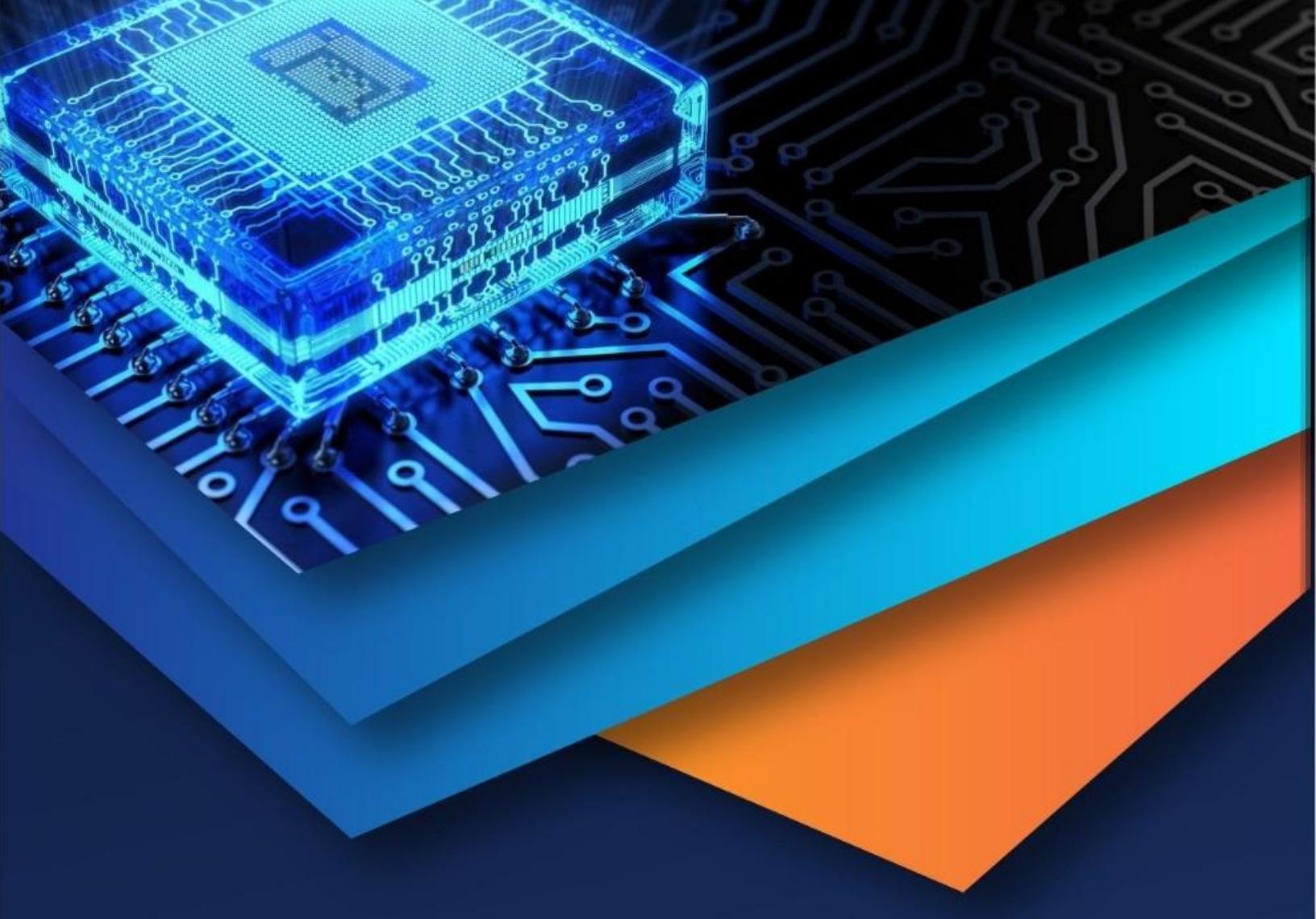
The experimental results strongly support the initial hypothesis that a single-stage detector is required for the real-time application of the ASV.

- 1) The YOLOv11 model provides the highest observed accuracy and required fewer epochs for convergence, making it the most resource-efficient and high-performing solution for algae detection on the edge processing unit.
- 2) The Faster R-CNN model, while expected to yield the highest localization accuracy, is anticipated to have a significantly lower FPS, making it unsuitable for the real-time control loop of the autonomous surface vehicle. It remains a benchmark for comparison with YOLO's localization precision.

The next steps involve the quantization and deployment of the optimized YOLOv11 model to the companion processing unit (Raspberry Pi/Jetson Nano) to validate its real-world performance metrics (FPS and power consumption) against the ASV's operational constraints.

REFERENCES

- [1] N. H. Ibrahim et al., "A Review on the Biological, Physical and Chemical Mitigation of Harmful Algal Bloom."
- [2] D. M. Anderson, A. D. Cembella, and G. M. Hallegraeff, "Progress in understanding harmful algal blooms (HABs): Paradigm shifts and new technologies for research, monitoring and management."
- [3] A. K. Misra, P. K. Tiwari, and E. Venturino, "Modeling the impact of awareness on the mitigation of algal bloom in a lake."
- [4] "Prevention, Control and Mitigation of Harmful Algal Blooms: A Research Plan."
- [5] D. M. Anderson, "Prevention, Control and Mitigation of Harmful Algal Blooms: Multiple Approaches to HAB Management."
- [6] Arabinda Samantaray, Baijian Yang, J. Eric Dietz, and Byung-Cheol Min, "Algae Detection Using Computer Vision and Deep Learning."
- [7] Jhony-Heriberto Giraldo-Zuluaga, Geman Diez, Alexander Gómez, Tatiana Martínez, Mariana Péñuela Vásquez, Jesús Francisco Vargas Bonilla, Augusto Enrique Salazar Jiménez, "Automatic Identification of *Scenedesmus* Polymorphic Microalgae from Microscopic Images."
- [8] NASA ARTICLE, "Applying Machine Learning to Harmful Algal Blooms."
- [9] Seyit Uguz, Yavuz Selim Sahin, Pradeep Kumar, Xufei Yang and Gary Anderson, "Real-Time Algal Monitoring Using Novel Machine Learning Approaches."
- [10] D. M. Anderson, "Prevention, Control and Mitigation of Harmful Algal Blooms: Multiple Approaches to HAB Management."
- [11] Manhiro Flores-Iwasaki, Grobert A. Guadalupe, Miguel Pachas-Caycho, Sandy Chapa-Gonza, Roberto Carlos Mori-Zabarburú and Juan Carlos Guerrero-Abad, "Internet of Things (IoT) Sensors for Water Quality Monitoring in Aquaculture Systems: A Systematic Review and Bibliometric Analysis."
- [12] Dr.R.Usha, E. Ramesh Babu, B.Uma, Dr.B.Kishori, "Development of an IoT System for Real-time Monitoring and Control of Spirulina Cultivation."
- [13] Lean Karlo S. Tolentino, Sheila O. Belarmino, Justin Gio N. Chan, Oliver D. Cleofas Jr, Jethro Gringo M. Creencia, Meryll Eve L. Cruz, JC Glenn B. Geronimo, John Peter M. Ramos, Lejan Alfred C. Enriquez, Jay Fel C. Quijano, Edmon O. Fernandez, Maria Victoria C. Padilla, "IoT-based Closed Algal Cultivation System with Vision System for Cell Count through ImageJ via Raspberry Pi."
- [14] Andy Wahyu Hermanto, Achmad Dzulfiqor, "Solar Power Generator as an Alternative Energy Source for the Propeller Driver Motor."
- [15] Abdullah, Sikandar Ali, Ziaullah Khan, Ali Hussain, Ali Athar and Hee-Cheol Kim "Computer Vision Based Deep Learning Approach for the Detection and Classification of Algae Species Using Microscopic Images."



10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)