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Abstract: The Advanced Microcontroller Bus Architecture (AMBA), developed by ARM, is a widely adopted open standard that 
facilitates high-performance, low-power communication between functional blocks in System-on-Chip (SoC) designs. It enables 
modularity, scalability, and reusability in SoC development through a family of protocols including AHB (Advanced High-
performance Bus), AXI (Advanced extensible Interface), and APB (Advanced Peripheral Bus). Among these, APB is specifically 
designed for connecting simple, low-bandwidth peripherals such as UARTs, timers, and GPIOs due to its low complexity and 
reduced power consumption. This work presents the Design and Implementation of 32-bit AMBA APB Protocol using Cadence, 
showcasing a complete digital VLSI design flow. The project encompasses RTL coding in Verilog HDL, functional verification 
using testbenches, and synthesis using Cadence Genus to evaluate area, power, and delay reports. Following synthesis, the 
design undergoes placement and routing in Innovus, resulting in a GDSII layout generation. Post-synthesis and post-layout 
analyses are carried out to ensure that the design meets performance and physical constraints. The final GDS file confirms 
successful implementation from RTL to layout, making the protocol ready for silicon realization. This project demonstrates the 
integration of bus protocol design within a professional EDA environment, reflecting industry practices in hardware 
development and physical design. 
Keywords: AMBA, APB, AXI, AHB, SoC, UART, GPIO, RTL, HDL, EDA, GDSII.  
 

I. INTRODUCTION 
In the era of rapidly evolving semiconductor technologies, System-on-Chip (SoC) designs have become the backbone of modern 
digital systems, integrating processors, memory units, and various peripherals onto a single silicon chip. As SoCs grow in 
complexity, the demand for efficient, low-power, and standardized communication protocols between internal components becomes 
critical. To address this need, ARM developed the Advanced Microcontroller Bus Architecture (AMBA), a widely adopted open 
standard that enables modular design, high-performance data exchange, and power-efficient communication across multiple 
functional blocks in a system. The AMBA protocol suite includes several key protocols—AXI (Advanced extensible Interface) for 
high-speed, high-throughput communication; AHB (Advanced High-performance Bus) for burst-based pipelined data transfer; and 
APB (Advanced Peripheral Bus), which is specifically tailored for low-bandwidth and low-power peripheral connectivity. APB is 
intentionally simplified to reduce area and power consumption, making it highly suitable for peripherals such as UARTs, timers, 
keypads, GPIOs, and interrupt controllers. Its non-pipelined, two-phase transfer mechanism ensures deterministic communication 
with minimal logic, aligning with the needs of energy-efficient embedded systems. Due to its practical utility, the APB protocol is 
not only prevalent in industry-grade SoC designs but is also a significant area of interest in academic and research domains. It 
provides an ideal foundation for understanding the principles of digital protocol design, signal interfacing, and subsystem 
integration. Mastery of such protocols equips engineers with the ability to develop and verify reliable interconnects in real-time 
embedded systems. To model, simulate, and validate such protocols, Verilog HDL (Hardware Description Language) remains the 
industry standard for register-transfer level (RTL) design. Its flexibility allows for precise definition of logic behavior, module 
hierarchies, and timing characteristics. Complementing this, EDA tools from Cadence, such as Genus for logic synthesis and 
Innovus for placement, routing, and layout generation, offer an end-to-end design environment that reflects real-world VLSI 
development flows.  
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These tools enable designers to obtain critical metrics such as area, timing, and power, and ensure that the final layout complies with 
both logical functionality and physical design constraints. The increasing adoption of the AMBA APB protocol in both commercial 
and academic SoC applications underscores the importance of a comprehensive understanding of its architecture and 
implementation. By focusing on the design and implementation of a 32-bit AMBA APB protocol using Cadence tools, this work 
provides both a theoretical and practical exploration of the protocol’s functionality. The implementation is carried out in Verilog 
HDL, with verification through simulation and synthesis, leading up to the generation of a GDSII layout. This enables a deeper 
insight into the entire digital VLSI design flow, from RTL to silicon-ready layout, and demonstrates how foundational bus protocols 
contribute to building efficient, low-power SoC subsystems. 

 
Fig. 1, AMBA Bus Architecture diagram 

 
II. PROBLEM STATEMENT - PROPOSED SOLUTION 

In modern SoC designs, there is a growing need for lightweight and efficient communication protocols to interface with low-
bandwidth peripheral devices. The AMBA APB protocol is widely adopted for such use cases; however, designing a custom 32-bit 
APB interface that is both functionally accurate and physically realizable poses several design challenges. These include ensuring 
protocol correctness through thorough verification, achieving synthesis and timing closure, and managing physical design 
constraints such as area and congestion. Despite the availability of commercial IPs, educational and research contexts often lack 
access to fully developed design flows that span from RTL description to GDSII layout. This project addresses the need for a 
complete and practical implementation of a 32-bit AMBA APB protocol using the Cadence digital design flow, covering all stages 
from RTL design and functional verification to synthesis and physical layout. The problem lies in integrating these stages into a 
cohesive workflow that results in a silicon-ready design, while also ensuring compliance with protocol specifications and optimizing 
for design constraints. 
To address the challenges of designing a verified and synthesizable 32-bit AMBA APB protocol, this work proposes a structured 
implementation methodology using the Cadence digital design toolchain. The solution begins with the RTL design of the APB 
master and slave modules in Verilog, adhering strictly to the AMBA APB protocol specifications. A comprehensive testbench is 
developed to simulate valid operational scenarios such as write and read operations, error handling, and finite state machine (FSM) 
transitions. Functional verification is performed using Cadence Nclaunch/NCSim, which provides cycle-accurate simulation and 
waveform analysis. Following successful simulation, the design is synthesized using Cadence Genus, with timing and design 
constraints specified via an SDC file to generate a gate-level netlist. This netlist is then passed through the Cadence Innovus 
Implementation System for full physical design, which includes floorplanning, power planning, placement, clock tree synthesis 
(CTS), global and detailed routing, and post-route optimization. The design is subjected to physical verification checks such as DRC 
and LVS to ensure fabrication readiness. This end-to-end solution not only ensures protocol compliance and functional correctness 
but also validates the design across synthesis and physical implementation stages. By using an industry-standard EDA flow, the 
project demonstrates a scalable and educationally valuable reference for digital IP development, especially in low-power peripheral 
communication systems. 

 
III.  MASTER-SLAVE COMMUNICATION IN APB 

The Advanced Peripheral Bus (APB) is a part of the AMBA (Advanced Microcontroller Bus Architecture) protocol family 
developed by ARM, specifically designed for low-bandwidth and low-power peripheral communication in System-on-Chip (SoC) 
designs. APB is ideal for interfacing with simple peripherals such as UARTs, GPIOs, timers, and interrupt controllers, which do not 
require high-speed data transfers. The AMBA APB typically consists of an APB Bridge/Master and multiple APB Slaves, and it is 
designed to interface efficiently with several peripheral devices in a System-on-Chip (SoC). The APB Bridge, which acts as the 
master on the APB, receives high-speed transactions from an upstream bus like AHB or AXI and converts them into APB-compliant 
transactions. This bridge essentially serves as the control unit, managing all communication across the APB interface. 
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As shown in the block diagram, the APB Bridge/Master initiates and controls read/write operations by generating the required 
control signals (PCLK, PADDR, PWRITE, PWDATA, PSEL, PENABLE) and ensuring synchronization throughout the transaction. 
Each APB Slave, such as UART, Timer, or GPIO, is connected via its dedicated select signal (PSELx) and is responsible for 
responding to the master's commands by returning data (PRDATA), indicating readiness (PREADY), or asserting errors (PSLVERR) 
when necessary. 
The architecture is designed such that only one slave responds at a time, ensuring conflict-free data transfer. This hierarchical 
setup—with the bridge acting as both a slave on the high-performance system bus and a master on the APB—allows seamless 
integration of low-bandwidth peripherals into complex SoC environments. The simplicity and modularity of APB make it highly 
effective for low-power and area-constrained applications. 

 
Fig. 2, Signal-Level Interface Between APB Master and Slave 

 
A. APB Master Description  
The APB Master is responsible for initiating all communication within the APB system. It controls the timing, direction, and flow of 
data to and from the slave devices. The master begins a transfer by asserting the PSELx signal to select the appropriate slave, 
placing the target register address on the PADDR bus, and setting the PWRITE signal to indicate the type of operation—write (high) 
or read (low). In the case of a write operation, the master also places valid data on the PWDATA bus. Once all the setup signals are 
valid, it asserts the PENABLE signal, indicating that the access phase has begun. The master then waits for the PREADY signal 
from the slave, which tells the master whether the slave is ready to proceed. If PREADY is low, the master will hold the transaction, 
effectively inserting wait states until the slave responds. During read operations, the master captures the data presented by the slave 
on the PRDATA bus once PREADY is high. If an error is encountered, the slave may assert the PSLVERR signal, which the master 
can use for error handling logic. The master manages all timing relative to the PCLK signal, ensuring synchronous data transfers. 
 
B. APB Slave Description  
APB Slave is the target of communication and responds to requests made by the master. It remains inactive until selected by the 
PSELx signal. Upon being selected, the slave decodes the address from the PADDR bus and either prepares to accept data (in a 
write operation) or to supply data (in a read operation). When PENABLE is asserted by the master, the slave performs the requested 
action. For a write, it captures the data on the PWDATA bus and stores it at the location specified by the PADDR. For a read, it 
places the requested data onto the PRDATA bus so the master can receive it. Once the slave completes its operation, it asserts the 
PREADY signal, informing the master that the transfer can finish. If the slave encounters any fault—such as an invalid address or 
unsupported operation—it may assert the PSLVERR signal to indicate an error condition. Like the master, the slave also operates in 
sync with the rising edge of the PCLK signal to maintain timing integrity. 
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IV. RTL DESIGN USING VERILOG HDL 
The Register Transfer Level (RTL) design of the AMBA APB protocol was developed using Verilog HDL, modelling a 32-bit 
communication interface between the master and slave. The design encapsulates all essential APB signals including PCLK, 
PRESETn, PADDR, PSEL, PENABLE, PWRITE, PWDATA, PREADY, PSLVERR, and PRDATA. The APB slave was 
implemented with a 32x32-bit memory block to store and retrieve data during read and write operations. A finite state machine 
(FSM) was used to control the protocol’s operational flow through three defined states: IDLE, SETUP, and ACCESS.   

 
Fig. 3, FSM for APB Protocol 

 
The control logic ensures that data transfers occur only when valid conditions are met—i.e., when the master asserts PSEL followed 
by PENABLE. On write cycles, the slave stores the incoming data (PWDATA) into memory at the specified address (PADDR), 
whereas in read cycles, the corresponding memory content is driven to the PRDATA output. Error detection was implemented via 
the PSLVERR signal to handle out-of-bound memory accesses. To ensure design correctness and timing closure during synthesis, 
the corresponding SDC file was created. The SDC file defines the clock (PCLK) period as 20 ns (50 MHz), sets appropriate 
input/output delays for all ports, accounts for clock uncertainty, and defines false paths (e.g., reset paths). The set_drive and set_load 
constraints help refine timing estimates for synthesis. Overall, the Verilog design was structured for compatibility with digital design 
tools and ease of integration in downstream physical design flows.   
 

V. FUNCTIONAL VERIFICATION USING VERILOG TESTBENCH FOR APB  
The functional verification of the 32-bit AMBA APB protocol was carried out using a comprehensive Verilog testbench within the 
Cadence digital design environment. The primary objective of the testbench was to validate the correctness of data communication 
and control handshaking between the APB master and slave modules. Key signals such as PSEL, PENABLE, PWRITE, PWDATA, 
PRDATA, and PREADY were closely monitored to ensure accurate execution of both write and read operations. The simulation 
confirmed that the design transitioned correctly through all three finite state machine (FSM) states—IDLE, SETUP, and ACCESS—
based on the status of the control signals. During the write phase, when PWRITE is asserted, valid data from PWDATA is driven to 
the slave and correctly latched with the corresponding address. During read operations, PWRITE is deasserted, and the expected 
data is retrieved from the slave on PRDATA, verifying proper memory behaviour and data consistency. The waveform generated 
from the Cadence simulation (as shown in Figure 4) clearly illustrates these signal transitions over time, confirming protocol 
compliance and correct functionality. The PREADY signal was observed to be asserted during valid access phases, indicating that 
the slave was ready to complete the transaction. Additionally, while not explicitly shown in the waveform, the design includes logic 
to assert PSLVERR during invalid memory accesses, adding robustness to the protocol implementation. The synchronous nature of 
the protocol is maintained throughout, with address and data signals properly aligned to the clock edge, and the reset (PRESETn) 
held high to keep the system in an active operational state. The entire design, simulation, and implementation flow was executed 
using industry-standard Cadence EDA tools. Functional simulation and waveform analysis were performed using Cadence Nclaunch 
(NCSim), which provided cycle-accurate signal visualization for verification. 
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Fig. 4, APB protocol waveform result 

 
VI. RTL SYNTHESIS    

RTL (Register Transfer Level) synthesis is the process of transforming an RTL description of a design, typically written in Verilog or 
VHDL, into an optimized gate-level netlist consisting of logic gates, flip-flops, and other hardware components. This gate-level 
netlist serves as the foundation for subsequent stages of design, such as physical design, layout, and implementation, while ensuring 
that the design meets specific criteria such as timing, area, and power requirements. The synthesis process involves three key stages: 
translation, mapping, and optimization. During translation, the RTL code is converted into an intermediate representation, which is 
then mapped to specific target technology cells in the mapping stage. Finally, optimization techniques such as area minimization, 
timing refinement, and power reduction are applied to enhance the design’s efficiency, ensuring that it meets the required 
constraints. 
Cadence Genus is a comprehensive RTL synthesis tool used in the VLSI design flow to automate the conversion of RTL 
descriptions into optimized gate-level representations. By utilizing standard cell libraries for the target technology, Genus facilitates 
the synthesis process, ensuring efficient area, power, and timing performance. The tool supports a variety of optimization 
techniques, including area minimization, power reduction, and timing optimization, enabling designers to meet specified design 
constraints. Seamlessly integrating with other Cadence tools, Cadence Genus ensures a smooth transition from RTL to gate-level 
netlist, providing detailed reports that evaluate the synthesized design’s performance and allowing for further analysis and 
refinement. 
 

TABLE 1.  POST-SYNTHESIS RESULT OF 32-BIT AMBA APB PROTOCOL 
METRIC PARAMETERS VALUE 

Area  Cell Count 1908 
Cell Area 20086.612 
Total Area 20086.612 

Timming Startpoint PENABLE (R) 
Endpoint PENABLE (R) 
Required Time 14500 ps 
Data Path Delay 2310 ps 
Arrival Time 7310 ps 
Slack +7190 ps (MET) 

Power  Leakage Power 128469.110 nW 
Dynamic Power 69023.249 nW 
Total Power 197492.359 nW 

  
After synthesizing the 32-bit AMBA APB protocol using Cadence Genus, the design occupied a total cell area of approximately 
20086.6 µm² with 1908 standard cells. The synthesis met all timing constraints, achieving a positive slack of +7190 ps between 
PENABLE and PSLVERR under the PCLK domain. Power analysis indicated a total power consumption of 197.49 µW, with 
leakage and dynamic power contributing 128.47 µW and 69.02 µW, respectively. These results validate the design's efficiency in 
terms of timing, area, and power under the specified constraints. 
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VII. RESULT AND DISCUSSION  
Physical Design is the process of converting a gate-level netlist into a layout ready for chip fabrication. Using Cadence Innovus, this 
flow includes key steps like floorplanning, placement, Clock Tree Synthesis (CTS), routing, and layout verification.  
The images shown are the final layout views of our VLSI design project, generated using Cadence Innovus as part of the physical 
design flow from RTL to GDSII. These layouts represent the design both before and after optimization, showing the evolution of 
routing, placement, and overall cell organization. 
The physical design process began with floor planning, where the core area was defined and power planning was configured. In this 
step, we inserted power rings and rails using horizontal Metal 9 and vertical Metal 8 layers. The I/O pads were placed around the 
periphery, and macro placement (if any) was adjusted to ensure routability and timing closure. 
After floor planning, we performed power planning to distribute power (VDD) and ground (VSS) across the chip using metal layers, 
followed by placement of standard cells. Placement aimed to minimize wirelength and prepare the design for optimal routing. Post-
placement, Clock Tree Synthesis (CTS) was implemented to ensure minimal skew and proper clock signal distribution across all 
sequential elements. 
Routing was then performed in two phases: global and detailed. The layout views clearly show the dense interconnects between 
cells and modules across multiple metal layers. As shown in figure 5, (PRE-OPT) shows the layout before final optimization wires 
appear denser and less uniform, with some paths likely having longer delays or more congestion. 

 
Fig. 5, Pre-Optimization Layout result 

 
In contrast, figure 6, (POST-OPT) reflects improved routing after optimizations, such as better buffer insertion, delay fixing, and net 
rerouting for timing improvement and DRC clean-up  

 
Fig. 6, Post-Optimization Layout result 

 
Finally, we generated the GDSII file, which represents the design in a format ready for fabrication. Basic verification steps like DRC 
(Design Rule Check) and LVS (Layout Versus Schematic) were performed to confirm design correctness and consistency with the 
schematic. 
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These layout results reflect the successful completion of our physical design project. The transition from pre- to post-optimization 
demonstrates our understanding of key physical design steps, including floor planning, power planning, placement, CTS, routing, 
and layout verification using Cadence Innovus. 
                     

VIII. CONCLUSION  
In this project, the design and implementation of a 32-bit AMBA APB (Advanced Peripheral Bus) protocol were successfully carried 
out using Verilog HDL for RTL modeling and Cadence tools for synthesis and physical design. Verification was performed through 
an efficient Verilog Testbench, which tested various operational scenarios including Read, Write, and Error cycles, ensuring the 
functional correctness of the protocol. The testbench incorporated reusable tasks and self-checking mechanisms for validating 
different data paths and memory operations. The integration of design and testbench through interface logic allowed seamless 
simulation and verification. Random data and index-based test cases were used to verify the robustness of the design. Simulation 
results confirmed that the data retrieved during the read cycle accurately matched the data written, confirming the correctness of the 
protocol behaviour. The complete flow from RTL to GDSII was executed using Cadence Innovus, covering steps such as synthesis, 
floor planning, power planning, placement, clock tree synthesis (CTS), routing, and final GDSII generation. The final layout was 
verified for design rule correctness and functional equivalence. 
This work demonstrates a full-cycle implementation of the AMBA APB protocol, from design and verification to physical 
realization. For future scope, low-power design techniques can be incorporated to further enhance the efficiency and performance of 
the APB protocol in SoC environments. 
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