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Abstract: With the growing reliance on smartphones, optimizing the energy efficiency of mobile applications has become 

increasingly important due to the limited capacity of device batteries. Android, being the dominant mobile operating system, is 

particularly prone to energy inefficiencies caused by improper handling of power-intensive components.This paper introduces a 

machine learning-driven approach to identify energy inefficiencies in Android apps, with a focus on wake lock mismanagement 

and improper resource handling. The model is trained on a dataset composed of static features extracted from APKs, which 

reflect behavioral indicators such as the invocation of power-sensitive APIs, access to permissions, and usage of application 

components. 

 Since direct energy leak annotations are not typically available in such datasets, proxy labels were applied based on observable 

behavior patterns, categorizing applications into Normal, Wake Lock Leak, and Resource Leak classes. To improve model 

performance on imbalanced data, the Synthetic Minority Oversampling Technique (SMOTE) was used. A Light Gradient 

Boosting Machine (LightGBM) classifier was trained and fine-tuned using RandomizedSearchCV, achieving a classification 

accuracy of 99%. The results indicate strong generalization and high performance across all categories, demonstrating the 

effectiveness of the proposed approach in identifying energy-related issues in Android apps. 
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I. INTRODUCTION 

Android, as the dominant mobile operating system globally, powers more than 70% of smartphones in active use. Its open-source 

architecture, broad hardware compatibility, and extensive developer support have positioned it as the platform of choice for mobile 

application development. With millions of applications hosted on the Google Play Store, the Android ecosystem continues to 

expand, offering diverse functionalities and rich user experiences.Although there has been significant advancement in developing 

feature-rich applications, energy efficiency continues to be an often overlooked issue. Mobile devices are inherently limited by 

battery capacity, making efficient power consumption a critical metric for application performance. However, in practice, 

developers often prioritize functional features and user interfaces over energy optimization, inadvertently introducing inefficiencies 

that impact battery life and user satisfaction[7]. 

A key reason for this imbalance lies in the complexity of the Android application lifecycle and its event-driven architecture. 

Android apps are designed to handle diverse triggers, including user interactions, system-generated broadcasts, and asynchronous 

system events.This decentralized control flow can lead to overlooked execution paths, where developers may unintentionally hold 

system resources or fail to release them properly. These programming oversights often manifest as energy leakscenarios where an 

application consumes system power without serving user needs.[16] 

A recent study investigated energy consumption issues in 32 highly rated mobile applications across 16 categories and found that all 

of them exhibited energy inefficiencies despite their positive user ratings. Out of 14,064 user reviews collected, 8,007 specifically 

mentioned concerns related to energy usage. Interestingly, many users gave favorable ratings while still expressing dissatisfaction 

with battery performance, with comments such as “Works well, drains battery” and “Good, battery usage is very high”. This 

underscores a growing awareness and sensitivity among users regarding the energy impact of mobile applications, emphasizing the 

need for developers to prioritize energy-efficient design and implementation[21]. 

Power inefficiencies in Android applications are typically divided into two key types: wake lock mismanagement and improper 

resource deallocation.Wake locks are used by developers to keep the device’s CPU or screen awake to complete critical tasks. 

However, if wake locks are acquired but not released correctly, the device remains in a high-power state, leading to excessive 

battery drain.  
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Similarly, resource leaks occur when system resources such as file handles, network sockets, GPS modules, or sensors are allocated 

but not released, causing prolonged or redundant energy consumption[16]. 

These inefficiencies are often associated with code smells, which are indicative patterns of poor design or flawed implementation 

that do not necessarily produce immediate errors but compromise code maintainability and performance. In the context of energy 

management, code smells typically emerge from improper API usage, misinterpretation of the Android framework, or insufficient 

consideration of lifecycle state[20] [9]. 

As the demand for energy-efficient mobile applications increases, addressing these issues has become essential. Accurate detection 

of energy leaks, particularly wake lock and resource leaks, is a prerequisite for improving battery performance and ensuring 

sustainable application development practices in the Android ecosystem. 

Improper management of power-related components and system resources in Android applications often results in energy leaks, 

which can severely impact device performance and battery longevity. A common example is a wake lock leak, where an application 

acquires a wake lock to prevent the device from sleeping, such as during music playback, but fails to release it properly after use. 

For instance, if a developer acquires a PARTIAL_WAKE_LOCK to keep the CPU active but omits the corresponding release() call, 

the device remains in a high-power state even after the task is complete, leading to unnecessary battery drain[7]. 

The following code snippet illustrates a potential wake lock leak arising from improper resource management within an Android 

application. The updateWakeLock() method is responsible for acquiring and releasing a partial wake lock based on the logging state 

of the application. When the logging state is active (Constants.LOGGING), a new wake lock is acquired using 

PowerManager.PARTIAL_WAKE_LOCK, ensuring that the CPU remains awake during data logging. However, the code registers 

a shared preference change listener without a corresponding unregistration and does not guarantee the release of the wake lock in all 

execution paths.When the method is triggered multiple times during an active logging state, it can lead to the accumulation of wake 

locks without proper release. This issue may arise if release conditions are skipped due to changes in the app’s lifecycle or control 

flow [25]. 

This oversight can lead to the device remaining in a high-power state unnecessarily, thereby draining the battery even when the app 

is no longer performing critical tasks. Such issues are often introduced due to the complexity of Android’s event-driven lifecycle 

and asynchronous behavior. This scenario exemplifies a wake lock leak, a prevalent form of energy inefficiency in Android 

applications, and highlights the necessity for developers to ensure all acquired system resources are explicitly and consistently 

released[5]. 

Similarly, resource leaks occur when applications allocate system resources such as file streams, GPS sensors, or network 

connections without releasing them. An example includes failing to close a FileInputStream after reading data or neglecting to stop 

GPS updates via removeUpdates() in a location-based app. These oversights can result in continuous resource usage in the 

background, depleting battery life and affecting overall performance [24].  

Such programming flaws are often attributed to the complexities of Android's event-driven architecture and lifecycle, where 

multiple entry points and asynchronous callbacks increase the likelihood of missed release operations. These patterns are typically 

referred to as code smellsindicators of suboptimal coding practices that, while not always causing immediate failures, compromise 

the efficiency and maintainability of the application[15]. 

 

II. RELATEDWORKS 

Early studies into Android power management uncovered critical issues related to improper use of system resources, particularly 

wake locks and sensors. Pathak et al. were among the first to identify “no-sleep” bugserrors caused by unreleased wake locks that 

prevent devices from entering low-power states. Their dataflow-based analysis provided key insights into wake-lock misuse[1]. 

Building on this, Liu et al. introduced GreenDroid [17], a tool that performs static analysis to automatically detect energy 

inefficiencies linked to sensor and wake lock management. In subsequent work, Elite was developed as a refined static analysis 

framework that identifies mismanagement of wake locks by recognizing common usage patterns [2]. These foundational efforts 

established the significance of systematic energy bug detection and laid the groundwork for the development of automated analysis 

tools. 

Static analysis continues to be a dominant technique for identifying energy-related defects in mobile applications. Jiang et al. 

proposed SAAD, a framework that statically analyzes decompiled Dalvik bytecode to detect energy bugs through inter-procedural 

analysis[6]. Wu et al.  developed Relda2, a lightweight tool that constructs Function Call Graphs and Callback Graphs to enhance 

precision in detecting resource leaks, thereby reducing false positives and negatives[10].  
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Xu et al.  introduced Statedroid, which employs state-taint analysis to monitor resource usage transitions, effectively identifying 

complex energy leaks involving multiple resources[5]. Pereira et al. extended the capabilities of EcoAndroid by adding support for 

inter-procedural static analysis targeting key resources such as cursors, databases, cameras, and wake locks. More recently, 

Campelo et al. created E-APK, a rule-based detection system built on Kadabra’s abstract syntax tree (AST) representation. Notably, 

E-APK can operate on both source code and decompiled APKs, making it useful even when full source access is 

unavailable[14][15]. 

While static tools offer scalability, dynamic analysis provides runtime accuracy by simulating real app behavior. Tools like E-

GreenDroid and NavyDroid [9][10] monitor how applications interact with wake locks and sensors during execution, revealing 

misuse under various app states[3][4]. Hybrid approaches have also gained attention, offering a balance between coverage and 

precision. EnergyPatch combines static bug detection with dynamic validation to confirm the presence of energy leaks and proposes 

automated fixes[8]. Abbasi et al.  explored application tail energy bugs (ATEBs)instances where apps continue to consume power 

post-exit—and developed a Java-based diagnostic tool leveraging Android Debug Bridge (ADB) to collect and analyze system-level 

data for identifying such inefficiencies[12]. 

In recent years, there has been a growing interest in utilizing machine learning methods to improve the detection of energy 

inefficiencies in mobile applications.Zhu et al. applied classification algorithms to system call traces to identify code changes that 

increase energy consumption. Their model supports early detection of potential regressions[6]. Khan et al. [14] introduced a testing 

framework that simulates realistic usage patterns to trigger energy issues, using clustering and filtering techniques to isolate 

anomalous power-draining processes. Their approach dynamically adjusts test cases based on observed behaviors, outperforming 

several traditional methods[7]. Li et al. further improved detection by integrating runtime context modeling and workload analysis 

to enhance accuracy and coverage in identifying inefficient addition to detection techniques, efforts have components[22]. 

In been made to quantify and model power usage in Android applications. Le et al.  presented a power consumption automaton 

(PCA) that models transitions between various hardware power states (e.g., GPS, Wi-Fi, CPU). By refining these transitions 

algorithmically, the model estimates application-level energy usage and provides actionable feedback for optimizing resource 

consumption. This framework enables developers to understand and visualize the energy behavior of their apps, contributing to 

better design and power management strategies. 

 

III. METHODOLOGY 

We work presents a machine learning approach to identify energy-related issues in Android applications using static features 

extracted from APKs. The proposed workflow consists of five main stages: proxy labeling of the dataset, data preprocessing, class 

imbalance correction, model training and optimization, and final deployment through a user-accessible system. 

 we utilized an Android malware dataset to detect energy leaks in mobile applications. Although the dataset was originally designed 

for malware detection, many malicious apps exhibit behaviors that are also indicative of energy inefficiencies, such as prolonged 

wake locks, continuous background service usage, and frequent system calls. These overlapping characteristics make the dataset a 

useful proxy for studying energy-related issues. We adapted the dataset by focusing on features linked to energy consumption 

patterns, including resource usage and power-related API calls. This approach enabled us to train and validate our energy leak 

detection model effectively. While this dataset was not purpose-built for energy analysis, we acknowledge this as a limitation and 

propose the development of dedicated energy leak datasets as future work. 

Following proxy labeling, the dataset was labeled based on heuristics derived from known energy leak patterns found in Android 

malware samples, including behaviors such as abnormal wake lock usage and improper resource management. This indirect labeling 

approach was necessary due to the lack of publicly available energy leak datasets. Once labeled, the dataset underwent a rigorous 

cleaning process to eliminate incomplete, inconsistent, or duplicate entries. Feature vectors were validated for structural consistency 

to ensure compatibility with downstream machine learning workflows. The processed dataset retained a binary matrix format, where 

each column represented a specific static feature and each row corresponded to an individualAPK[26]. 

Exploratory data analysis revealed significant class imbalance, with a predominance of energy-efficient (normal) applications. To 

address this, we applied the Synthetic Minority Oversampling Technique (SMOTE), which synthetically augments underrepresented 

classes (wake lock leaks and resource leaks) by interpolating between nearby samples. This improved class balance and helped 

prevent model bias during training. 
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The classification task was conducted using the Light Gradient Boosting Machine (LightGBM), chosen for its robustness with 

sparse, high-dimensional data and efficiency during training.The dataset was partitioned into 80% for training and 20% for testing to 

evaluate the model's performance effectively. 

Model evaluation employed standard metrics such as accuracy, precision, recall, and F1-score to measure performance across all 

three classes, with a particular focus on detecting energy leaks accurately. Finally, the trained model was deployed via a Flask-based 

web interface, enabling users to upload APK-derived feature vectors and receive predictions indicating whether the app is likely 

affected by a wake lock leak, a resource leak, or is energy-efficient. To enhance practical usability, interpretability features were 

also included to highlight key indicators influencing each prediction, supporting developers in targeted debugging and optimization. 

 

IV. DESIGN AND IMPLEMENTATION 

The proposed system follows a modular architecture, as depicted in Figure 1. It begins with the acquisition of a dataset derived from 

static analysis of Android malware applications, followed by several stages: data preprocessing, class balancing using SMOTE, 

dataset splitting, model training using LightGBM, model evaluation, and deployment using a Flask-based web interface. The user 

interacts with the interface to upload APK-derived feature files, which are then classified by the trained model. 

Each component of the system was developed with modularity in mind, ensuring independence, reusability, and scalability.This 

modular structure provides the flexibility to experiment with alternative models or preprocessing techniques without disrupting the 

overall workflow. 

Since publicly available malware datasets typically lack direct labels for energy-related behaviors, we adopted a proxy labeling 

strategy to enable supervised learning. Static features were extracted from Android apps, including usage of wake locks, background 

services, sensor access, and power-intensive APIs—features commonly associated with energy inefficiencies. Based on observed 

patterns in the static code features and known energy misuse behaviors in malware, instances were heuristically labeled as Normal, 

Wake Lock Leak, or Resource Leak. This proxy labeling approach allowed us to infer energy leak classes using indirect evidence, 

compensating for the lack of explicit annotations.Although this introduces a level of abstraction, it enables meaningful classification 

and analysis of energy leaks within the context of Android malware analysis[26]. 

Data preprocessing was critical to ensure reliability. The dataset underwent a thorough cleaning process, including removal of 

missing values, duplicate records, and noisy or inconsistent entries. Categorical features were encoded using one-hot encoding, and 

irrelevant or highly correlated attributes were eliminated using correlation matrices and domain-specific insights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Architecture diagram 

 

While LightGBM is robust to unscaled data, normalization was still applied to maintain uniform feature contributions. Notably, no 

feature reduction or transformation was performed—all available features were used to preserve maximum representational capacity 

for leak detection. This comprehensive approach, combined with proxy labels, provided the foundation for effective model training. 

The dataset exhibited significant class imbalance: most samples were labeled "Normal," with relatively few representing the leak 

categories. To mitigate this issue, the Synthetic Minority Oversampling Technique (SMOTE) was utilized to balance the class 

distribution.. SMOTE generates synthetic examples for the minority classes by interpolating between existing samples, enhancing 

the model’s ability to generalize and recognize underrepresented patterns such as Wake Lock and Resource Leaks. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

    

 
4420 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

To ensure a representative distribution of classes, the dataset was split into 80% training and 20% testing sets using stratified 

sampling.Stratification preserved the class distribution across both sets, providing a balanced evaluation. Additionally, k-fold cross-

validation was used during training to ensure robustness and reduce the risk of overfitting. 

LightGBM (Light Gradient Boosting Machine) was chosen for its speed, scalability, and superior performance on structured data. 

Without applying feature extraction, the model was tuned using randomized search for optimal hyperparameters. During training, 

signs of overfitting were observed, prompting regularization and parameter tuning to improve generalization. 

The final model, trained on the proxy-labeled dataset, achieved 99% classification accuracy, with strong performance on minority 

leak classes. LightGBM demonstrated strong performance in the multi-class classification task, benefiting from features such as 

gradient-based one-side sampling, exclusive feature bundling, and integrated regularization techniques. 

The model’s performance was assessed using several evaluation metrics, including accuracy, precision, recall, F1-score, and an 

analysis of the confusion matrix.The model achieved an F1-score exceeding 0.98 for both leak categories, demonstrating reliable 

detection of energy issues even with proxy labels. 

 
Fig 2. ROC curve for energy leak detection model 

 

ROC curves were generated for each classNormal, Wake Lock Leak, and Resource Leakbased on the predicted probabilities. As 

shown in Figure 2, all ROC curves are concentrated in the top-left region, with Area Under the Curve (AUC) values approaching 

1.00. This indicates excellent separability and high diagnostic accuracy using the selected static features. 

The trained model was serialized using joblib, allowing for persistent reuse in a production environment. A web-based front end 

was developed using Flask to facilitate easy interaction. The system allows developers and analysts to upload a feature file extracted 

from an Android APK and receive immediate classification results. 

The output includes the predicted class, probability scores for each leak type, and a summary of feature contributions, offering 

insights into potential energy inefficiencies. This feedback mechanism supports rapid testing, debugging, and optimization of 

mobile applications from an energy consumption perspective. 

 

V. CONCLUSION 

We present a machine learning-based framework for detecting energy inefficiencies—specifically, wake lock leaks and resource 

leaks—in Android applications using a proxy-labeled dataset derived from static analysis of malware samples. The dataset 

comprises key indicators such as API calls, permission requests, and component usage patterns associated with power consumption 

behavior. Proxy labels were heuristically assigned based on known energy misuse patterns to facilitate supervised learning in the 

absence of ground truth annotations. Leveraging LightGBM, tuned via RandomizedSearchCV and enhanced with SMOTE to 

address class imbalance, the proposed model achieved a classification accuracy of 99%. It effectively distinguishes between 

Normal, Wake Lock Leak, and Resource Leak classes, offering actionable insights into energy-related issues in mobile applications. 

A Flask-based web interface was developed to ensure accessibility and ease of integration into development workflows. This tool 

empowers developers to proactively detect and mitigate energy inefficiencies during the software development lifecycle, 

contributing to improved battery performance and user experience. Future work may include expanding the feature set, 

incorporating real-time behavioral analysis, and detecting code smells that contribute to energy leaks. 
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