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Abstract: The Cyber-attacks become the most important security problems in the today’s world. With the increase in use of 
computing resources connected to the Internet like computers, mobiles, sensors, IoTs in networks, Big Data, Web 
Applications/Server, Clouds and other computing resources, hackers and malicious users are planning new ways of network 
intrusions. Many techniques have been developed to detect these intrusions which are based on data mining and machine 
learning methods. These intrusions detection techniques have been applied on various IDS datasets. UNSW-NB15 is the latest 
dataset. This data set contains different modern attack types and wide varieties of real normal activities. In this paper, we 
compare Naïve Bays algorithm with proposed probability based supervised machine learning algorithms using reduced UNSW 
NB15 dataset.  
Keywords: UNSW NB-15, Machine Learning, Naïve Bayes, All to Single (AS) features probability Algorithm. 

I. INTRODUCTION 
The increase in the number of devices connected to the Internet has resulted in a number of useful solutions in different fields such as 
agriculture, health care, commerce, IT and other industry. Such a huge increase in demand for connectivity has challenged the 
traditional network architectures. The networks can be accessed using a number of ways and this becomes a threat to the network. To 
overcome this problem, the system will be able to predict any type of threat to the network keep it secure. Thus, our system can predict 
attacks even before they happen in order to warn the users of the potential threat that may affect them. 
Cyber security is a broad field of research, and the detection of malicious activities on the network is among the oldest and most 
common problems. However, intrusion detection is mostly reactive and responses to specific patterns or observed anomalies. The 
intuitive next step is taking a proactive approach, in which there is a need to preemptively infer the upcoming malicious activities so 
that we could react to such events before they cause any harm. Research efforts and progress in predictions and forecasting in cyber 
security are not as prominent as attack detection. However, it is gaining more attention, and a breakthrough in this field would 
benefit the whole discipline of cyber security.  
Currently, most of the organizations rely on traditional security options in order to secure their data. But this has led to attackers 
exploiting their security systems. In order to provide better security, organizations must be aware of the threats they face, in order to 
tackle those threats. Our paper aims to provide network attack prediction in two categories..   
Intrusion Detection Systems (IDS)[1][2] is a device or software application that monitors network  and the system for suspicious 
activities and warns  the system or network administrator. There are  Host based IDS and Network based IDS. A Host based 
Intrusion Detection System keeps track of  individual host machine and gives notice to the user if suspicious activities like deleting 
or modifying a system file, undesired  configuration changes, unnecessary  system calls sequence are found. Generally, a Network 
based Intrusion Detection System(NIDS)[3] is kept at network points like a gateway or  routers to detect the intrusions over the 
network. 
A NIDS monitors and detects network-attack patterns over networking environments and protect computing resources against 
malicious activities. At high level, IDS can be categorized by the detection mechanism used by it. These IDSes are : i) misuse 
detection, ii) anomaly detection and iii) hybrid detection. Misuse detection techniques have been used to detect known attacks while 
the Anomaly detection techniques have been used to detect unknown attacks. 
Machine Learning (ML) can be used for all the three types of detection techniques. Machine learning is subclass of Artificial 
Intelligence (AI) which are used in computers.  A machine learning models have two parts: training and testing. By using training 
data samples as a input, learning algorithm learn the features in the training. In the testing, the learning algorithm predicts the 
unknown data.  
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Machine learning algorithms are applied on different network attack datasets with or without feature selection approaches. 
Supervised learning algorithms build a mathematical model of a set of data which contains both the inputs and the desired outputs. 
The data is known as training data, and consists of a set of training examples. Each training example has one or more inputs and a 
desired output. It is also known as a supervisory signal. Unsupervised learning algorithms take a set of data that contains only 
inputs, and find pattern in the data, such as grouping or clustering of data points. The algorithms therefore learn from test data that 
has not been labeled, classified or categorized. Instead of responding to feedback, unsupervised learning algorithms identify 
commonalities in the data and react based on the presence or absence of such commonalities in each new piece of data. 
To provide network attack prediction based on historical attack data. Providing accurate results on what type of attack may happen 
based on multiple factors. The rest of the paper is organized as follows: section II gives related work for probability based algorithms . 
Section III gives in detail of the Naïve Bayes drawbacks with examples and UNSW NB 15 dataset[4][5]. In section IV, proposed 
methods with All to Single (AS) features probability Algorithm   with examples  are given. Section V gives comparisons and results. 
Finally, section VI gives future direction and  concludes the work.  

 
II. RELATED WORK 

Many researchers have used different Machine Learning algorithms on different Datasets. Priya et al.[6] have done survey on 
different machine learning algorithms applied on various datasets The different machine learning algorithms have applied on] 
UNSW NB 15 dataset. The following some researchers have used Naïve Bays algorithm on UNSW NB 15 dataset.  
Moustafa et al. [7] suggested an approach which reduce the irrelevant features set which then  used  with machine learning methods 
to detect intrusion. An NIDS architecture is then used for anomaly intrusion detection and misuse intrusion detection. NIDS takes 
the input from the UNSW-NB15 dataset and then computes the center points of attribute values which is  the most frequent value. 
All these center points  are given to  the Apriori algorithm as an input to reduce processing time. This Apriori algorithm  finds out 
the highly ranked attributes /features using the correlation of the two or more attributes. The filtered dataset  which consists of  the 
selected features  feed to the detection engine. They applied three ML algorithms on UNSW-NB15. d Naive Bayes (NB)  gives 
79.5% accuracy and 23.5% FAR. 
Bhamare et al. [8] presented the  machine learning approach to  detect the cyber-attack. They have used different ML algorithms on 
UNSW-NB15 dataset. This has comprehensive representation of modern attack  which give real attack scenarios. Misuse detection 
techniques  such as LR, NB, DT and Support Vector Machine use 3 different kernels such as  Polynomial, Linear, RBF are applied 
on Dataset. NB gives an accuracy of 73.8%, with RBF kernel gives accuracy 70.15%  , poly function  based NB gives FPR 7.3% 
Anwer et al.[9] proposed framework for efficient network anomaly detection using different machine learning classifiers. The  
feature selection framework applies five different strategies for  features selection. The aim of this framework is to select the 
minimum number of features that gives the highest accuracy. UNSW-NB15 dataset is used in the experimental results to evaluate 
the proposed framework. J48 and Naïve Bayes algorithms are used as classifiers. The experimental results obtained show that, the 
best strategy is by using 18 features from the GR ranking method and applying J48 as a classifier getting an accuracy of 88% and a 
speedup factor of 2.   
Moustafa et al.[10] proposed an ensemble intrusion detection technique  to reduce malicious events particularly botnet attacks 
against DNS, HTTP and MQTT protocols utilized in IoT networks. From these protocols new statistical flow features are obtained 
based on an analysis of their potential properties. Then,  ensemble learning method named AdaBoost is developed using Decision 
Tree (DT), Naive Bayes (NB) and Artificial Neural Network (ANN) machine learning techniques. AdaBoost  evaluates the effect of 
these features and detect malicious events effectively.  
The UNSW-NB15 with simulated IoT sensors’ data are used to extract the proposed features and evaluate the ensemble technique. 
The proposed ensemble technique provides a higher detection rate and a lower false positive rate compared with each classification 
technique included in the framework. The simplest feature selection method Correlation Coefficient (CC) is used to compute the 
strength degree between some features. Using the DNS data source of the UNSW-NB15 dataset, the accuracy and DR of the 
ensemble method achieved 99.54% and 98.93%, respectively, while the FPR produces 1.38%, which outperforms the performance 
of the DT, NB and ANN techniques. HTTP data source of the UNSW-NB15 dataset, the accuracy and DR of the ensemble method 
achieved is 98.97%, 97.02% and FPR 2.58%. The DT technique produces a 95.32% accuracy, 94.15% DR and 5.22% FPR, and then 
the ANN technique achieves a 92.61% accuracy, 91.48%  DR and 7.87% FPR. Lastly, the NB technique achieves an accuracy rate 
of 91.17%, 90.78% DR and 8.25% FPR. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 9 Issue XII Dec 2021- Available at www.ijraset.com 
     

 
1883 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Beloucha et al.[11] proposed a framework  which  evaluates the performance of four classification algorithms; SVM, Naive Bayes, 
Decision Tree and Random Forest using Apache Spark for intrusion detection in network traffic. Apache Spark a big data 
processing tool. Using UNSW-NB15 Naive Bayes and SVM have almost same sensitivity with values 92.46% and 92.13% .They 
found that specificity for the Random Forest and Decision Tree based schemes are almost same with 97.75% and 97.10% 
respectively. However, specificity for SVM based scheme is about 91.15%. Naive Bayes provides lowest Specificity. the accuracy 
of the Naive Bayes based scheme is lower among the all schemes with 74.19%.  
Nawir et al.[12]  proposed  Network Intrusion Detection System using machine learning algorithms for binary classification. They 
used three types of ML algorithms from Bayesian’s family in WEKA tools. They are Average One Dependence Estimator (AODE), 
Bayesian Network (BN), and Naive Bayes (NB).  
The performance these classifiers measured in term of classification rate and processing time for classifier model to classify the data 
instances of UNSW-NB15 dataset. The parameters of these classifiers set to default as in WEKA and using tenfold cross validation 
to validate the training set before the model been tested. It is  found that AODE is processing fast for network anomaly detection 
system compared to other two classifiers with accuracy 94.37% with training time 4.13s. BN algorithm gives  the accuracy  92.70% 
and time taken is 4.17s.  Naive Bayes algorithm required small amount of time  but its accuracy is not comparable to AODE and BN 
algorithms 
 

III. NAIVE BAYES CLASSIFIER AND DATASET 
Naive Bayes classifier is based on the Bayesian learning method and it is found to be useful in many applications. It is called ”naive” 
because it is based on the simplifying assumption that attribute values are conditionally independent of each other. It is applied to the 
learning task where each instance x can be described by a conjunction of attributes and where the target function f(x) can take any of 
the value from some finite set V (a set of target values).  
It estimates the posterior probabilities of observing a class label from a set of normal class and anomaly class labels. For a given test 
instance, Class label with largest posterior is chosen as the predicted class.  
Naive Bayes classifier achieves a fast speed of detection and is simpler than other classifiers. However, it makes an assumption that 
features are independent of each other.  
This independent relation assumption may not hold true in detecting various types of attacks. For example, in the publicly available 
UNSW NB 15 intrusion detection dataset, the features are highly dependent on each other.  
Bayes theorem provides a way of calculating the posterior probability, P(c|x), from P(c), P(x), and P(x|c). Naive Bayes classifier 
assume that the effect of the value of a predictor (x) on a given class (c) is independent of the values of other predictors. ... P(c) is 
the prior probability of class. 
The conditional probability can be calculated using the joint probability, although it would be intractable. Bayes Theorem provides a 
principled way for calculating the conditional probability. The simple form of the calculation for Bayes Theorem is as 
follows: P(A|B) = P(B|A) * P(A) / P(B) 
The conditional probability can be calculated using the joint probability, although it would be intractable. Bayes Theorem provides a 
principled way for calculating the conditional probability. The simple form of the calculation for Bayes Theorem is as 
follows: P(A|B) = P(B|A) * P(A) / P(B) 
The main limitation of Naive Bayes is the assumption of independent predictor features. Naive Bayes implicitly assumes that all the 
attributes are mutually independent. In real life, it's almost impossible that we get a set of predictors that are completely independent 
or one another. 
 UNSW-NB15 Dataset: The existing datasets do  not represent the  modern  network traffic with different attack scenarios. The 
cyber security research group at the Australian Centre for Cyber Security (ACCS) and other researchers of this domain around the 
globe took this as a challenge. The raw network packets of the UNSW-NB15 dataset[6] was created by the IXIA PerfectStorm tool 
in the Cyber Range Lab of ACCS for generating a hybrid of real modern normal activities and synthetic contemporary attack 
behaviors. The Argus, Bro-IDS tools are used with  twelve algorithms  to generate total 49 features with the class  label. For this 
paper we have used reduced (few tuples) of UNSW-NB15 dataset with 4 attributes and Class Label. The column having discrete 
values are and binary class labels are taken. The reduced UNSW NB15 dataset with 20 tuples is divided into training and testing 
datasets. 
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Table 1: Training Dataset 
 Sr 
No 

proto 
used 

service 
used ct_srv_src ct_src_ltm Class 

1 UDP No 3 1 Attack 
2 UDP Yes 3 1 Attack 
3 UDP No 2 1 Normal 
4 UDP No 1 3 Normal 
5 TCP No 1 2 Normal 
6 TCP Yes 1 2 Attack 
7 TCP Yes 2 2 Normal 
8 UDP No 3 3 Attack 
9 TCP No 3 2 Normal 

10 TCP No 1 3 Normal 
11 TCP Yes 3 3 Normal 
12 UDP Yes 2 3 Normal 
13 TCP No 2 1 Normal 
14 UDP Yes 1 3 Attack 

 
Table 2:Tesing Dataset 

 

 

 

 

 
 

IV. PROPOSED METHODS 
The reduced UNSW NB 15 dataset as shown in Table 1 with 4 attributes/features proto(Flow feature), service(Basic Feature ), 
ct_srv_src (Connection features )(No. of connections that contain the same service (http, ftp, ssh, dns ..,else (-)) and source address 
(Source IP address) in 100 connections according to the last time (The content size of the data transferred from the server’s http 
service) , ct_src_ltm(No. of connections of the same source address (Source IP address) in 100 connections according to the last 
time (The content size of the data transferred from the server’s http service). ) and class with some discrete values are used. The 
features proto, service, ct_srv_src , ct_src_ltm are Transaction protocol used, whether any services(dns/http/etc) used or not,,   
respectively. The binary class labels are Attack and Normal.  The reduced UNSW NB15 dataset is divided into training and testing 
in 70 and 30  % respectively. Table 1 and Table 2 show the training and testing datasets respectively.  
Preparation of Training/Testing Dataset:  Every test sample is compared/tested with every tuple of training dataset for the 2no of 

attributes -1 times . It means every rows/tuple of the training and dataset are converted to 2no of attributes -1 sub rows or sub tuples. Every 
attribute values of sample is compared with respective attribute of training dataset.  Initially  row is created with all attribute values. 
Next rows are created with n-1 attributes. This is done till the number of attributes are reduced  one attribute. If there are 4 attributes 
then 24 -1=15 rows are created. 1 row with all 4 attributes values, 4 rows with any three attribute values, 6 rows with any two 
attribute values, 4  rows with one attribute values.  
The total number of rows 4C4 +  4C3+  4C2 +  4C1 = 1+ 4+ 6 +4 =15 rows . 

 
 Where n is the total number of attributes/columns 
  4C4=1,  4C3= 4,  4C2=6,  4C1 =4  ,,,  Σ  nCr

 => 1+4+6+4 =15 rows 
 

Sr 
No 

proto 
used 

service 
used 

ct_srv_src ct_src_ltm Class 

1 UDP Yes 2 2 Normal 
2 UDP No 1 1 Normal 
3 TCP No 2 3 Attack 
4 UDP No 1 3 Normal 
5 UDP Yes 3 2 Attack 
6 UDP Yes 3 3 Attack 
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Test sample with 4 attributes values shown in table 3 is converted 2no of attributes -1= 24 -1=15 sub rows while training and testing as 
shown in table 4. The tuple with 3 attributes is converted to 2no of attributes -1= 23 -1=7 and so on. 
 

Table 3: Sample tuple 
 

 
 
 

Table 4: Tuple  1 with all sub tuples 
 Sr 
No 

proto 
used 

service 
used ct_srv_src ct_src_ltm Class 

1 UDP No 3 1 Attack 
2 UDP No 3 Attack 
3 UDP No 1 Attack 
4 UDP 3 1 Attack 
5 No 3 1 Attack 
6 UDP No Attack 
7 UDP 3 Attack 
8 UDP 1 Attack 
9 No 3 Attack 

10 No 1 Attack 
11 3 1 Attack 
12 UDP Attack 
13 No Attack 
14 3 Attack 
15 1 Attack 

A. AS Algorithm 1 
1) Set class variable count values to zeros. Scan the dataset tuple by tuple and match all the n attribute values of sample tuple with 

tuples of training dataset. If  all n  attributes values matched, increase the count of respective class variables .Mark the tuples of 
training dataset where all/n/maximum attributes values of  sample tuples are matched with  the attribute values of training 
dataset. 

2) Find probabilities of the classes from the marked tuples i.e P(C1) and P(C2) 
3) Find the Class with highest probability 
4) Assign class for  sample tuple  which have highest probability 
5) If probability are the same for all classes REPEAT Step 1 to 4 for n-1 (or maximum -1) attributes and break)/(till single 

attribute). 

Note: Only marked tuples are considered for calculation. In NB ,all tuples are considered for calculation.  
 
To give the equal chances to all classes and all attributes rigorous conditional probabilities can be used. The conditional probability 
of class for  n attributes with n-1 attributes. 

B.  AS Algorithm 2 
1) Mark the tuples of dataset where all/n/maximum attributes values of  sample tuples are matched  with the attribute values of 

training dataset 
2) Find probabilities of the classes for marked tuples i.e P(C1) and P(C2) 
3) REPEAT Step 1 to 2 for n-1 (or maximum -1) attributes till single attribute. 
4) Find the(rigorous conditional probabilities)  product of all probabilities for  the  respective classes. 
5) Assign the Class to the sample tuple which have highest product. 
Note: Only marked tuples are considered for calculation. In NB are tuples are considered for calculation that is disadvantage of NB 
which gives pure accuracy. 

Sr 
No 

proto 
used 

service 
used 

ct_srv_src ct_src_ltm Class 

1 UDP Yes 2 2 ? 
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P(C1)= P(for n attributes) x P(for n-1 attributes) x P(for n-2 attributes) …P(1 attribute) 
P(C2)= P(for n attributes) x P(for n-1 attributes) x P(for n-2 attributes) …P(1 attribute) 
An unseen sample X= <UDP, yes,2, 2, > 

 
By Naïve Bayes 

An unseen sample X= < UDP, Yes, 2, 2 > 

P(X|Normal).P(Normal) = P(UDP |N).P(Yes |N).P(2|N).P(2 |N).P(N) 

                     =3/9 X 3/9 X 4/9 X 3/9 X  9/14 

                     =0.01058 

P(X|Attack).P(Attack) = P(UDP |A).P(Yes |A).P(2|A).P(2 |A) 

                     =4/5 X 3/5 X 0 X 1/5 X 5/14 = 0 

The  instance X= < UDP, Yes, 2, 2 >will be classified as Normal. 

By All to Sigle features probability Algorithm 2 
An unseen sample X=  <UDP, yes, 2, 2, > 

 
Table 5 

 Sr 
No 

proto 
used 

service 
used ct_srv_src ct_src_ltm Class 

1 UDP No 3 1 Attack 
2 UDP Yes 3 1 Attack 
3 UDP No 2 1 Normal 
4 UDP No 1 3 Normal 
5 TCP No 1 2 Normal 
6 TCP Yes 1 2 Attack 
7 TCP Yes 2 2 Normal 
8 UDP No 3 3 Attack 
9 TCP No 3 2 Normal 

10 TCP No 1 3 Normal 
11 TCP Yes 3 3 Normal 
12 UDP Yes 2 3 Normal 
13 TCP No 2 1 Normal 
14 UDP Yes 1 3 Attack 

 
For 3 Attributes as shown in table 5 

Class Probabilities 

P(Normal=2/2  

P(Attack)=0 

For 2 Attributes Class Probabilities as shown in table 6  

P(Normal)=3/6 

P(Attack)=3/6 
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Table 6 
 Sr 
No 

proto 
used 

service 
used ct_srv_src ct_src_ltm Class 

1 UDP No 3 1 Attack 
2 UDP Yes 3 1 Attack 
3 UDP No 2 1 Normal 
4 UDP No 1 3 Normal 
5 TCP No 1 2 Normal 
6 TCP Yes 1 2 Attack 
7 TCP Yes 2 2 Normal 
8 UDP No 3 3 Attack 
9 TCP No 3 2 Normal 

10 TCP No 1 3 Normal 
11 TCP Yes 3 3 Normal 
12 UDP Yes 2 3 Normal 
13 TCP No 2 1 Normal 
14 UDP Yes 1 3 Attack 

Table 7 
 Sr 
No 

proto 
used 

service 
used ct_srv_src ct_src_ltm Class 

1 UDP No 3 1 Attack 
2 UDP Yes 3 1 Attack 
3 UDP No 2 1 Normal 
4 UDP No 1 3 Normal 
5 TCP No 1 2 Normal 
6 TCP Yes 1 2 Attack 
7 TCP Yes 2 2 Normal 
8 UDP No 3 3 Attack 
9 TCP No 3 2 Normal 

10 TCP No 1 3 Normal 
11 TCP Yes 3 3 Normal 
12 UDP Yes 2 3 Normal 
13 TCP No 2 1 Normal 
14 UDP Yes 1 3 Attack 

For Single Attribute Class Probabilities as shown in Table 7. 

P(Normal)=8/13 

P(Attack)=5/13 

Taking all Probabilities together 

P(Normal)= 8/13.3/6.2/2=48/78    

P(Attack)= 5/13. 3/6.0=0              
                   
               The  instance X= < UDP, Yes, 2, 2 > will be classified as Normal. 
 

Example 2 : An unseen sample X=  <  UDP, No, 1, 1,> 
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By Naïve Bayes Algorithm 
An unseen sample X=  <  UDP, No, 1, 1,> 

P(X|Normal).P(Normal) = P(UDP |N).P(No |N).P(1|N).P(1|N).P(N) 
                     =3/9 X 2/9 X 3/9 X 6/9 X 9/14 
                     =0.010582 

P(X|Attack).P(Attack) = P(UDP |A).P(No |A).P(1|A).P(1 |A).P(A) 
                     =2/5 X 2/5 X 4/5 X 2/5 X 5/14 
                     =0.018286 

The instance X=  <  UDP, No, 1, 1,> will be classified as Attack. 

By All to Sigle feature probability Algorithm 

Table 8 

 

For 3 Attributes Class Probabilities as shown Table 8. 
P(Normal)=2/3  
P(Attack)=1/3  

Table 9 
 Sr 
No 

proto 
used 

service 
used ct_srv_src ct_src_ltm Class 

1 UDP No 3 1 Attack 
2 UDP Yes 3 1 Attack 
3 UDP No 2 1 Normal 
4 UDP No 1 3 Normal 
5 TCP No 1 2 Normal 
6 TCP Yes 1 2 Attack 
7 TCP Yes 2 2 Normal 
8 UDP No 3 3 Attack 
9 TCP No 3 2 Normal 

10 TCP No 1 3 Normal 
11 TCP Yes 3 3 Normal 
12 UDP Yes 2 3 Normal 
13 TCP No 2 1 Normal 
14 UDP Yes 1 3 Attack 

 Sr 
No 

proto 
used 

service 
used ct_srv_src ct_src_ltm Class 

1 UDP No 3 1 Attack 
2 UDP Yes 3 1 Attack 
3 UDP No 2 1 Normal 
4 UDP No 1 3 Normal 
5 TCP No 1 2 Normal 
6 TCP Yes 1 2 Attack 
7 TCP Yes 2 2 Normal 
8 UDP No 3 3 Attack 
9 TCP No 3 2 Normal 

10 TCP No 1 3 Normal 
11 TCP Yes 3 3 Normal 
12 UDP Yes 2 3 Normal 
13 TCP No 2 1 Normal 
14 UDP Yes 1 3 Attack 
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For 2 Attributes Class Probabilities as shown in Table 9. 

P(Normal)=5/9 

P(Attack)=4/9 

For Single Attributes Class Probabilities as shown in Table 10. 

P(Normal)=7/12 

P(Attack)==5/12 

Taking all Probabilities together 

P(Normal) = 2/3. 5/9. 7/12 = 70/324      

P(Attack) = 1/3. 4/9. 5/12.= 20/324 

The instance X=  <  UDP, No, 1, 1,> will be classified as Normal 

Table 10 
 Sr 
No 

proto 
used 

service 
used ct_srv_src ct_src_ltm Class 

1 UDP No 3 1 Attack 
2 UDP Yes 3 1 Attack 
3 UDP No 2 1 Normal 
4 UDP No 1 3 Normal 
5 TCP No 1 2 Normal 
6 TCP Yes 1 2 Attack 
7 TCP Yes 2 2 Normal 
8 UDP No 3 3 Attack 
9 TCP No 3 2 Normal 

10 TCP No 1 3 Normal 
11 TCP Yes 3 3 Normal 
12 UDP Yes 2 3 Normal 
13 TCP No 2 1 Normal 
14 UDP Yes 1 3 Attack 

V. COMPARISONS & RESULTS 
Only 12/13 marked tuples considered by AS and all 14 by NB. No need to consider those tuples where not a single attribute value 
matching. NB is calculating probabilities of all classes for all tuples. Both the AS features probability algorithms are giving the 
following confusion matrix shown in Table 11.  The Confusion matrix for Naïve Bayes algorithm is shown in Table 11. The 
accuracy for NB is 66,67%. 

Table 11. Confusion matrix for ASfpa                                                          Table 11. Confusion matrix for Naïve Bayes 
 

. 

 

 
         6 

Class1 : 
Normal  
Predicted 

Class 2: Attack  
Predicted 

 

Class1: 
Normal 
Actual 

TP=3 FN=0 3 

Class2: 
Attack 
 Actual 

FP=0 TN=3 3 

 3 3 6 

 
         6 

Class1 : 
Normal  
Predicted 

Class 2: Attack  
Predicted 

 

Class1: 
Normal 
Actual 

TP=2 FN=1 3 

Class2: 
Attack 
 Actual 

FP=1 TN=2 3 

 4 2 6 
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By NB 

Accuracy=(TP+TN)/(TP+TN+FP+FN)= 

(2+2)/(4+2+0+0)=5/6=0.6667 

By ASfpa 

Accuracy=(TP+TN)/(TP+TN+FP+FN)= 

(4+2)/(4+2+0+0)=6/6=1 

VI. CONCLUSION AND FUTURE WORK 
 In this paper Naïve Bays and Proposed All to Single feature rigorous Conditional probability applied on reduced UNSW NB15 
dataset. We have used small dataset to concentrate more on algorithm. The proposed algorithm is giving good accuracy. This 
algorithm can be applied on any dataset of any size. 
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