Developing an Individual Excel Sheet for Design and Analysis of Beam and Slab

Sachin Tattimani ${ }^{1}$, Sri. P. I. Cholappanavar ${ }^{2}$
${ }^{1}$ Student, ${ }^{2}$ Asst. Prof., Department of Civil Engineering, SDM college of Engineering and Technology, Dharwad-580002

Abstract

Analysis and design of RC structures using FEM based software package needs basic knowledge of that software. This project focuses on developing a excel sheet with simple user interface to analyze and design RC structures without any prior knowledge of software. This excel sheet considers only the gravity loads. Grids in X and Y directions are defined in the sheet. User can enter distance between grids. This sheet provides design of footing and column.

I. INTRODUCTION

Analysis and design of multi-story structure is a tedious task. FEM based software are used to carry out the same. However, use of these software needs lot of experience and expertise. Lack of exposure and expertise in these software leads to inaccurate designs. To ease the design of structures, a excel sheet with simple user interface is developed which can be used by almost anyone for building design. The excel is designed to take minimum input and provide maximum output. Building structures are usually divided by grid systems depending on their column location, which denotes centre to centre distance. This excel sheet takes centre to centre distance as input. Load on the column is calculated using the tributary area defined by the centre-to-centre distance. This load includes live load, floor finish, dead load of slab, beam, column and wall load. Depending on number of floors the total load is calculated and the same is used to design footings. Similarly, columns are designed for axial load and moments using SP16. Design of beam is carried out using bending moment and shear force factors for continuous beams as specified in the IS456:2000. Slab panels are designed using the centre-to-centre distance provided as per the support condition. All the footings,columns, beams and slabs can be independently designed. To validate the results, the same structure was analysed and designed in ETABS, which gave results with accuracy up to 95%. The accuracy decreases as the size of the structure increases.
This excel sheet is very useful in designing regular structures till G+3 and up to span 7 m under gravity loading. Lateral loads are not considered for design.

II. LITERATURE REVIEW

A. "Development of Design Spreadsheet Tool for R.C.C. Beam Design using V.B.A."

Author - Vijay Srivastav
The outline manages a complicated and repeated task because the design technique in light of the Limit State Method includes different mathematical statements and parameters. In addition, outlining is a time-consuming and extremely repeated trailing technique. Therefore, using spreadsheets can significantly cut down on a planner's or builder's time and effort. Despite the availability of numerous standard configuration programming packages, spreadsheets have emerged as one of the best options for designers due to their minimization and compliance. The main goal of this project is to create an MS Excel Spreadsheet with VBA Programming that will enable users to

1) Analyse a beam for Shear Force, Bending Moment, Slope, and Deflection for a variety of end Conditions and for a variety of load patterns.
2) To determine the safe load carrying capacity of a beam
3) To Create RCC Beams An outline equipment that can be usefully used by a professional to analyse and design an RCC beam will be the project's output.

B. "Automated Excel Sheets for Various RC Elements."

Author - Nitin Tiwari, Rashmi Sakalle
In this work, the rebars of various RC elements, such as beams, columns, and slabs, have been calculated and analysed using the EXCEL spreadsheet programme. This project work has calculated five different types of EXCEL spreadsheets, including one-way and two-way slabs, short columns and long columns, cantilever beams, simply supported beams, and short columns and long columns.

Effective span, nominal cover, and effective length of compression members were only a few of the distinctive factors that were considered in our analysis. The RC elements have been assigned several checks in addition to having a variety of distinguishing attributes. RCC code IS 456:2000 has been used as a source of inspiration.

C. "Structural Analysis and Design of Multistorey Reinforced Concrete Building using STAAD. Pro"

Author - Sushant Gupta
Structural design is the primary aspect of the civil engineering. The foremost basic in structural engineering is the design of simple basic components and members of a building viz., Slabs, Beams, Columns and Footings. The principle objective of this project is to analyse and design a multi-storied reinforced concrete building [G+3 (3-dimensional frame)] using STAAD Pro. The design involves manual load calculations, analysis and design of the whole structure using STAAD Pro. The design methods used in STAAD-Pro analysis are Limit State Design conforming to Indian Standard Code of Practice. Structure considered for analysis and design is 14.90 m high hospital building located in the seismic zone IV. In this project, we study the effect of various load combinations on the structure by analysing the bending moment diagrams in post processing mode.

D. "Analysis and design of $G+5$ residential building by using E-Tabs"

Author - Lingeshwaran Navaratnam
We are living in the 21st century number of complex and irregular structure and designed to resists the Earthquake, Wind and needs to analyse , design the structure by the various software like ETABS, STAAD.Pro, TEKLA and to design the structure in this project we used the ETABS software due to company suggestion and to find stress analysis in slab, shear force for the beam and area reinforcement for the column and design the foundation depends upon the reaction and height of the foundation level depends upon site and safe bearing capacity of the soil due to stability purpose designed the retaining wall in this project.

III. OBJECTIVE

1) Design and Analysis of RC structure by developing an independent Excel sheet and validating the result using ETABS software
2) To include structural engineering principles into design documents.
3) To improve the idea behind structural analysis and design as well as its effectiveness when a design sheet is employed.

IV. METHODOLOGY

A. Problem Definition

Developing an Excel sheet to Design and Analyse the RC structure and comparing using E-tab Software

B. Flow Chart

C. Sample

1) Inputs

Self-Weight of RCC
25
Masonry
Floor Finish (FF)
Live Load (LL)
Grade of Concrete (fck)
ReinforcementGrade (fy)
Column Breadth (b)
Column Depth (D)
Height (H)
Slab Thickness (T)
Wall Thickness
No of Slab
Beam Depth
Beam Width
$\mathrm{KN} / \mathrm{m}^{3}$
$\mathrm{KN} / \mathrm{m}^{3}$
$\mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{KN} / \mathrm{m}^{2}$
$\mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{N} / \mathrm{mm}^{2}$
m
m
m
m
m
Units
m
m
2) Structure

Fig 1
3) Calculation of Axial Loads
a) Self-Weight on Column $=b^{*} \mathrm{~d} * \mathrm{H} *$ Self-Weight of RCC

$$
\begin{aligned}
& =0.23 * 0.38 * 3.2 * 25 \\
& =\mathbf{6 . 9 9} \mathbf{K N}
\end{aligned}
$$

b) Self-Weight of Beam $=L^{*} \mathrm{~b}^{*} \mathrm{~d} *$ Self-Weight of RCC

$$
=4 * 0.23 * 0.38 * 25
$$

$=8.74 \mathrm{KN}$
c) Self-Weight on Slab $=(\mathrm{L} * \mathrm{~B} * \mathrm{~T} *$ Self-Weight of RCC$)+(\mathrm{L} * \mathrm{~B} * \mathrm{FF})+(\mathrm{L} * \mathrm{~B} * \mathrm{LL})$

$$
=(2 * 2 * 0.125 * 25)+(2 * 2 * 1)+(2 * 2 * 2)
$$

$=\mathbf{2 4 . 5 0} \mathrm{KN}$
d) Self-Weight from Wall $=\mathrm{L}^{*}($ Height-Beam Depth $) *$ T*Masonry

$$
=4 *(3.2-0.38) * 0.23 * 18
$$

$=46.70 \mathrm{KN}$
e) Individual Floor Load $=($ Self-Weight on Column $)+($ Self-Weight of Beam $)+$ (Self-Weight on Slab) $+($ Self-Weight from Wall)

$$
\begin{aligned}
& =(6.99)+(8.74)+(24.50)+(46.70) \\
& =\mathbf{8 6 . 9 3} \mathbf{~ K N}
\end{aligned}
$$

f) Total Load $=($ Individual Floor Load*No of Slab) $+($ Self-Weight on Column $)+$ (Self-Weight of Beam)

$$
=(86.93 * 2)+6.99+8.74
$$

$$
P=189.59 \mathrm{KN}
$$

g) Factored Load $=1.5 * \mathrm{P}$

$$
=1.5 * 189.59
$$

$$
\mathrm{Pu}=284.39 \mathrm{KN}
$$

D. Design of Beam

1) Inputs

Beam Depth	0.38	m
Beam Width	0.23	m
ES	200000	$\mathrm{~N} / \mathrm{mm}^{2}$
Depth	0.38	m
Cover to centre	0.04	m
Effective Depth	0.34	m
Stirrup Día	8	mm
Cover	25	mm

2) Design
a) $\mathrm{Lx}=\mathbf{4 m}$
$\mathrm{Ly}=\mathbf{4 m}$
Span Ratio $=\mathrm{Ly} / \mathrm{Lx}=\mathbf{1 m}$
b) Check for Slab

If (Span Ratio >=2,"One Way Slab", "Two Way Slab") Hence, Two Way Slab
c) $\mathrm{Wo}=($ Floor finish $*$ Slab thickness $* 25) * 1.5$
$=(1 * 0.125 * 25) * 1.5$
$=6.88 \mathrm{KN} / \mathrm{m}$
d) Dead Load calculation

- Slab Load $=$ if $(\operatorname{Lx}<\mathrm{Ly}), 1 / 3^{*} \mathrm{Wo} * \mathrm{Lx}^{*} \mathrm{Wo} * \mathrm{Lx} / 2^{*}\left(1-1\left(3^{*}\right.\right.$ Span Ratio $\left.\left.{ }^{2}\right)\right)$).
$=$ if $\left.(4<4), 1 / 3 * 6.88 * 4 * 6.88 * 4 / 2 *\left(1-1\left(3 * 1^{2}\right)\right)\right)$
$=\mathbf{8 . 2 5 0} \mathbf{K N} / \mathrm{m}$
- Wall load=0.23*Height*Masonry
$=0.23 * 3.2 * 18$
$=\mathbf{1 3 . 2 4 8} \mathbf{K N} / \mathrm{m}$
- Beam Load=Beam depth *Beam Width *Self Weight of RCC
$=0.38 * 0.23 * 25$
$=2.185 \mathrm{KN} / \mathrm{m}$
- Total Dead Load= Slab Load + Wall load + Beam Load
$=8.250+13.248+2.185$
$=23.683 \mathrm{KN} / \mathrm{m}$

```
e) LiveLoad calculation \(=\mathrm{if}(\mathrm{Lx}<\mathrm{Ly}), 1 / 3 * \mathrm{LL} * \mathrm{Lx} * \mathrm{LL} * \mathrm{Lx} / 2 *\left(1-1\left(3 *\right.\right.\) Span Ratio \(\left.\left.\left.{ }^{2}\right)\right)\right)\) \(=\) if \(\left.(4<4), 1 / 3 * 2 * 4 * 2 * 4 / 2 *\left(1-1\left(3 * 1^{2}\right)\right)\right)\)
\(=2.667 \mathrm{KN} / \mathrm{m}\)
```

f) Bending Moment Coefficients

- Dead load Moment's calculations
> Span moments
Middle of end= (Total Dead load *Lx*Lx)/12
$=(23.683 * 4 * 4) / 12$
$=31.577 \mathrm{KN} / \mathrm{m}$
Middle of interior= (Total Dead load *Lx*Lx)/16
$=(23.683 * 4 * 4) / 16$
$=23.683 \mathrm{KN} / \mathrm{m}$
Support moments
End Support= (Total Dead load *Lx*Lx)/10
$=(23.683 * 4 * 4) / 10$
$=37.893 \mathrm{KN} / \mathrm{m}$
Next to End Support= (Total Dead load *Lx*Lx)/12
$=(23.683 * 4 * 4) / 12$
$=31.577 \mathrm{KN} / \mathrm{m}$
- Live load moments calculations
> Span moments
Middle of end= $($ Total Live load $*$ Lx $*$ Lx) $/ 10$
$=(2.667 * 4 * 4) / 10$
$=4.267 \mathrm{KN} / \mathrm{m}$
Middle of interior $=($ Total Live load *Lx*Lx)/12
$=(2.667 * 4 * 4) / 12$
$=3.556 \mathrm{KN} / \mathrm{m}$
Support moments
End Support= (Total Live load *Lx*Lx)/9
$=(2.667 * 4 * 4) / 9$
$=4.741 \mathrm{KN} / \mathrm{m}$
Next to End Support= (Total Live load *Lx*Lx)/9
$=(2.667 * 4 * 4) / 9$
$=4.741 \mathrm{KN} / \mathrm{m}$
- Total Bending Moment Coefficients
> Middle of end $=($ DL+LL $)$
$=(31.577+4.267)$
$=35.844 \mathrm{KN} / \mathrm{m}$
> Middle of interior= $($ DL+LL $)$
$=(23.683+3.556)$
$=27.239 \mathrm{KN} / \mathrm{m}$
> End Support= (DL+LL)
$=(37.893+4.741)$
$=42.634 \mathrm{KN} / \mathrm{m}$
- Interior support= (DL+LL)
$=25.283 \mathrm{KN} / \mathrm{m}$
- Next to End Support= (DL+LL)
$=(31.577+4.741)$
$=36.318 \mathrm{KN} / \mathrm{m}$
g) Shear Coefficients calculations
- At End= (DL+LL) *0.45
$=(23.683+2.667) * 0.45$
$=\mathbf{2 4 . 8 8 3} \mathbf{K N} / \mathrm{m}$
- \quad Next to End= $(\mathrm{DL}+L L) * 0.6$
$=(23.683+2.667) * 0.6$
$=\mathbf{2 5 . 2 8 3} \mathbf{K N} / \mathrm{m}$

3) Design for Bending at Left Support

- $\mathrm{Xumax} / \mathrm{d}=0.00035 /(0.0055+0.87 * \mathrm{Fy}) / \mathrm{ES}$

$$
=0.00035 /(0.0055+0.87 * 500) / 200000
$$

$=0.046$
If (Fck=15,2.5, If(Fck=20,2.8,If(Fck=25,3.1,If(Fck=30,3.5,If(Fck=35,3.7,If(Fck=40,4))))))

- Tcmax $=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
- Pt $\min (\%)=0.85 / \mathrm{Fy} * 100$

$$
=0.85 / 500 * 100
$$

$=\mathbf{0 . 1 7 0}$

- Design for Bending at left Support
> $\mathrm{Mu}=\mathbf{4 2 . 6 3 4} \mathrm{KN}-\mathrm{m}$
> Mulim $=0.36 *$ Xumax/d*(1-0.416*Xumax/d)*b*d*Fck*10000/1000000
$=0.36 * 0.046 *(1-0.416 * 0.046) * 230 * 340^{2} * 25 * 10000 / 1000000$
$=85.64 \mathrm{KN}-\mathrm{m}$
If (Mu<Mulim,((1-SQRT(1-4*0.416*Mu*10^6/0.36/fck/Width/d $\left.\left.\left.\left.{ }^{2}\right)\right) / 2 / 0.416^{*} \mathrm{~d}^{2}\right), \mathrm{Xumax} / \mathrm{d}^{*} / \mathrm{d}\right)$
- $\mathrm{Xu}=85.64 \mathrm{KN}-\mathrm{m}$
- e At ASC= $\mathbf{0 . 0 0 2 5}$
- $\mathrm{fsc}=\mathbf{4 0 1 . 0 3 3} \mathbf{N} / \mathrm{mm}^{2}$

If (e At ASC <0.002, ($0.446-111500 *\left(0.002-\right.$ e At ASC ${ }^{2}$) *Fck, $0.446 *$ Fck $)$

- $\mathrm{fcc}=\mathbf{8 . 9 2 0} \mathbf{N} / \mathrm{mm}^{2}$
- Area of Reinforcement
> Ast $-1=(0.36 *$ Fck*Width*Xu $/ 0.87 /$ Fy $)$
$=(0.36 * 20 * 230 * 85.64 / 0.87 / 500)$
$=321.44 \mathrm{~mm}^{2}$
$>$ Asc $=$ If $\left(\right.$ Mu $<=$ Mulim, $0,\left((\right.$ Mu-Mulim $) * 10^{6} /($ fcc-fsc $) /($ Eff Depth-Cover $\left.\left.)\right) / 100\right)$
$=$ If $\left(42.634<=85.64,0,\left((42.634-85.64) * 10^{6} /(8.920-401.33) /(340-25)\right) / 100\right)$
$=0.00$
$>$ Ast-2 $=$ If $\left(\mathrm{Mu}<=\right.$ Mulim, $\left.0,\left((\mathrm{fsc}-\mathrm{fcc}) / 0.87 / \mathrm{Fy}^{*} \mathrm{Asc}\right)\right)$ $=$ If $(42.634<=85.64,0,((401.33-8.920) / 0.87 / 500 * 0.00))$
$=0.00$
$>$ AST $=$ Ast- $1+$ Ast- 2
$=321.474 \mathrm{~mm}^{2}$
- $\operatorname{Pt}(\%)=$ Ast / Width /Eff Depth * 100
$=321.474 / 230 / 340 * 100$
$=0.411$
- Astmin $=$ Pt min (\%) * Width * Eff Depth
$=0.170 * 230 * 340 / 100$
$=132.940 \mathrm{~mm}^{2}$
- \quad Ast Critical $=$ If (Ast<Astmin, Astmin, Ast $)$
$=$ If $(321.474<132.94,132.94,321.474)$
$=321.474$

4) Design for Shear at left Support

- $\mathrm{Vu}=\mathbf{2 4 . 8 8 3} \mathbf{K N}$

If ($0.8 *$ Fck $/ 6.89 / \mathrm{Pt} \%>1,0.8 *$ Fck $/ 6.89 / \mathrm{Pt} \%, 1$)

- $\beta=5.649$
- $\quad \tau \mathrm{c}=0.85 * \operatorname{SQRT}(0.8 * \mathrm{Fck}) *(\operatorname{SQRT}(1+5 * \beta)-1) / 6 / \beta$

$$
=0.85 * \operatorname{SQRT}(0.8 * 20) *(\operatorname{SQRT}(1+5 * 5.649)-1) / 6 / 5.649
$$

$=0.44 \mathrm{~N} / \mathrm{mm}^{2}$

- $\quad \tau \mathrm{v}=\mathrm{Vu} *$ Width $*$ Eff Depth
$=24.883 * 230 * 340$
$=0.318 \mathrm{~N} / \mathrm{mm}^{2}$
- $\quad \tau \mathrm{cbd}=\tau \mathrm{c} * \mathrm{~b}^{*} \mathrm{~d}$
$=0.44 * 230 * 340$
$=34.578 \mathrm{KN}$
- \quad Vus $=$ If $($ Vu- $\tau c b d>0$, Vu- $\tau c b d, 0.0001)$

$$
=\text { If }(24.833-34.758>0,24.833-34.758,0.0001)
$$

$=\mathbf{0 . 0 0 0 1 ~ K N}$
If((Pt Percentage $>4, \tau v>\tau c m a x)$,"Increase Section","SectionAdequte")
Hence, Section Adequte

If((Mu)<Mulim,"Singly","Doubly")
Hence, Singly
5) Design for Bending at Midspan

- Xumax/d $=0.00035 /(0.0055+0.87 * \mathrm{Fy}) / \mathrm{ES}$

$$
\begin{aligned}
& =0.00035 /(0.0055+0.87 * 500) / 200000 \\
& =\mathbf{0 . 0 4 6}
\end{aligned}
$$

If $($ Fck $=15,2.5, \operatorname{If}($ Fck $=20,2.8, \operatorname{If}($ Fck=25,3.1,If(Fck=30,3.5,If(Fck=35,3.7,If(Fck=40,4)))))) $)$

- $\tau \mathrm{cmax}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
- $\operatorname{Pt} \min (\%)=0.85 / \mathrm{Fy} * 100$

$$
\begin{aligned}
& =0.85 / 500 * 100 \\
& =\mathbf{0 . 1 7}
\end{aligned}
$$

- Design for Bending at Mid Span
$>\mathrm{Mu}=\mathbf{3 5 . 8 4 4} \mathrm{KN}-\mathrm{m}$
$>$ Mulim $=0.36^{*}$ Xumax $/ \mathrm{d}^{*}\left(1-0.416 *\right.$ Xumax/d) ${ }^{*} \mathrm{~b}^{*} \mathrm{~d}^{*}$ Fck*10000/1000000
$=0.36 * 0.046 *(1-0.416 * 0.046) * 230 * 340^{2} * 25 * 10000 / 1000000$
$=85.64 \mathrm{KN}-\mathrm{m}$
If (Mu<Mulim, ((1-SQRT(1-4*0.416*Mu*10^6/0.36/fck/Width/d $\left.\left.\left.\left.{ }^{2}\right)\right) / 2 / 0.416^{*} \mathrm{~d}^{2}\right), \mathrm{Xumax} / \mathrm{d}^{*} / \mathrm{d}\right)$
- $\mathrm{Xu}=69.586 \mathrm{KN}-\mathrm{m}$
- e At ASC= 0.002
- $\mathrm{fsc}=\mathbf{3 9 0 . 5 6 5} \mathrm{N} / \mathrm{mm}^{2}$

If (e At ASC $<0.002,\left(0.446-111500 *\left(0.002-\right.\right.$ e At ASC ${ }^{2}$) *Fck, $0.446 *$ Fck $)$

- $\mathrm{fcc}=8.92 \mathrm{~N} / \mathrm{mm}^{2}$
- Area of Reinforcement
> Ast $-1=(0.36 *$ Fck*Width*Xu $/ 0.87 /$ Fy $)$
$=(0.36 * 20 * 230 * 85.64 / 0.87 / 500)$
$=321.44 \mathrm{~mm}^{2}$
$>$ Asc $=$ If $\left(\mathrm{Mu}<=\right.$ Mulim $, 0,\left((\mathrm{Mu}-\mathrm{Mulim}) * 10^{6} /(\right.$ fcc-fsc $) /($ Eff Depth-Cover $\left.\left.)\right) / 100\right)$
$=$ If $\left(42.634<=85.64,0,\left((42.634-85.64) * 10^{6} /(8.920-401.33) /(340-25)\right) / 100\right)$

$$
=0.00
$$

> Ast-2 $=$ If $(\mathrm{Mu}<=$ Mulim, $0,(($ fsc-fcc)/0.87/ Fy*Asc) $)$

$$
=\text { If }(42.634<=85.64,0,((401.33-8.920) / 0.87 / 500 * 0.00))
$$

$$
=0.00
$$

$>\mathrm{AST}=\mathrm{Ast}-1+$ Ast -2
$=321.474 \mathrm{~mm}^{2}$

- $\operatorname{Pt}(\%)=$ Ast / Width /Eff Depth * 100
$=321.474 / 230 / 340 * 100$
$=0.411$

- \quad Astmin $=\operatorname{Pt} \min (\%) *$ Width $*$ Eff Depth
 $=0.170 * 230 * 340 / 100$
 $=132.940 \mathrm{~mm}^{2}$

- \quad Ast Critical $=$ If (Ast<Astmin,Astmin, Ast)
$=$ If ($321.474<132.94,132.94,321.474$)

$$
=321.474
$$

6) Design for Shear at Mid Span

- $\mathrm{Vu}=0.0$

If ($0.8 *$ Fck $/ 6.89 / \mathrm{Pt} \%>1,0.8 *$ Fck $/ 6.89 / \mathrm{Pt} \%, 1$)

- $\beta=5.649$
- $\tau \mathrm{c}=0.85 * \operatorname{SQRT}\left(0.8^{*} \mathrm{Fck}\right) *(\operatorname{SQRT}(1+5 * \beta)-1) / 6 / \beta$

$$
=0.85 * \operatorname{SQRT}(0.8 * 20) *(\text { SQRT }(1+5 * 5.649)-1) / 6 / 5.649
$$

$=0.44 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
& \text { - } \tau \mathrm{v}=\mathrm{Vu} * \text { Width } * \text { Eff Depth } \\
& =0.00 * 230 * 340 \\
& =\mathbf{0 . 0 0}
\end{aligned}
$$

- $\tau c b d=\tau c * b^{*} d$
$=0.44 * 230 * 340$
$=36.103 \mathrm{KN}$
- Vus $=$ If (Vu- $\tau c b d>0$, Vu- $\tau c b d, 0.0001)$

$$
=\text { If }(0-34.758>0,0,34.758,0.0001)
$$

$=0.0001 \mathrm{KN}$
7) Design for Bending at Right Support

- Xumax/d $=0.00035 /(0.0055+0.87 * \mathrm{Fy}) / \mathrm{ES}$

$$
\begin{aligned}
& =0.00035 /(0.0055+0.87 * 500) / 200000 \\
& =\mathbf{0 . 0 4 6}
\end{aligned}
$$

If $(\operatorname{Fck}=15,2.5, \operatorname{If}($ Fck=20,2.8,If(Fck=25,3.1,If(Fck=30,3.5,If(Fck=35,3.7,If(Fck=40,4))))))

- $\tau \mathrm{cmax}=2.8 \mathrm{~N} / \mathrm{mm}^{2}$
- $\quad \operatorname{Pt} \min (\%)=0.85 / \mathrm{Fy} * 100$

$$
\begin{aligned}
& =0.85 / 500 * 100 \\
& =\mathbf{0 . 1 7 0}
\end{aligned}
$$

- Design for Bending at left Support
$>\mathrm{Mu}=36.318 \mathrm{KN}-\mathrm{m}$
> Mulim $=0.36 *$ Xumax/d*(1-0.416*Xumax/d)*b*d*Fck*10000/1000000
$=0.36 * 0.046 *(1-0.416 * 0.046) * 230 * 340^{2} * 25 * 10000 / 1000000$
$=85.64 \mathrm{KN}-\mathrm{m}$
If $\left(\operatorname{Mu}<\operatorname{Mulim},\left(\left(1-S Q R T\left(1-4 * 0.416 * M u * 10^{\wedge} 6 / 0.36 /\right.\right.\right.\right.$ fck $\left.\left.\left.\left./ W i d t h / d^{2}\right)\right) / 2 / 0.416 * d^{2}\right), X u m a x / d * / d\right)$
- $\mathrm{Xu}=70.602 \mathrm{KN}-\mathrm{m}$
- e At ASC= 0.0025
- $\quad \mathrm{fsc}=\mathbf{3 9 1 . 4 8 7} \mathbf{N} / \mathrm{mm}^{2}$

If (e At ASC <0.002, (0.446-111500*(0.002- e At ASC ${ }^{2}$) *Fck, $0.446 *$ Fck)

- $\mathrm{fcc}=\mathbf{8 . 9 2 0} \mathbf{N} / \mathrm{mm}^{2}$
- Area of Reinforcement
> Ast $-1=(0.36 *$ Fck $*$ Width $*$ Xu /0.87/ Fy $)$
$=(0.36 * 20 * 230 * 70.602 / 0.87 / 500)$
$=268.77 \mathrm{~mm}^{2}$
$>\quad \mathrm{Asc}=\mathrm{If}\left(\mathrm{Mu}<=\operatorname{Mulim}, 0,\left((\mathrm{Mu}-\mathrm{Mulim}) * 10^{6} /(\mathrm{fcc}-\mathrm{fsc}) /(\right.\right.$ Eff Depth-Cover $\left.\left.)\right) / 100\right)$
$=$ If $\left(42.634<=85.64,0,\left((42.634-85.64) * 10^{6} /(8.920-401.33) /(340-25)\right) / 100\right)$
$=0.00$
$>\mathrm{Ast}-2=$ If $(\mathrm{Mu}<=\mathrm{Mulim}, 0,((\mathrm{fsc}-\mathrm{fcc}) / 0.87 / \mathrm{Fy} * \mathrm{Asc}))$
$=$ If $(42.634<=85.64,0,((401.33-8.920) / 0.87 / 500 * 0.00))$

$$
=0.00
$$

$>\mathrm{AST}=$ Ast $-1+$ Ast -2

$$
=268.77 \mathrm{~mm}^{2}
$$

- $\operatorname{Pt}(\%)=$ Ast / Width /Eff Depth *100

$$
\begin{aligned}
& =268.77 / 230 / 340 * 100 \\
& =0.344
\end{aligned}
$$

- \quad Astmin $=P t \min (\%) *$ Width $*$ Eff Depth
$=0.170 * 230 * 340 / 100$
$=132.940 \mathrm{~mm}^{2}$

$=$ If $(268.77<132.94,132.94,321.474)$
$=268.77$

8) Design for Shear at Right Support

- $\mathrm{Vu}=\mathbf{2 5 . 2 8 3} \mathbf{K N}$

If ($0.8 *$ Fck $/ 6.89 / \mathrm{Pt} \%>1,0.8 *$ Fck $/ 6.89 / \mathrm{Pt} \%, 1$)

- $\beta=6.756$
- $\tau c=0.85 * \operatorname{SQRT}\left(0.8^{* F c k}\right) *(\operatorname{SQRT}(1+5 * \beta)-1) / 6 / \beta$

$$
=0.85 * \operatorname{SQRT}(0.8 * 20) *(\operatorname{SQRT}(1+5 * 6.756)-1) / 6 / 6.756
$$

$=0.41 \mathrm{~N} / \mathrm{mm}^{2}$

- $\tau \mathrm{v}=\mathrm{Vu}$ *Width *Eff Depth
$=25.283 * 230 * 340$

$$
=0.323 \mathrm{~N} / \mathrm{mm}^{2}
$$

- $\tau c b d=\tau c * b^{*} d$
$=0.41 * 230 * 340$
$=32.122 \mathrm{KN}$
- \quad Vus $=$ If $(\mathrm{Vu}-\tau c b d>0, \mathrm{Vu}-\tau c b d, 0.0001)$
$=$ If (25.283-32.122>0,25.283-32.122,0.0001)
$=\mathbf{0 . 0 0 0 1} \mathbf{K N}$

Hence, Section Adequte
If((Mu)<Mulim,"Singly","Doubly")
Hence, Singly

9) Reinforcement Details

- Ast Provided $=\mathbf{3 2 1 . 4 7} \mathrm{mm}^{2}$
- $\mathrm{Dia}=\mathbf{1 2} \mathrm{mm}$
- No of Bars = 3
E. Design of Slab

1) Inputs
b $\quad 1000 \mathrm{~mm}$
2) Design

- Self Weight of Slab = Slab Thickness * Self Weight of RCC

$$
\begin{aligned}
& =0.125 * 25 \\
& =\mathbf{3 . 1 2 5} \mathbf{K N} / \mathbf{m}^{2}
\end{aligned}
$$

- Total Load $=$ LL + FF + Self Weight of Slab

$$
\begin{aligned}
& =2+1+3.125 \\
& =\mathbf{6 . 1 2 5} \mathbf{~ K N} / \mathbf{m}^{2}
\end{aligned}
$$

- Ultimate Load $=1.5$ * Total Load

$$
\begin{aligned}
& =1.5 * 6.125 \\
& =\mathbf{9 . 1 8 8} \mathbf{K N} / \mathbf{m}^{2}
\end{aligned}
$$

- $\mathrm{Lx}=4 \mathrm{~m}$
$\mathrm{Ly}=\mathbf{4 m}$
Span Ratio $=\mathrm{Ly} / \mathrm{Lx}$

$$
\begin{aligned}
& =4 / 4 \\
& =1 \mathbf{m}
\end{aligned}
$$

- Check For Slab

If (Ly/Lx>=2,"One Way Slab", "Two Way Slab")
Hence, Two Way Slab

- $\quad \mathrm{Le}=\operatorname{Min}((\mathrm{Lx}+$ Wall Thickness $),(\mathrm{Lx}+\mathrm{Lx} / 2))$

$$
\begin{aligned}
& =\operatorname{Min}((4+0.23),(4+4 / 2) \\
& =4.23 \mathbf{~ m}
\end{aligned}
$$

- \quad Effective Depth $(\mathrm{De})=$ Slab Thickness -0.015

$$
\begin{aligned}
& =0.125-0.015 \\
& =\mathbf{0 . 1 1} \mathbf{~ m}
\end{aligned}
$$

- $\mathrm{WLx}^{2}=$ Ultimate Load $* \mathrm{Lx}^{2}$

$$
\begin{aligned}
& =9.188 * 4^{2} \\
& =\mathbf{1 4 7} \mathbf{K N}
\end{aligned}
$$

- Edge Condition = Two Adjacent Side Discontinuous

$$
=7
$$

- Multiplication Factor
-ve at Support of Short $\operatorname{Span}\left(\alpha_{x}\right)=\mathbf{0 . 0 4 7}$
+ ve at Midspan of $\operatorname{Short} \operatorname{Span}\left(\alpha_{x}\right)=\mathbf{0 . 0 3 5}$
-ve at Midspan of Long $\operatorname{Span}\left(\alpha_{y}\right)=\mathbf{0 . 0 4 7}$
+ ve at Support of Long Span $\left(\alpha_{y}\right)=\mathbf{0 . 0 3 5}$
- Bending Moments Mu

$$
\begin{aligned}
\text {-ve at Support of Short Span }\left(\alpha_{x}\right) & =\mathrm{WLx}^{2} *\left(\alpha_{\mathrm{x}}\right) \\
& =147 * 0.047 \\
& =\mathbf{6 . 9 0 9} \mathbf{K N}-\mathbf{m}
\end{aligned}
$$

$$
\begin{aligned}
+ \text { ve at Midspan of Short Span }\left(\alpha_{\mathrm{x}}\right) & =\mathrm{WLx}^{2} *\left(\alpha_{x}\right) \\
& =147 * 0.035 \\
& =\mathbf{5 . 1 4 5} \mathbf{K N}-\mathbf{m}
\end{aligned}
$$

-ve at Midspan of Long $\operatorname{Span}\left(\alpha_{y}\right)=\operatorname{WLx}^{2} *\left(\alpha_{y}\right)$

$$
=147 * 0.047
$$

$$
=6.909 \mathrm{KN}-\mathrm{m}
$$

$$
\begin{aligned}
+\mathrm{ve} \text { at Support of Long Span }\left(\alpha_{\mathrm{y}}\right) & =\mathrm{WLx}^{2} *\left(\alpha_{\mathrm{y}}\right) \\
& =147 * 0.035 \\
& -\mathbf{5 1 4 5} \mathbf{K N} \mathbf{m}
\end{aligned}
$$

- Are of Steel Required
$>$-ve at Support of Short Span $\left(\alpha_{x}\right)$
$=0.5 * \mathrm{Fck} / \mathrm{Fy}^{*} \mathrm{~b}^{*} \mathrm{De}^{*} 1000 *\left(1-\operatorname{SQRT}\left(1-4.6 * \mathrm{Mu}\left(\alpha_{\mathrm{x}}\right) * 10^{\wedge} 6 /\left(\mathrm{Fck}^{*} \mathrm{~b}^{*}(\mathrm{Y} 10 * 1000)^{\wedge} 2\right)\right)\right)$

```
= 0.5*20/500*1000*0.11*1000*(1-SQRT (1-4.6*6.909)*10^6/(20*1000*(0.11*1000)^2)))
= 149.54 mm
```

```
> +ve at Midspan of Short Span ( }\mp@subsup{\alpha}{\textrm{x}}{}
=0.5*Fck/Fy*b*De*1000*(1-SQRT (1-4.6*Mu ( }\mp@subsup{\alpha}{\textrm{x}}{*}\mp@subsup{)}{}{*}10^6/(Fck*\mp@subsup{b}{}{*}*(Y10*1000)^2))
= 0.5*20/500*1000*0.11*1000*(1-SQRT (1-4.6*5.145*10^6/ (20*1000*(0.11*1000)^2)))
= 110.34 mm
```

$>$-ve at Midspan of Long Span $\left(\alpha_{y}\right)$
$=0.5 * \mathrm{Fck} / \mathrm{Fy}^{*} \mathrm{~b}^{*} \mathrm{De}^{*} 1000 *\left(1-\mathrm{SQRT}\left(1-4.6 * \mathrm{Mu}\left(\alpha_{\mathrm{y}}\right) * 10^{\wedge} 6 /\left(\mathrm{Fck} * \mathrm{~b} *(\mathrm{Y} 10 * 1000)^{\wedge} 2\right)\right)\right)$
$=0.5 * 20 / 500 * 1000 * 0.11 * 1000 *\left(1-\operatorname{SQRT}\left(1-4.6 * 6.909 * 10^{\wedge} 6 /\left(20 * 1000 *(0.11 * 1000)^{\wedge} 2\right)\right)\right)$
$=149.54 \mathrm{~mm}^{2}$

```
> +ve at Support of Long Span (\alphay)
= 0.5*Fck/Fy*b*De*1000*(1-SQRT (1-4.6*Mu ( }\mp@subsup{\alpha}{x}{})*10^6/(Fck*b*(Y10*1000) ^2)))
= 0.5*20/500*1000*0.11*1000*(1-SQRT (1-4.6*5.145*10^6/ (20*1000*(0.11*1000)^2)))
= 110.34 mm
```

- Proposed Dia

$$
\begin{aligned}
& \text {-ve }=\mathbf{8 m m} \\
& +\mathrm{ve}=\mathbf{8 m m}
\end{aligned}
$$

- \quad Area of Steel bar $=\pi / 4 * \mathrm{Dia}^{2}$
-ve at Support of Short $\operatorname{Span}\left(\alpha_{x}\right)=\pi / 4 * 8^{2}$

$$
=50.24 \mathrm{~mm}^{2}
$$

+ ve at Midspan of Short $\operatorname{Span}\left(\alpha_{\mathrm{x}}\right)=\pi / 4 * 8^{2}$

$$
=50.24 \mathrm{~mm}^{2}
$$

-ve at Midspan of Long Span $\left(\alpha_{y}\right)=\pi / 4 * 8^{2}$
$=\mathbf{5 0 . 2 4} \mathrm{mm}^{2}$

+ ve at Support of Long Span $\left(\alpha_{y}\right)=\pi / 4 * 8^{2}$

$$
=50.24 \mathrm{~mm}^{2}
$$

- Spacing
$>$-ve at Support of $\operatorname{Short} \operatorname{Span}\left(\alpha_{\mathrm{x}}\right)=\operatorname{Min}\left(1000 * \pi / 4 *(-\mathrm{veDia})^{2} /\right.$ Ast req,300 $)$

$$
\begin{aligned}
& =\operatorname{Min}\left(1000^{*} \pi / 4^{*}(8)^{2} / 149.54,300\right) \\
& =\mathbf{3 0 0} \mathbf{~ m m}
\end{aligned}
$$

$>\quad+\mathrm{ve}$ at Midspan of $\operatorname{Short} \operatorname{Span}\left(\alpha_{\mathrm{x}}\right)=\operatorname{Min}\left(1000 * \pi / 4 *(+\mathrm{veDia})^{2} /\right.$ Ast req, 300 $)$

$$
=\operatorname{Min}\left(1000 * \pi / 4 *(8)^{2} / 110.34,300\right)
$$

$=\mathbf{3 0 0} \mathrm{mm}$
$>-$ ve at Midspan of Long $\operatorname{Span}\left(\alpha_{\mathrm{y}}\right)=\operatorname{Min}\left(1000 * \pi / 4 *(-\mathrm{veDia})^{2} /\right.$ Ast req,300 $)$

$$
=\operatorname{Min}\left(1000^{*} \pi / 4 *(8)^{2} / 149.54,300\right)
$$

$=\mathbf{3 0 0} \mathbf{~ m m}$

$$
\begin{aligned}
>+ \text { ve at Support of Long } \operatorname{Span}\left(\alpha_{\mathrm{y}}\right) & =\operatorname{Min}\left(1000^{*} \pi / 4^{*}(+\mathrm{veDia})^{2} / \text { Ast req, } 300\right) \\
& =\operatorname{Min}\left(1000^{*} \pi / 4^{*}(8)^{2} / 110.34,300\right) \\
& =\mathbf{3 0 0} \mathbf{~ m m}
\end{aligned}
$$

- No of Bars
-ve at Support of Short $\operatorname{Span}\left(\alpha_{x}\right)=4$
+ ve at Midspan of Short $\operatorname{Span}\left(\alpha_{x}\right)=4$
-ve at Midspan of Long Span $\left(\alpha_{y}\right)=4$
+ ve at Support of Long Span $\left(\alpha_{y}\right)=4$
- Area of Steel Provided
$>$-ve at Support of Short Span $\left(\alpha_{x}\right)=$ Area of Steel Bar * No of Bars

$$
\begin{aligned}
& =50.24 * 4 \\
& =\mathbf{2 0 1} \mathbf{~ m m}^{2}
\end{aligned}
$$

$>+$ ve at Midspan of Short Span $\left(\alpha_{\mathrm{x}}\right)=$ Area of Steel Bar * No of Bars

$$
\begin{aligned}
& =50.24 * 4 \\
& =\mathbf{2 0 1} \mathbf{~ m m}^{2}
\end{aligned}
$$

$>$-ve at Midspan of Long Span $\left(\alpha_{y}\right)=$ Area of Steel Bar * No of Bars

$$
\begin{aligned}
& =50.24 * 4 \\
& =201 \mathbf{~ m m}^{2}
\end{aligned}
$$

$>\quad+\mathrm{ve}$ at Support of Long Span $\left(\alpha_{\mathrm{y}}\right)=$ Area of Steel Bar * No of Bars

$$
\begin{aligned}
& =50.24 * 4 \\
& =201 \mathbf{~ m m}^{2}
\end{aligned}
$$

- Check for Deflection
$>$ Percentage Main Steel Provided $=\operatorname{Max}\left(+\mathrm{ve}\right.$ at $\left(\alpha_{\mathrm{x}}\right),+\mathrm{ve}$ at $\left.\left(\alpha_{\mathrm{y}}\right)\right) * 100 /\left(1000 * \mathrm{De}^{*} 1000\right)$

$$
\begin{aligned}
& =\operatorname{Max}(201,201) * 100 /(1000 * 0.11 * 1000) \\
& =\mathbf{0 . 1 8 2}
\end{aligned}
$$

> Limiting Value of Steel $=\mathbf{1}$
If (Percentage Main Steel Provided <Limiting Value of Steel, "Steel Within the Limit", "Steel Percentage More") Hence, Steel Within the Limit

```
Overall Depth =26
\ Service Stress in Steel =216
> kt=2
P Permissible Span = Overall Depth * kt
\[
\begin{aligned}
& =26 * 2 \\
& =46 \mathrm{~mm}
\end{aligned}
\]
\[
>\text { Actual Span }=\mathrm{De}^{*} 1000 / \mathrm{Lx}
\]
\[
=0.11 * 1000 / 4
\]
\[
=28 \mathrm{~mm}
\]
If (Permissible Span >Actual Span, "Satisfies deflection Criterion", "Deflection Criterion not satisfied!!") Hence, Satisfies deflection Criterion
```


V. RESULTS AND DISCUSSIONS

A. General

This project focuses on developing a excel sheet with simple user interface to analyze and design RC structures without any prior knowledge of software. The forces on every member were calculated. After that we began with the design of Beam using relevant code books, and then Slab was designed manually. Various checks were performed on the members. As a result, we gained a foundational understanding of analysis and design as well as ideas like load transfer mechanisms and moment distribution.

This Excel sheet considers only the gravity loads. Grids in X and Y directions are defined in the sheet. User can enter distance between grids. Loads on various elements of the buildings such as Beam and Slab are calculated manually.The same building was modelled and analysed using E-tab also.
B. Load Calculation

1) Inputs

Self Weight of RCC	25	$\mathrm{KN} / \mathrm{m}^{3}$
Masonry	18	
Floor Finish	1	$\mathrm{KN} / \mathrm{m}^{2}$
Live Load	2	$\mathrm{KN} / \mathrm{m}^{2}$
Grade of Concrete (fck)	20	$\mathrm{~N} / \mathrm{mm}^{2}$
Reinforcenment Grade (fy)	500	$\mathrm{~N} / \mathrm{mm}^{2}$

2) Structure

Fig 2

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

Self weight on column				Self Weight of Beam(KN)				Self Weight on Slab(KN/m2)					
b	D	H	P	L	b	D	P	L	B	T	FF	LL	P
0.23	0.38	3.20	6.99	4.0	0.23	0.38	8.74	2.0	2.0	0.13	1	2	24.50
0.23	0.38	3.20	6.99	6.5	0.23	0.38	14.20	4.5	2.0	0.13	1	2	55.13
0.23	0.38	3.20	6.99	7.5	0.23	0.38	16.39	5.5	2.0	0.13	1	2	67.38
0.23	0.38	3.20	6.99	8.5	0.23	0.38	18.57	6.5	2.0	0.13	1	2	79.63
0.23	0.38	3.20	6.99	5.5	0.23	0.38	12.02	3.5	2.0	0.13	1	2	42.88
0.23	0.38	3.20	6.99	6.5	0.23	0.38	14.20	2.0	4.5	0.13	1	2	55.13
0.23	0.38	3.20	6.99	9.0	0.23	0.38	19.67	4.5	4.5	0.13	1	2	124.03
0.23	0.38	3.20	6.99	10.0	0.23	0.38	21.85	5.5	4.5	0.13	1	2	151.59
0.23	0.38	3.20	6.99	11.0	0.23	0.38	24.04	6.5	4.5	0.13	1	2	179.16
0.23	0.38	3.20	6.99	8.0	0.23	0.38	17.48	3.5	4.5	0.13	1	2	96.47
0.23	0.38	3.20	6.99	7.5	0.23	0.38	16.39	2.0	5.5	0.13	1	2	67.38
0.23	0.38	3.20	6.99	10.0	0.23	0.38	21.85	4.5	5.5	0.13	1	2	151.59
0.23	0.38	3.20	6.99	11.0	0.23	0.38	24.04	5.5	5.5	0.13	1	2	185.28
0.23	0.38	3.20	6.99	12.0	0.23	0.38	26.22	6.5	5.5	0.13	1	2	218.97
0.23	0.38	3.20	6.99	9.0	0.23	0.38	19.67	3.5	5.5	0.13	1	2	117.91
0.23	0.38	3.20	6.99	8.5	0.23	0.38	18.57	2.0	6.5	0.13	1	2	79.63
0.23	0.38	3.20	6.99	11.0	0.23	0.38	24.04	4.5	6.5	0.13	1	2	179.16
0.23	0.38	3.20	6.99	12.0	0.23	0.38	26.22	5.5	6.5	0.13	1	2	218.97
0.23	0.38	3.20	6.99	13.0	0.23	0.38	28.41	6.5	6.5	0.13	1	2	258.78
0.23	0.38	3.20	6.99	10.0	0.23	0.38	21.85	3.5	6.5	0.13	1	2	139.34
0.23	0.38	3.20	6.99	5.5	0.23	0.38	12.02	2.0	3.5	0.13	1	2	42.88
0.23	0.38	3.20	6.99	8.0	0.23	0.38	17.48	4.5	3.5	0.13	1	2	96.47
0.23	0.38	3.20	6.99	9.0	0.23	0.38	19.67	5.5	3.5	0.13	1	2	117.91
0.23	0.38	3.20	6.99	10.0	0.23	0.38	21.85	6.5	3.5	0.13	1	2	139.34
0.23	0.38	3.20	6.99	7.0	0.23	0.38	15.30	3.5	3.5	0.13	1	2	75.03

Table 1

Self Weight from Wall(KN/m)				Total Loads			
L	H	T	P	Indiuval Floor load	Load	Factored load	Column
4.0	2.82	0.23	46.70	86.93	189.59	284.39	C1
6.5	2.82	0.23	75.89	152.21	325.61	488.41	C2
7.5	2.82	0.23	87.56	178.32	380.01	570.02	C3
8.5	2.82	0.23	99.24	204.43	434.42	651.62	C4
5.5	2.82	0.23	64.21	126.10	271.20	406.80	C5
6.5	2.82	0.23	75.89	152.21	325.61	488.41	C6
9.0	2.82	0.23	105.07	255.76	538.18	807.27	C7
10.0	2.82	0.23	116.75	297.18	623.21	934.81	C8
11.0	2.82	0.23	128.42	338.61	708.24	1062.36	C9
8.0	2.82	0.23	93.40	214.34	453.15	679.73	C10
7.5	2.82	0.23	87.56	178.32	380.01	570.02	C11
10.0	2.82	0.23	116.75	297.18	623.21	934.81	C12
11.0	2.82	0.23	128.42	344.73	720.49	1080.73	C13
12.0	2.82	0.23	140.10	392.28	817.77	1226.65	C14
9.0	2.82	0.23	105.07	249.64	525.93	788.89	C15
8.5	2.82	0.23	99.24	204.43	434.42	651.62	C16
11.0	2.82	0.23	128.42	338.61	708.24	1062.36	C17
12.0	2.82	0.23	140.10	392.28	817.77	1226.65	C18
13.0	2.82	0.23	151.77	445.95	927.30	1390.95	C19
10.0	2.82	0.23	116.75	284.93	598.71	898.06	C20
5.5	2.82	0.23	64.21	126.10	271.20	406.80	C21
8.0	2.82	0.23	93.40	214.34	453.15	679.73	C22
9.0	2.82	0.23	105.07	249.64	525.93	788.89	C23
10.0	2.82	0.23	116.75	284.93	598.71	898.06	C24
7.0	2.82	0.23	81.72	179.04	380.37	570.56	C25

Table 2
C. Design of Beam

Fig 3

1) Inputs

Beam

Beam Depth	0.38	m
Beam Width	0.23	\mathbf{m}
ES	200000	$\mathrm{~N} / \mathrm{mm}^{2}$
Depth	0.38	\mathbf{m}
Cover to center	0.04	\mathbf{m}
Effective Depth	0.34	\mathbf{m}
Stirrup Dia	8	$\mathbf{m m}$
Cover	25	$\mathbf{m m}$

2) Design

Design of Beam

Beam.No	$\operatorname{ES}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	Xumax/d	Tcmax(N/mm2)	Pt $\min (\%)$	BM	SF
B-1	200000	0.046	2.8	0.170	42.63	24.88
					Section Adequte	
Type Of		Ast	No. of Bars	Spacing (mm C/C)		
SINC		321.47	3.00	0.75		

Beam.No										
	Panel .N0	Span Ratio	Check For Slab	Bending Moment Coefficents				Shear Coefficents		
				Total						
				Middle of end	Middle of interior	End	Next to End	At Support Next to the End Support		
				DL+LL	DL+LL	DL+LL	DL+LL	At End	Next to end	Interior support
B1	1	1.000	Two Way Slab	35.844	27.239	42.634	36.318	24.883	25.283	25.283
B2	2	1.250	Two Way Slab	46.574	67.738	98.059	90.318	19.996	20.468	20.468
B3	3	1.500	Two Way Slab	90.191	68.665	107.138	91.554	27.508	28.019	28.019
B4	4	1.750	Two Way Slab	125.516	95.593	149.067	127.457	28.065	28.600	28.600
B5	5	1.250	Two Way Slab	46.844	35.489	55.834	47.318	33.133	33.533	33.533
	1	1.000	Two Way Slab							
B6	6	1.000	Two Way Slab	68.525	52.088	81.490	69.451	30.392	30.892	30.892
	2	1.250	Two Way Slab							
B7	7	1.200	Two Way Slab	127.421	96.719	151.676	128.958	39.592	40.168	40.168
	3	1.500	Two Way Slab							
B8	8	1.400	Two Way Slab	180.805	137.298	215.158	183.064	41.166	41.789	41.789
	4	1.750	Two Way Slab							
B9	9	1.500	Two Way Slab	46.844	35.489	55.834	47.318	33.133	33.533	33.533
	5	1.250	Two Way Slab							
B10	10	1.200	Two Way Slab	83.454	63.285	99.404	84.380	37.558	38.058	38.058
	6	1.000	Two Way Slab							
B11	11	1.000	Two Way Slab	133.488	101.316	158.906	135.088	41.496	42.096	42.096
	7	1.200	Two Way Slab							
B12	12	1.167	Two Way Slab	194.874	148.006	231.876	197.341	44.326	45.006	45.006
	8	1.400	Two Way Slab							
B13	13	1.750	Two Way Slab	46.844	35.489	55.834	47.318	33.133	33.533	33.533
	9	1.500	Two Way Slab							
B14	14	1.400	Two Way Slab	83.454	63.285	99.404	84.380	37.558	38.058	38.058
	10	1.200	Two Way Slab							
B15	15	1.167	Two Way Slab	139.874	106.105	166.568	141.474	43.625	44.225	44.225
	11	1.000	Two Way Slab							
B16	16	1.000	Two Way Slab	202.072	153.460	240.454	204.613	45.987	46.687	46.687
	12	1.167	Two Way Slab							
B17	13	1.750	Two Way Slab	35.844	27.239	42.634	36.318	24.883	25.283	25.283
B18	14	1.400	Two Way Slab	61.970	47.172	73.623	62.896	27.246	27.746	27.746
B19	15	1.167	Two Way Slab	102.749	78.262	122.018	104.349	31.250	31.850	31.850
B20	16	1.000	Two Way Slab	127.994	97.901	151.560	130.535	27.846	28.546	28.546

Table 3

Table 4

International Journal for Research in Applied Science \& Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

LEFT SUPPORT					
Design Values At Left Support					
Beam.No	ES (N/mm $\left.{ }^{2}\right)$	Xumax/d	Tcmax(N/mm2)	Pt min(\%)	
B-1	200000	0.046	2.8	0.170	
B-2	200000	0.046	2.8	0.170	
B-3	200000	0.046	2.8	0.170	
B-4	200000	0.046	2.8	0.170	
B-5	200000	0.046	2.8	0.170	
B-6	200000	0.046	2.8	0.170	
B-7	200000	0.046	2.8	0.170	
B-8	200000	0.046	2.8	0.170	
B-9	200000	0.046	2.8	0.170	
B-10	200000	0.046	2.8	0.170	
B-11	200000	0.046	2.8	0.170	
B-12	200000	0.046	2.8	0.170	
B-13	200000	0.046	2.8	0.170	
B-14	200000	0.046	2.8	0.170	
B-15	200000	0.046	2.8	0.170	
B-16	200000	0.046	2.8	0.170	
B-17	200000	0.046	2.8	0.170	
B-18	200000	0.046	2.8	0.170	
B-19	200000	0.046	2.8	0.170	
B-20	200000	0.046	2.8	0.170	
B-21	200000	0.046	2.8	0.170	

Table 5

Left Support(1)		Mid Span (2)		Right Support(3)					
BM	SF	BM	SF	BM	SF	1	Beam	3	Beam
42.63	24.88	35.84	0.00	36.32	25.28	Section Adequte	SINGLY	Section Adequte	Singly
90.32	20.47	46.57	0.00	67.74	20.47	Section Adequte	DOUBLY	Section Adequte	Singly
68.67	28.02	90.19	0.00	91.55	28.02	Section Adequte	SINGLY	Section Adequte	Doubly
127.46	28.60	125.52	0.00	149.07	28.07	Section Adequte	DOUBLY	Section Adequte	Doubly
55.83	33.13	46.84	0.00	47.32	33.53	Section Adequte	SINGLY	Section Adequte	Singly
69.45	30.89	68.53	0.00	52.09	30.89	Section Adequte	SINGLY	Section Adequte	Singly
96.72	40.17	127.42	0.00	128.96	40.17	Section Adequte	DOUBLY	Section Adequte	Doubly
183.06	41.79	180.80	0.00	215.16	41.17	Section Adequte	DOUBLY	Section Adequte	Doubly
55.83	33.13	46.84	0.00	47.32	33.53	Section Adequte	SINGLY	Section Adequte	Singly
84.38	38.06	83.45	0.00	63.29	38.06	Section Adequte	SINGLY	Section Adequte	Singly
101.32	42.10	133.49	0.00	135.09	42.10	Section Adequte	DOUBLY	Section Adequte	Doubly
197.34	45.01	194.87	0.00	231.88	44.33	Section Adequte	DOUBLY	Section Adequte	Doubly
55.83	33.13	46.84	0.00	47.32	33.53	Section Adequte	SINGLY	Section Adequte	Singly
84.38	38.06	83.45	0.00	63.29	38.06	Section Adequte	SINGLY	Section Adequte	Singly
106.11	44.22	139.87	0.00	141.47	44.22	Section Adequte	DOUBLY	Section Adequte	Doubly
204.61	46.69	202.07	0.00	240.45	45.99	Section Adequte	DOUBLY	Section Adequte	Doubly
42.63	24.88	35.84	0.00	36.32	25.28	Section Adequte	SINGLY	Section Adequte	Singly
62.90	27.75	61.97	0.00	47.17	27.75	Section Adequte	SINGLY	Section Adequte	Singly
78.26	31.85	102.75	0.00	104.35	31.85	Section Adequte	SINGLY	Section Adequte	Doubly
130.53	28.55	127.99	0.00	151.56	27.85	Section Adequte	DOUBLY	Section Adequte	Doubly
111.22	25.28	109.77	0.00	130.57	24.88	Section Adequte	DOUBLY	Section Adequte	Doubly

Table 6

International Journal for Research in Applied Science \& Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

Table 7

Top Reinforcement								
1 (At Left Support)		2 (At Mid span)			3 (Right Support)			
Ast	No. of Bars	Ast	No.of Bars	Spacing (mm C/C)	Ast	No.of Bars	Spacing (mm C/C)	
321.47	3.00	321.47	0.16	0.00	268.78	0.19	0.00	
58.68	1.00	59.03	0.85	0.75	558.11	0.09	0.00	
567.93	6.00	568.27	0.09	0.00	59.69	0.84	0.75	
55.97	1.00	61.94	0.81	0.75	66.14	0.76	0.75	
439.63	4.00	439.63	0.11	0.00	362.07	0.14	0.00	
576.34	6.00	576.34	0.09	0.00	404.87	0.12	0.00	
58.22	1.00	62.07	0.81	0.75	63.88	0.79	0.75	
51.92	1.00	65.97	0.76	0.75	73.55	0.68	0.50	
439.63	4.00	439.63	0.11	0.00	362.07	0.14	0.00	
752.53	7.00	752.53	0.07	0.00	512.21	0.10	0.00	
57.88	1.00	62.52	0.80	0.75	64.57	0.78	0.75	
50.87	1.00	67.00	0.75	0.75	75.42	0.67	0.50	
439.63	4.00	439.63	0.11	0.00	362.07	0.14	0.00	
752.53	7.00	752.53	0.07	0.00	512.21	0.10	0.00	
57.53	1.00	62.98	0.80	0.75	65.29	0.77	0.75	
50.34	1.00	67.52	0.74	0.50	76.39	0.66	0.50	
321.47	3.00	321.47	0.16	0.00	268.78	0.19	0.00	
508.30	5.00	508.30	0.10	0.00	360.78	0.14	0.00	
676.04	6.00	677.29	0.07	0.00	61.12	0.82	0.75	
55.75	1.00	62.12	0.81	0.75	66.42	0.76	0.75	

Table 8

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

$-\ldots$	\ldots	\ldots	\ldots.	
B-21	200000	0.046	2.8	0.170
B-22	200000	0.046	2.8	0.170
B-23	200000	0.046	2.8	0.170
B-24	200000	0.046	2.8	0.170
B-25	200000	0.046	2.8	0.170
B-26	200000	0.046	2.8	0.170
B-27	200000	0.046	2.8	0.170
B-28	200000	0.046	2.8	0.170
B-29	200000	0.046	2.8	0.170
B-30	200000	0.046	2.8	0.170
B-31	200000	0.046	2.8	0.170
B-32	200000	0.046	2.8	0.170
B-33	200000	0.046	2.8	0.170
B-34	200000	0.046	2.8	0.170
B-35	200000	0.046	2.8	0.170
B-36	200000	0.046	2.8	0.170
B-37	200000	0.046	2.8	0.170
B-38	200000	0.046	2.8	0.170
B-39	200000	0.046	2.8	0.170
B-40	200000	0.046	2.8	0.170

Table 9

111.22	25.28	109.77	0.00	130.57	24.88
47.32	33.53	46.84	0.00	55.83	33.13
47.32	33.53	46.84	0.00	55.83	33.13
47.32	33.53	46.84	0.00	55.83	33.13
36.32	25.28	35.84	0.00	42.63	24.88
45.88	27.06	60.30	0.00	61.17	27.06
62.38	37.48	82.25	0.00	83.18	37.48
63.29	38.06	83.45	0.00	84.38	38.06
63.29	38.06	83.45	0.00	84.38	38.06
60.58	27.75	61.97	0.00	62.90	27.75
91.55	28.02	90.19	0.00	68.67	28.02
128.96	60.58	127.42	0.00	125.12	60.58
133.49	63.51	133.49	0.00	133.49	63.51
136.55	64.29	134.95	0.00	132.55	64.29
99.42	30.21	97.82	0.00	74.57	30.21
149.07	28.07	125.52	0.00	127.46	28.60
215.16	41.17	180.80	0.00	183.06	41.79
231.88	44.33	194.87	0.00	197.34	45.01
240.45	45.99	202.07	0.00	204.61	46.69
171.77	31.97	144.84	0.00	147.38	32.67

Table 10

International Journal for Research in Applied Science \& Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue IX Sep 2022-Available at www.ijraset.com

Section Adequte	DOUBLY	Section Adequte	Doubly
Section Adequte	DOUBLY	Section Adequte	Doubly
Section Adequte	SINGLY	Section Adequte	Singly
Section Adequte	SINGLY	Section Adequte	Singly
Section Adequte	SINGLY	Section Adequte	Singly
Section Adequte	SINGLY	Section Adequte	Singly
Section Adequte	SINGLY	Section Adequte	Singly
Section Adequte	SINGLY	Section Adequte	Singly
Section Adequte	SINGLY	Section Adequte	Singly
Section Adequte	SINGLY	Section Adequte	Singly
Section Adequte	SINGLY	Section Adequte	Singly
Section Adequte	DOUBLY	Section Adequte	Singly
Section Adequte	DOUBLY	Section Adequte	Doubly
Section Adequte	DOUBLY	Section Adequte	Doubly
Section Adequte	DOUBLY	Section Adequte	Doubly
Section Adequte	DOUBLY	Section Adequte	Singly
Section Adequte	DOUBLY	Section Adequte	Doubly
Section Adequte	DOUBLY	Section Adequte	Doubly
Section Adequte	DOUBLY	Section Adequte	Doubly
Section Adequte	DOUBLY	Section Adequte	Doubly
Section Adequte	DOUBLY	Section Adequte	Doubly

Table 11

57.16	1.00	60.79	0.83	0.75	64.06	0.78	0.75
362.07	4.00	362.07	0.14	0.00	439.63	0.11	0.00
362.07	4.00	362.07	0.14	0.00	439.63	0.11	0.00
362.07	4.00	362.07	0.14	0.00	439.63	0.11	0.00
268.78	3.00	268.78	0.19	0.00	321.47	0.16	0.00
349.46	4.00	349.46	0.14	0.00	491.15	0.10	0.00
503.16	5.00	503.16	0.10	0.00	736.92	0.07	0.00
512.21	5.00	512.21	0.10	0.00	752.53	0.07	0.00
512.21	5.00	512.21	0.10	0.00	752.53	0.07	0.00
485.30	5.00	485.30	0.10	0.00	508.30	0.10	0.00
58.59	1.00	59.36	0.85	0.75	567.93	0.09	0.00
55.86	1.00	62.07	0.81	0.75	63.45	0.79	0.75
55.53	1.00	62.52	0.80	0.75	64.39	0.78	0.75
55.31	1.00	62.62	0.80	0.75	64.29	0.78	0.75
58.02	1.00	59.91	0.84	0.75	632.93	0.08	0.00
54.40	1.00	61.94	0.81	0.75	63.71	0.79	0.75
49.57	1.00	65.97	0.76	0.75	69.95	0.72	0.50
48.35	1.00	67.00	0.75	0.75	71.55	0.70	0.50
47.73	1.00	67.52	0.74	0.50	72.37	0.69	0.50
52.74	1.00	63.35	0.79	0.75	65.95	0.76	0.75

Table 12

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com
3) E-tab Results

Fig 4
4) Validation of Results

Left Support(1)		Mid Span (2)		Right Support(3)			Left Support(1)		Mid Span (2)		Right Support(3)	
BM	SF	BM	SF	BM	SF		BM	SF	BM	SF	BM	SF
16.20	48.58	27.91	4.88	33.75	58.28	B-1	42.63	24.88	35.84	0.00	36.32	25.28
45.95	68.71	37.51	3.60	62.75	75.98	B-2	90.32	20.47	46.57	0.00	67.74	20.47
73.66	85.41	50.17	5.85	106.58	97.12	B-3	68.67	28.02	90.19	0.00	91.55	28.02
128.12	120.81	105.23	10.62	57.78	99.50	B-4	127.46	28.60	125.52	0.00	149.07	28.07
23.98	65.64	39.08	5.90	45.67	77.63	B-5	55.83	33.13	46.84	0.00	47.32	33.53
63.37	94.41	55.94	6.40	93.27	107.30	B-6	69.45	30.89	68.53	0.00	52.09	30.89
108.38	121.95	77.40	9.30	160.85	140.62	B-7	96.72	40.17	127.42	0.00	128.96	40.17
191.84	176.77	163.19	15.08	92.00	146.60	B-8	183.06	41.79	180.80	0.00	215.16	41.17
25.58	66.49	39.01	5.14	44.21	76.78	B-9	55.83	33.13	46.84	0.00	47.32	33.53
63.43	97.06	57.16	6.90	95.68	109.02	B-10	84.38	38.06	83.45	0.00	63.29	38.06
112.18	125.60	82.38	10.28	169.96	146.16	B-11	101.32	42.10	133.49	0.00	135.09	42.10
203.60	186.47	178.56	15.59	100.36	155.28	B-12	197.34	45.01	194.87	0.00	231.88	44.33
28.52	68.25	39.26	3.38	40.77	75.02	B-13	55.83	33.13	46.84	0.00	47.32	33.53
62.31	94.82	57.74	7.21	97.66	109.25	B-14	84.38	38.06	83.45	0.00	63.29	38.06
113.01	126.42	83.66	10.61	172.65	147.64	B-15	106.11	44.22	139.87	0.00	141.47	44.22
207.32	190.74	187.45	15.27	106.21	160.19	B-16	204.61	46.69	202.07	0.00	240.45	45.99
18.39	49.79	27.92	3.63	31.55	57.07	B-17	42.63	24.88	35.84	0.00	36.32	25.28
45.67	69.29	38.93	4.20	65.10	77.70	B-18	62.90	27.75	61.97	0.00	47.17	27.75
77.33	88.93	54.87	6.92	116.25	102.79	B-19	78.26	31.85	102.75	0.00	104.35	31.85
140.72	131.55	123.07	11.03	67.66	109.48	B-20	130.53	28.55	127.99	0.00	151.56	27.85

Table 13

42.46	63.90	31.28	8.90	8.89	46.09	B-21	111.22	25.28	109.77	0.00	130.57	24.88
58.51	85.48	43.78	12.17	12.60	61.13	B-22	47.32	33.53	46.84	0.00	55.83	33.13
57.26	84.89	43.91	11.50	13.59	61.72	B-23	47.32	33.53	46.84	0.00	55.83	33.13
55.00	83.94	44.39	10.63	14.90	62.67	B-24	47.32	33.53	46.84	0.00	55.83	33.13
40.76	63.10	31.48	8.11	10.19	46.88	B-25	36.32	25.28	35.84	0.00	42.63	24.88
69.38	78.15	38.07	4.23	49.17	69.67	B-26	45.88	27.06	60.30	0.00	61.17	27.06
102.55	109.89	56.83	7.33	67.57	95.22	B-27	62.38	37.18	82.25	0.00	83.18	37.48
105.36	111.70	58.20	8.01	67.11	95.69	B-28	63.29	38.06	83.45	0.00	84.38	38.06
105.49	112.03	58.81	8.32	65.77	95.38	B-29	63.29	38.06	83.45	0.00	84.38	38.06
71.94	79.98	39.68	4.90	48.49	70.14	B-30	60.58	27.75	61.97	0.00	62.90	27.75
128.05	102.02	45.66	9.16	75.02	83.64	B-31	91.55	28.02	90.19	0.00	68.67	28.02
193.27	147.43	70.48	14.47	109.76	118.48	B-32	128.96	60.58	127.42	0.00	125.12	60.58
204.58	153.39	74.83	15.84	113.18	121.71	B-33	133.49	63.51	133.49	0.00	133.49	63.51
208.68	155.17	75.67	16.47	113.64	122.23	B-34	136.55	64.29	134.95	0.00	132.55	64.29
140.32	108.19	49.65	10.76	78.20	86.66	B-35	99.42	30.21	97.82	0.00	74.57	30.21
31.05	95.48	120.38	16.26	141.19	128.02	B-36	149.07	28.07	125.52	0.00	127.46	28.60
49.77	139.42	186.46	23.94	211.85	187.30	B-37	215.16	41.17	180.80	0.00	183.06	41.79
54.48	147.42	203.88	25.12	224.60	197.67	B-38	231.88	44.33	194.87	0.00	197.34	45.01
57.55	151.75	213.95	25.38	229.41	202.52	B-39	240.45	45.99	202.07	0.00	204.61	46.69
36.46	104.54	140.50	17.53	155.17	139.62	B-40	171.77	31.97	144.84	0.00	147.38	32.67

Table 14
D. Design of Slab

Fig 5

1) Input

Slab		
\mathbf{b}	1000	mm

2) Design

		Design OF Slab					
SIab	Live Load	Floor Finish	Self Weight of Slab	Total Load	Ulimate Load	Lx	Ly
Si	(KN/m2)	(KN/m2)	(KN/m2)	(KN/m2)	Wu (KN/m2)	m	m
S-1	2	1	3.125	6.125	9.1875	4	4
						Two Way Slab	
	Proposed Dia			Ast min	Spacing for Main Bars		
				mm2	mm		
	(-ve)	(+ve)		132	380.80		
	mm	mm					
	8	8					
	Steel Within the Limit						
	Satisfies deflection Criterion						

Slab	Live Load	Floor Finish	Self Weight of Slab	Total Load	Ultimate Load	Lx	Ly	Span Ratio	Check for slab	
	(KN/m2)	(KN/m2)	(KN/m2)	(KN/m2)	Wu (KN/m2)			Ly/Lx		
S-1	2	1	3.125	6.125	9.188	4.000	4.000	1.000	Two Way Slab	
S-2	2	1	3.125	6.125	9.188	4.000	5.000	1.250	Two Way Slab	
S-3	2	1	3.125	6.125	9.188	4.000	6.000	1.500	Two Way Slab	
S-4	2	1	3.125	6.125	9.188	4.000	7.000	1.750	Two Way Slab	
S-5	2	1	3.125	6.125	9.188	4.000	5.000	1.250	Two Way Slab	
S-6	2	1	3.125	6.125	9.188	5.000	5.000	1.000	Two Way Slab	
S-7	2	1	3.125	6.125	9.188	5.000	6.000	1.200	Two Way Slab	
S-8	2	1	3.125	6.125	9.188	5.000	7.000	1.400	Two Way Slab	

Table 15

			Multiplaction Factor				Area of Steel Required Bar mm² (Ast req)			
Le	Effective depth	W1x ${ }^{2}$	eax at Supporl of shorts	ve ax al Midspan of short spd	-re ay al suport of long span	+ye ay al Mid span of long span	- ve ax al Support of short span	+ yeax at Midspan of short span	-ve ay al suport of long span	+ve ay at Mid span of long span
	De(m)	KN	ax	$a \times$	ay	ay	ax	$a x$	ay	a)
4.230	0.110	47.000	0.047	0.035	0.047	0.035	149.543	10.345	149543	10.335
4.330	0.110	47.000	0.045	0.034	0032	0.024	142958	107.11	100.659	75.47
4.230	0.110	477.000	0.053	0.041	0032	0.024	169.427	129.851	10.659	75.047
4.330	0.110	47.000	0.055	0.041	0.032	0.024	176098	129.851	100.659	75.047
4.330	0.110	47.000	0.045	0.034	0032	0.024	142558	107.11	100.559	75.047
5.330	0.110	229.688	0.032	0.024	0032	0.024	159461	188.450	159.451	18.450
5.330	0.110	2299688	0.043	0.032	0032	0.024	277.235	159.461	159.461	118.450
5.230	0.110	229.688	0.051	0.039	0.032	0.024	200333	196.034	159.451	118.450

Table 16

International Journal for Research in Applied Science \& Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 10 Issue IX Sep 2022-Available at www.ijraset.com

Ast min	Proposed Dia		Area of Steel Bar mm ${ }^{2}$			
	(-ve)	(+ve)	- ve $\alpha \times$ at Support of short span	+ ve αx at Midspan of short span	-ve αy at suport of long span	+ve $\alpha \mathrm{y}$ at Mid span of long span
mm2	mm	mm	ax	ax	ay	ay
132	s	s	50.270	50.270	50.270	50.270
132	8	s	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270
132	8	§	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270
132	s	s	50.270	50.270	50.270	50.270
132	§	§	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270

Table 17

Area of Steel Provided mm^{2} (Ast Provided)					
-ve αx at Support of short span	+ ve ax at Midspan of short span	-ve ay at suport of long span	+ve αy at Mid span of long span		
ax	ax	ay	ay		
201	201	201	201	Steel Within the Limit	Satisfies deflection Criterion
201	201	201	201	Steel Within the Limit	Satisfies deflection Criterion
201	201	201	201	Steel Within the Limit	Satisfies deflection Criterion
201	201	201	201	Steel Within the Limit	Satisfies deflection Criterion
201	201	201	201	Steel Within the Limit	Satisfies deflection Criterion
201	201	201	201	Steel Within the Limit	Satisfies deflection Criterion
251	201	201	201	Steel Within the Limit	Satisfies deflection Criterion
302	201	201	201	Steel Within the Limit	Satisfies deflection Criterion

Table 18

One Way Slab						
Mu for One Way Slab	Area of Steel Required	Ast min	Spacing for Main Bars	Provide	Spacing for Distribution Bars	Provide
KN-m	mm2	mm2	mm	$\mathrm{mm} \mathrm{c} / \mathrm{c}$	mm	$\mathrm{mm} \mathrm{c} / \mathrm{c}$
0.000	0.000	132	380.799	375	\#Div/0!	\#DIV/0!
0.000	0.000	132	380.799	375	\#DIV/0!	\#DIV/0!
0.000	0.000	132	380.799	375	\#Drv/0!	\#Div/0!
0.000	0.000	132	380.799	375	\#Drv/0!	\#DIV/0!
0.000	0.000	132	380.799	375	\#Drv/0!	\#DIV/0!
0.000	0.000	132	380.799	375	\#DIV/0!	\#DIV/0!
0.000	0.000	132	380.799	375	\#DIV/0!	\#DIV/0!
0.000	0.000	132	380.799	375	\#DIV/0!	\#DIV/0!

Table 19

International Journal for Research in Applied Science \& Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IX Sep 2022- Available at www.ijraset.com

S-9	2	1	3.125	6.125	9.188	4.000	6.000	1.500	Two Way Slab
S-10	2	1	3.125	6.125	9.188	5.000	6.000	1.200	Two Way Slab
S-11	2	1	3.125	6.125	9.188	6.000	6.000	1.000	Two Way Slab
S-12	2	1	3.125	6.125	9.188	6.000	7.000	1.167	Two Way Slab
S-13	2	1	3.125	6.125	9.188	4.000	7.000	1.750	Two Way Slab
S-14	2	1	3.125	6.125	9.188	5.000	7.000	1.400	Two Way Slab
S-15	2	1	3.125	6.125	9.188	6.000	7.000	1.167	Two Way Slab
S-16	2	1	3.125	6.125	9.188	7.000	7.000	1.000	Two Way Slab

Table 20

4200	0.10	14.000	0.053	0.041	0003	0.024	189427	29.851	10.659	15097
5230	0.10	229688	0.043	acce	0032	0024	271.25	189.461	189.451	118.50
6230	0.10	330750	0.002	0.024	0002	0024	233.76	122.70	233.76	122760
8200	0.10	300750	0.041	0.031	0030	0024	304634	225.94	233.76	12760
4230	0.10	14.000	0000	0.045	0032	0.024	128873	12.588	10.689	15097
5220	0.10	229688	0.051	0.ccs	0032	0.024	200.33	988.34	189859	118.50
8230	0.10	330750	0.041	0.031	0032	0024	30.634	255.89	233.76	122780
1230	0.10	450188	0.082	0.024	0032	0024	${ }^{36} 5.616$	238881	355.61	228891

Table 21

132	8	8	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270
132	8	8	50.270	50.270	50.270	50.270

Table 22

201	201	201	201	Steel Within the Limit	Deflection Criterion not satisfied!
251	201	201	201	Steel Within the Limit	Satisfies deflection Criterion
251	251	251	201	Steel Within the Limit	Satisfies deflection Criterion
352	201	201	201	Steel Within the Limit	Satisfies deflection Criterion
302	251	251	201	Steel Within the Limit	Satisfies deflection Criterion
352	251	352	201	Steel Within the Limit	Satisfies deflection Criterion
352				Steel Within the Limit	Satisfies deflection Criterion

Table 23

IV. CONCLUSION

1) It can be concluded that, the results obtained by Excel after comparison with E-tabs gives 90-95\% accuracy.
2) MS Excel sheet is a very useful tool for calculating the rebars of various RC elements such as footing, columns, beams, and slabs.
3) These aid in the speedy design of buildings and other structures for a variety of applications and are effective.
4) For the design of reinforced concrete elements, these excel sheets can be used in conjunction with analytical software such as STAAD and ETABS.

REFERENCES

[1] Development of educational software for beam loading analysis using pen-based user interfaces Yong S. Suh, Journal of Computational Design and Engineering, Vol. 1, No. 1 (2014) 67~77
[2] Reinforced Concrete Structure Design Assistant Tool for Beginners, Kang Kyu Choi, 2002.
[3] Development of IOS Application for Design of Flat Slabs, Shree Lakshmi MJ1, Mr. Manjunath L2, Miss. Spandana B3, Ritesh L4, International Research Journal of Engineering and Technology (IRJET)
[4] Developing Civil Engineering Design Software using MS Excel. Varsha S Danavandi1, Shaik Kabeer Ahmed2, INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH 2017
[5] Using Spreadsheets a APPLICATIONS Nd VBA for Teaching Civil Engineering Concepts, Essam Zaneldi
[6] DESIGN OF POST-TENSIONED PRESTRESSED CONCRETE BEAM USING EXCEL SPREADSHEET WITH VISUAL BASIC, RIMMON S. LABADAN, International Journal of Advances in Mechanical and Civil Engineering, 2016
[7] Toward Reverse Engineering of VBA Based Excel Spreadsheets Applications, Domenico Amalfitano, Nicola Amatucci, Vincenzo De Simone, Anna Rita Fasolino, Porfirio Tramontana, 2015
[8] Santosh Kumar P.T. (2014) "Trends and recent advances in civil engineering (TRACE-24th-25th January 2014), International Journal of Engineering Research and Applications (IJERA) ISSN:2248-9622
[9] Varsha S Damavand, Shaik Kabeer Ahmed (2017) "Developing civil engineering design software using MS EXCEL" ISSN:2349-0697, VOLUME-4, ISSUE5,2017
[10] Mahesh Kumar (2015) "quick design of buildings and other projects on MS EXCEL"
[11] Suryam Tiwari, Vijay Srivastav (2018) "Microsoft Excel Spreadsheet using VBA programming packages"-IJIRST-International Journal for Innovative Research in Science and Technology, Volume 4, Issue 11,April 2018, ISSN-(2349-6010).
[12] Ima Rahmanian, Yves Lucet, Solomon Tesfamariam(2014)"Optimal design of reinforced concrete beams", Computers and concrete, Volume 13, No.4(457482).
[13] Fernandes R. J, Javeli F. M, Patil S. B (2017) "Analysis and Design of Reinforced Concrete Beams and Columns using open STAAD", International Journal of Soft Computing and Engineering (IJSCE) ISSN:2231-2307, Volume-7 Issue-3.
[14] RichardLawreneEmberley(2013)" behaviour of RC columns under fire exposures using a spreadsheet-based numerical model" Worcester Polytechnic Institute, may 2013
[15] Poonam Gare, Dr. S.S. Angalekar(2016) "Design of Structural Element Employing Optimization Approach" International Journal of Innovative Research in Science, Engineering and Technology, Volume-5, Issue-7 July 2016

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

