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Abstract:  In recent years, advancements in database knowledge discovery have enabled it to find important and practical 
information with great force. Frequent pattern mining and association rule mining has been thoroughly investigated for a great 
range of real-world applications. Traditional mining algorithms use memory-resident, centralised data. The performance is not 
effective enough when applying these methods to remote databases because of the large amount of data, bandwidth limitation, 
and energy limitations, especially in this era of big data. Datamining in dispersed contexts has therefore become a significant 
field of study. In order to enhance performance, we provide the group of FP growth-based algorithms that identify FPs with the 
ability to deliver quick and scalable services in distributed computing settings, We also suggest a concise data structure to hold 
items and counts in order to reduce the amount of data that has to be transmitted over the network. DistEclat and BigFIM were 
taken into consideration for the experiment comparison in order to guarantee completeness and execution capacity. Experiments 
demonstrate that the suggested strategy performs well across a range of experiment settings and offers greater cost-effectiveness 
for processing large datasets. On average, the suggested approach only needed 33% of DistEclat's execution time and 45% of its 
transmission cost. Compared to BigFIM, the suggested approach necessitated, on average, 23.3% of the execution duration and 
14.2% of the transmission expense of BigFIM 
Index Terms: Data mining, parallel algorithms, distributed computing, DistEclat, BigFIM. 
 

I.      INTRODUCTION 
Knowledge in databases offers a potent capability for uncovering valuable insights, significantly enhancing business operations' 
efficiency. Its implementation across various industrial domains have led to the development of numerous datamining methods such 
as association rule, classification and sequential pattern mining. Frequent pattern (FP) mining and association rule mining, crucial 
for many real-life applications, has received great attention in recent years. 
Artificial intelligence (AI) has played a pivotal role in empowering machines with decision-making capabilities, often without 
human intervention. The collabration of AI with the Internet of Things (IoT) facilitates data collection, analysis, and automated 
decision-making, paving the way for the forthcoming era of AI of Things, characterized by the huge growth of data. 
Two prominent algorithms, Apriori [3] and FP-growth [4], have been proposed for mining frequent itemsets and association rules. 
The Apriori [3] approach employs a generation-and-test strategy, generating numerous candidate datasets and repetitively scanning 
the database to identify frequently occurring patterns. In contrast, FP-growth [4], introduced by Hanet al., utilizes an FP-tree 
structure to effectively mine Common patterns with just two database scans. However, the time required for finding Common 
patterns escalates with large database sizes. 
Traditional mining algorithms operate on centralized, memory-resident data, which poses challenges in distributed environments, 
particularly in the times of big data, characterized by vast amounts of data, bandwidth constraints, and energy limitations. 
Consequently, research interest has surged of data mining for distributed environments. Tehreem et al. also proposed leveraging 
field-programmable gate arrays (FPGAs) for implementing parallel computing, aiming to enhance performance in such distributed 
settings. 
Previous research has demonstrated the superiority of FP tree-like algorithms over Apriori-like algorithms when leveraging 
distributed, parallel computing, and Hadoop techniques, as well as  algorithms within the Apache Spark framework. These include 
PFP (parallelize the FP-Growth), PIFP-Growth (parallelized incremental FP-Growth), R-PFP (recursive-PFP), MR-PFP 
(MapReduce-based parallel frequent pattern growth), PBFP-Growth (parallel block FP-Growth algorithm), MISFP-growth (multiple 
item support frequent patterns), BigFIM (big frequent itemset mining), and S-FPG (Spark FP-Growth). Additionally, certain 
approaches have proposed for mining frequent itemsets from secondary memory to accommodate large databases or data structures 
too large to get into main memory. 
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Two notable algorithms, DistEclat (distributed equivalence class clustering and bottom-up lattice traversal) and BigFIM for the 
MapReduce platform, have been introduced. DistEclat enhances workload balance among processing units by evenly partitioning 
the search space through prefixes, while BigFIM integrates principles from Apriori to initially mine frequent itemsets, supporting 
the DistEclat method for large datasets. Although DistEclat and BigFIM have demonstrated superior performance compared to PFP, 
they require additional parameters for completion, posing practical challenges for users. 
To address scalability issues, the DP (database projection) and aggressive projection algorithms have been proposed, utilizing disk-
based structures to manage large databases efficiently. However, these methods entail additional execution overhead due to disk 
operations, despite their improved memory efficiency. 
While previous studies have focused on FP mining and proposed enhancements to execution time efficiency, challenges such as 
high data transmission time, memory cost, scanning cost, and redundant execution time persist. Neither Hadoop MapReduce nor 
Apache Spark adequately address these issues simultaneously. To mitigate these challenges, we propose a distributed and parallel 
computing method named DFP (distributed frequent pattern mining). DFP leverages FP growth in its initial stage while recording 
information on necessary memory sizes. If frequent patterns cannot be successfully extracted in the first stage, the algorithm 
estimates required nodes for parallel computing based on recorded information, distributing workload accordingly. 
The primary contributions of our study include a set of algorithms based on FP growth optimized for distributed computing 
environments, along with a compact data structure to minimize network transmission overhead. Experimental comparisons with 
DistEclat and BigFIM demonstrate the superior cost-effectiveness and scalability of  proposed method under various conditions. 
This paper has organized as follows: Section II provides background information, Section III introduces our proposed algorithm 
DFP and explains its application for tree-based FP mining, Section IV presents an analytical evaluation of the proposed method's 
complexity compared to similar algorithms, and provides results, while Section V concludes with... [complete as appropriate]. 
 

II.      RELATED WORK 
Past research can be categorized into two main areas: A) Association Rule Mining, and B) Distributed Algorithms for Frequent 
Pattern Discovery, with a focus on efficient algorithms like DistEclat and BigFIM for distributed computing environments. 
 
A. Association Rule Mining 
Association rule mining has been extensively studied in recent years (Agrawal et al., 1993, 2001; Agrawal and Srikant, 1995; 
Bayardo, 1997; Ester et al., 1996). Proposed by Agrawal et al. (1 993), the problem involves discovering association rules, crucial 
for various data mining applications. Given a database (DB) with transactions and a set of items, association rules are represented as 
X > Y, where X and Y are itemsets, and X ∩ Y = ∅. The data of  itemset is the number of transactions in it, while confidence 
measures the likelihood of Y appearing in transactions containing X. Frequent patterns (FPs) are itemsets with support exceeding a 
threshold, and their discovery is a prerequisite for ARM. 
Two main types of algorithms have employed for mining frequent patterns: Apriori-like and FP growth-like. Apriori-like algorithms 
generate candidates and repeatedly scan the database, suffering from inefficiency due to memory-intensive candidate generation and 
multiple database scans. Han et al. (2000a) introduced FP growth, utilizing a tree-based data structure called FP tree, and requiring 
only two database scans. In the first scan, item support is calculated, and a header table is created. The second scan filters items 
below the support threshold and constructs the FP tree. FP growth recursively generates conditional FP trees until only single-path 
trees remain, from which FPs are easily derived. 
Han et al. (2000b) proposed the Database Projection algorithm to address memory limitations when mining large databases. This 
algorithm utilizes disk-based storage for mining information and condenses the database when memory is insufficient, ensuring 
efficient FP tree construction.  
Algorithm 1 Database Projection 
Input: Database D and Memory M. 
Output: The complete set of frequent patterns. 
 Procedure Database Projection (D. M)  
{ 
 T = bulid_FP-tree(D); 
 IF T≤ M then 
{ 
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return FP-growth (T); 
} 
Else 
{ 
get frequent items i1.i2......in of D; 
decompose D into Di1.Di2.Di3.....Din; 
return Database Projection (D₁₁. M) U 
 Database Projection (Di2. M) U 
                                                U 
                   …..... 
Database Projection (Din. M) 
} 
} 
ARM algorithms serve as the foundation for advanced techniques. For instance, MTARM (multitask association rule miner) 
explores rule correlations among tasks and integrates Apriori, FP growth, and Eclat algorithms for efficient mining. 
Algorithm 1 illustrates the Database Projection procedure, which builds an FP tree from the database and applies FP growth if 
memory allows; otherwise, it recursively projects and condenses the database until memory constraints are met. 
This review provides notice into existing association rule mining techniques and their significance in various data mining 
applications. 
 
B. Distributed Algorithms For Common Pattern Discovery 
Numerous algorithms leveraging distributed or parallel computing have been proposed to enhance execution performance in 
frequent pattern discovery. For instance, PFP tree utilizes a multiprocessor system, but suffers from increased execution time due to 
the tree structure and high data transmission costs, especially with larger databases or lower support thresholds. QFP (QFP-growth) 
also employs a multiprocessor system but faces limitations in FP tree construction efficiency per core processor, leading to 
redundant execution time.  
TPFP-tree (TIDset-based parallel FP-tree) is a parallel-distributed mining algorithm utilizing FP tree, but its reliance on transaction 
identification sets (TIDsets) may lead to significant memory consumption, particularly with big data. 
To address issues in heterogeneous computing environments like grid systems, BTP-tree (balanced TIDset parallel FP-tree) was 
introduced to reduce communication and tree insertion costs, thus decreasing execution time. However, communication costs may 
still rise as nodes request data from each other. FD-Mine utilizes cloud computing nodes for FP discovery, employing a compressed 
data structure based on FP growth to reduce transmission time. Yet, this strategy can still lead to increased data transmission costs 
and reduced efficiency due to unadaptable nodes. 
Apache Spark, introduced in 2010, succeeded Hadoop MapReduce in 2014, offering in-memory parallel computing. S-FPG was one 
of the first methods to utilize Spark, enhancing processing efficiency for large datasets. Subsequent approaches like caching-based 
parallel FP growth further improved efficiency, but communication costs remained problematic. Despite Spark's potential speed 
advantage over Hadoop, its computing costs limit its efficacy for large datasets. 
The PFP algorithm, based on Hadoop, employs a MapReduce approach for parallel FP growth. While advantageous, communication 
costs between mappers can inflate execution time. Variants like PIFP growth and R-PFP address incremental mining and 
parallelization, yet communication bottlenecks persist. PBFP growth combines Apriori and FP-growth to reduce scanning frequency, 
but improvements are limited, especially with large databases. 
The Hadoop-based mining algorithm BigFIM introduces DistEclat and BigFIM mechanisms for efficient mining. DistEclat focuses 
on workload balancing, while BigFIM addresses big databases by initially using Apriori for mining, switching to DistEclat when 
memory limitations arise. Though effective, setting parameters like p can be challenging for novice users. 
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Fig 1. The flow chart of DFP algorithm. 

. 
Efficient frequent pattern discovery in distributed environments remains a critical research area, with various algorithms addressing 
different aspects of scalability, efficiency, and usability. 
 

III.      PROPOSED METHOD 
In this section, we first define the problem in Section III-A and then elaborate on our proposed method, the DFP algorithm, along 
with its key features in Section III-B. 
 
A. Problem Definition 
The FP-growth algorithm encounters inefficiencies when processing large databases. Consequently, various distributed or parallel 
computing algorithms have been developed. However, these methods often suffer from high communication costs, inadequate 
memory utilization, low computing efficiency, and redundant computation. To address these challenges, we propose the Distributed 
Frequent Pattern (DFP) algorithm, building upon the foundation of FP growth. If the initial mining stage fails, DFP estimates the 
required memory and nodes for subsequent distributed computing steps.  
The exceptional performance of DFP is demonstrated in the Experiment Results section. If node memory is insufficient, our 
extended database projection method, termed mixing projection (MP), is activated. MP efficiently compresses crucial information 
and facilitates FP tree-based mining, outperforming traditional methods like DP, especially in scenarios where further mining is 
impossible. MP repeatedly compresses a large database into a condensed data structure until it fits into main memory, albeit at the 
cost of increased input/output (I/O) operations.  
With our proposed MP algorithm and main memory space estimation method, the need for repeated memory space estimation 
procedures is eliminated. Moreover, if database condensation is required, only specific items are condensed instead of the entire 
dataset, further reducing I/O costs.  
By leveraging the extended MP method, memory capacity evaluation for the database becomes more efficient, leading to improved 
transmission costs between the server and nodes. 
 
B. DFP Mining Algorithm 
In this section, we introduce an efficient DFP algorithm based on the FP tree data structure. The algorithm is divided into two parts: 
the procedure for the nodes of the server and the client. 
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1) Server Side 
The DFP algorithm on the server comprises four stages: memory space evaluation, client node activation, TID distribution, and 
waiting for mining items distribution. 
a) Memory Space Evaluation 
As in Fig. 1, Initially, the server executes the FP-growth algorithm to avoid unnecessary transmission time by utilizing the 
distribution mode and records essential information for memory space estimation. Full garbage collection (GC) is used for 
determination if the mining has failed. If a full GC occurs, indicating a failed mining attempt, the remaining TIDs are recorded as 
essential information. This information includes counts, total counts, number of TIDs, and an estimate of the necessary memory 
space in the db. 
 
b) Client Node Activation 
The algorithm estimates the necessary nodes for distributed mining based on the recorded memory space evaluation. Increasing the 
number of nodes does not necessarily enhance efficiency, so the algorithm selects a limited number of nodes to achieve optimal 
performance. 
 
c) TID Distribution 
The server evaluates activated nodes with respect to processing limitations for TIDs and distributes TIDs accordingly. Each client 
receives a specific number of TIDs  with its memory space allocation. 
          Avg T =    .        TIDs            .  
               number of nodes 
 
            TID     =     memory space in nodes×avgT 
                                memory space in server 
                                           
d) Waiting Mining Items Distribution 
Once activated, the server performs the FP-growth algorithm and obtains the frequent itemsets in 1-FIs as waiting mining items. It 
then distributes these items to clients for further mining and waits for the results. The server subsequently mines the common 
itemsets from the received results, identifies potential mining items, and prompts clients to construct conditional FP trees. The 
processes continue  until all waiting items are processed. 
 
2) Client Side 
The DFP algorithm on the client comprises five stages: memory space reporting to the server, receiving the limitation for TIDs, tree 
construction according to TIDs, mining frequent items, and constructing the conditional FP tree. 
 
a) Memory Space Reporting To Server 
Each client reports its memory space to the server upon connection. 
 
b) Receiving The Limitation For TIDS 
The server estimates the TID limitation for each client based on reported memory space. If the number of TIDs exceeds the 
limitation, the MP mechanism is activated to handle the overflow. 
 
c) Tree Construction According To TIDS 
Clients construct FP trees based on received TIDs, condensing the database to avoid out-of-memory issues. The MP mechanism 
reduces I/O costs by incrementing counts according to nodes. 
 
d) Mining Frequent Items 
Clients mine frequent items based on expectations from the server and received TIDs. Mining is performed according to FP growth 
principles, with MP files used to complete the process efficiently. 
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e) Construction Of The Condition FP Tree 
If potential extended mining items are identified, the server connects to the client to construct a conditional FP tree. Clients extract 
frequent itemsets and ensure that only relevant items are added to the conditional FP tree, based on information provided by the 
server. 
By following these steps, the DFP algorithm efficiently mines frequent patterns in distributed environments, optimizing resource 
utilization and reducing computational costs. 
 

IV.      IMPLEMENTATION 
To accomplish this project, we have designed the following sets: 
A. Admin 
This module facilitates logging into the admin page, providing access to administrative functionalities and controls. 
 
B. Users  
The Users module is responsible for retrieving features from the dataset and displaying the number of users accessing the system. 
 
C. Upload Dataset 
 This module allows users to upload files or datasets into the system, enabling the incorporation of new data for analysis. 

 

 
Fig 2. An Vie of memory space estimation 

 
D. View Datase 
 With this module, users can view and analyze the uploaded dataset, exploring its contents and characteristics 

 
Fig 3. An example of tree construction. 
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E. Frequent Patterns 
 The Frequent Patterns module enables the identification and management of frequent items within the dataset, allowing users to 
analyze patterns and trends in the data. 

 
Fig 4.  View for mining the frequent items. 

 
1) Input / Output Design  
a) Input Design 
 The input design for this system has been carefully crafted to ensure efficient collection of necessary data while prioritizing user 
interaction and simplicity. Measures have been implemented to control the amount of input required, prevent unauthorized access, 
eliminate unnecessary steps, and maintain simplicity throughout the process. Input forms and screens have been designed to 
streamline user interaction and facilitate ease of use. 
 
b) Output Design 
 The output design focuses on providing users with screens that enable easy operations in a simple and efficient manner, minimizing 
the need for excessive keystrokes. Screens emphasize important instructions and information, and error messages are clear and 
concise. 
 

V.      EXPERIMENTAL EVALUATION AND PERFORMANCE STUDY 
 System testing verifies that all requirements are met by the integrated software system as a whole. It puts a setup to the test in order 
to guarantee dependable outcomes. The configuration-oriented system integration test is an illustration of a system test. System 
testing emphasizes pre-driven process connections and integration points and is based on process flows and descriptions. 
Evaluation strategy and approach 
Functional tests will be meticulously prepared, and field testing will be done by hand. 
Objectives of the test: • Every field entry must function correctly. 
 You have to click the designated link to activate the pages. 
 There shouldn't be any delays in the entry screen, messages, or answers. 
Features to be evaluated 
 Verify that the entries are of the correct format 
 No duplicate entries should be allowed 
 All links should take the user to the correct page. 
The process of incrementally integrating two or more integrated software components on a single platform to identify interface 
flaws that lead to failures is known as software integration testing.  
The configuration-oriented system integration test is an illustration of a system test. System testing emphasizes pre-driven process 
connections and integration points and is based on process flows and descriptiom 
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Fig 5. Execution with various settings of T(35-25), I(16-7), N(15-5K),    for DFP and FP-growth on IBM dataset 

 
The purpose of an integration test is to verify that software applications or system components, or even higher up, company-level 
software applications, function together flawlessly.  
Test Results: Every test case that was previously specified was successful. No flaws were found Acceptance Testing 
 

VI.      EXPERIMENTAL RESULTS 
The aforementioned experiments have demonstrated that DFP exhibits significantly greater scalability compared to DiscEclat and 
BigFIM. Regarding execution performance, DFP, on average, necessitated only 33% of the execution 

 
Fig 6. Using an IBM dataset with approximated and ten clients, the  execution performance of  DFP, DistEclat, and BigFIM with a 
support level varied from 0.3% to 0.2%.  time and 45% of the transmission cost of DistEclat. Additionally, apart from considering 

execution time and transmission cost, we investigated the size of temporary data generated.  

 
Fig 7. Execution performance of DFP, DistEclat, and BigFIM with support threshold varied from 0.3% to 0.2% on IBM dataset. 

 
Our proposed method, on average, managed to reduce the size of temporary data by 15%. However, this is worth noting that despite 
this reduction, the ratio of temporarily generated data remains considerable. Addressing this issue is crucial for optimizing execution 
time, particularly for large databases with substantial temporary data generation. 
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Fig 8.  The IBM dataset showed that the amount of transferred data for DFP, DistEclat, and BigFIM with a support threshold ranged 

from 0.3% to 0.2%.. 
 

VII.      CONCLUSION 
In this study, we came to know that  DFP algorithm aimed at enhancing the efficiency of association rule mining through a 
distributed mechanism. Previous literature has encountered challenges in easily applying distributed mechanisms to database 
processing, leading to potential increases in transmission costs as communication among clients escalates. Our experiments reveal 
that proposed DFP algorithm effectively addressed this issue by transferring mining results from the executing client to the server, 
thereby channeling integrated information through the server rather than dispersing it among clients. 
Furthermore, our experiment results demonstrate significant improvements in computing efficiency compared to DistEclat and 
BigFIM, with the proposed method requiring only 45% and 14.2% of the transmission cost of DistEclat and BigFIM, respectively. 
The DFP algorithm contributes to enhanced computing efficiency by estimating necessary memory and determining the appropriate 
number of clients. It addresses challenges such as insufficient memory and repeated scans by estimating the limitations of 
Transaction IDs (TIDs) for each client and processing remaining TIDs through an extended mechanism called MP, which 
outperforms DP. 
Our experiments underscore the robust performance of the modified mechanism over DP, particularly in the context of big data 
mining. Moreover, the DFP algorithm offers the capability to automatically determine an optimal number of clients based on various 
datasets, showcasing its versatility for future applications. 
The DFP algorithm holds promise for future advancements. For instance, by distributing mining tasks to clients with highly 
correlated TIDs, the efficiency of mining can be further improved by reducing the branches of the FP tree. Additionally, efficiently 
balancing data transmission times and workload across FP trees in each client would enhance mining efficiency, particularly for 
processing large databases. Given that the size of temporarily generated data inherited from DP remains substantial, future efforts 
will focus on refining the algorithm to enhance scalability 
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