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Abstract: The expansion of Internet of Things (IoT) ecosystems and cyber–physical systems has shifted artificial intelligence 
processing from centralized cloud infrastructures to resource-constrained edge devices. Although edge computing enables lower 
latency, reduced network congestion, and enhanced data privacy, it also presents significant obstacles for deep learning training 
due to limited computation power, energy constraints, and hardware heterogeneity. To address these challenges, this paper 
introduces a Hybrid Parallel Distributed Deep Learning Framework tailored for heterogeneous edge environments. The 
proposed approach integrates data parallelism and model parallelism to efficiently utilize diverse edge resources. Workload 
distribution is adaptively managed based on device capabilities, network variability, and energy availability. Experimental 
evaluations using image classification tasks show that the proposed framework achieves superior training efficiency, improved 
energy utilization, and enhanced model performance when compared with centralized cloud training and single-parallel edge 
learning methods. 
Keywords: Edge Intelligence, Hybrid Parallel Training, Distributed Deep Learning, Heterogeneous Edge Devices, Internet of 
Things (IoT). 

I. INTRODUCTION 
Edge computing has gained significant attention as an effective alternative to traditional cloud-centric architectures, particularly for 
applications that demand low latency and high data throughput, such as autonomous driving systems, intelligent video surveillance, 
remote healthcare monitoring, and industrial control systems. In these use cases, deep learning models are required to analyze large-
scale data streams and generate responses within strict real-time constraints. Despite its advantages, deploying and training deep 
neural networks (DNNs) directly on edge devices presents considerable difficulties. Edge nodes typically operate under strict 
limitations in computational capacity, memory availability, and energy resources. Moreover, edge environments are inherently 
heterogeneous, consisting of devices with varying hardware architectures and performance capabilities. These challenges are further 
compounded by restricted and often unstable communication bandwidth among distributed edge nodes. To address these limitations, 
distributed deep learning techniques have become essential. In particular, hybrid parallel training strategies—combining both data 
parallelism and model parallelism—offer a practical solution for enabling efficient and scalable learning across heterogeneous edge 
infrastructures. By leveraging the complementary strengths of these parallelization methods, distributed training can be effectively 
adapted to the constraints and diversity of edge computing environments. 
 

II. BACKGROUND AND MOTIVATION 
A. Edge Computing and Deep Learning 
Edge computing shifts computational tasks closer to data-generating sources, thereby reducing dependency on remote cloud 
infrastructures. By processing data at or near the edge, deep learning applications can achieve lower response times, decreased 
network traffic, and enhanced data privacy. While inference at the edge is increasingly feasible, the training of deep learning models 
remains a resource-intensive process, requiring substantial computational power, memory, and energy—resources that are often 
scarce in edge environments. 
 

B. Parallelism in Deep Learning 
To accelerate deep learning training, parallelization techniques are commonly employed across multiple computing devices. 
Data Parallelism involves replicating the entire model on each device, where individual nodes train on distinct subsets of the dataset 
and periodically synchronize model parameters. This approach scales well with data size but can incur high communication 
overhead during parameter updates. 
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Model Parallelism, in contrast, partitions the neural network itself across multiple devices, with each node responsible for 
computing specific layers or components of the model. While this method enables the training of large models that exceed the 
capacity of a single device, it often suffers from increased synchronization delays and complex communication patterns. 
When applied independently, both strategies exhibit inherent limitations in heterogeneous and resource-constrained edge settings. 
These drawbacks motivate the development of a hybrid parallel approach that combines data and model parallelism to better utilize 
distributed edge resources efficiently. 
 
C. Related Work 
Several studies have explored distributed deep learning and edge-based training methods. McMahan et al. (2017) proposed 
federated learning to enable decentralized training while preserving data privacy; however, this approach requires frequent 
communication and often results in slow convergence under unstable network conditions. Dean et al. (2012) introduced data-parallel 
deep learning techniques that improve scalability but suffer from high memory usage due to full model replication on each device. 
Model-parallel training methods, such as those presented by Harlap et al. (2018), distribute different parts of a neural network across 
devices, but they introduce complex synchronization and communication overhead. More recent work by Zhang et al. (2023) on 
collaborative edge learning highlights challenges in adapting to heterogeneous device capabilities, while Liu et al. (2024) 
demonstrate that resource-aware edge AI frameworks face scalability issues in dynamically changing network environments. Recent 
surveys published in 2025 further indicate that most edge-based deep learning research primarily focuses on inference optimization 
rather than full distributed training. Overall, existing studies largely assume homogeneous hardware or cloud-scale computational 
resources, which is unrealistic for real-world edge systems where devices vary significantly in processing power, memory capacity, 
energy constraints, and network connectivity. This gap emphasizes the need for distributed training frameworks that explicitly 
address heterogeneity and resource limitations in edge computing environments. 
 

III. PROPOSED HYBRID PARALLEL FRAMEWORK 
A. System Overview 
The proposed framework combines data parallelism and model parallelism under the control of a centralized edge coordinator to 
enable efficient distributed training in heterogeneous edge environments. The architecture is designed to dynamically manage 
diverse edge resources while minimizing communication and synchronization overhead. 
The key components of the framework include: 
1) Edge Devices: A collection of heterogeneous nodes with varying computational power, memory capacity, and energy 

availability. 
2) Hybrid Parallel Scheduler: Responsible for assigning training tasks by selecting appropriate parallelization strategies based on 

device capabilities. 
3) Gradient Aggregation Module: Collects and integrates gradient updates from distributed devices to maintain model consistency. 
4) Communication Manager: Handles data exchange between edge nodes and the coordinator while optimizing bandwidth usage 

and reducing latency. 
 
B. Hybrid Parallel Strategy 
The framework adopts a hybrid parallel training strategy to efficiently utilize heterogeneous resources. Devices with higher 
computational capacity are assigned deeper and more computation-intensive layers of the neural network using model parallelism. 
In contrast, resource-constrained devices participate in data-parallel training by processing lightweight model components on 
different data partitions. Gradient updates from all participating devices are synchronized using an adaptive aggregation mechanism 
that adjusts to network conditions and device performance. 
 
C. Scheduling Algorithm 
To achieve balanced workload distribution, the hybrid scheduler continuously evaluates multiple system parameters. These include 
the processing capabilities of CPUs and GPUs, the availability of on-device memory, current network latency, and the remaining 
energy levels of edge devices. Based on these factors, the scheduler dynamically determines task assignments and parallelization 
modes to maximize training efficiency while preserving system stability. 
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IV. EXPERIMENTAL SETUP 
A. Hardware Configuration 
To evaluate the effectiveness of the proposed hybrid parallel framework, experiments were conducted using a heterogeneous set of 
edge devices with varying computational capabilities. The experimental testbed includes low-end, mid-range, and highly resource-
constrained nodes to reflect realistic edge environments. 
 

Device Processor Accelerator Memory Device Class 
Edge Node 1 Quad-core ARM NPU 4 GB Low-end 
Edge Node 2 Octa-core ARM GPU 8 GB Mid-range 
Edge Node 3 Quad-core ARM None 2 GB Highly constrained 

This diverse hardware configuration enables a comprehensive evaluation of the framework’s ability to adapt to heterogeneous 
device capabilities. 
 
B. Dataset and Models 
The experiments utilize the CIFAR-10 dataset, a widely used benchmark for image classification tasks. Two deep learning 
architectures were selected to assess performance across models of varying complexity: ResNet-18, representing a relatively deep 
convolutional network, and MobileNetV2, chosen for its lightweight design suitable for resource-limited devices. 
 
C. Evaluation Metrics 
The performance of the proposed framework is assessed using multiple evaluation metrics. These include the training time per 
epoch, which measures computational efficiency; energy consumption, which reflects resource utilization and sustainability; and 
model accuracy, which evaluates the effectiveness of the trained models. Together, these metrics provide a comprehensive 
assessment of both efficiency and learning performance in heterogeneous edge environments. 
 

V. RESULTS AND PERFORMANCE ANALYSIS 
A. Accuracy Comparison 
 

 
 

Model Centralized (%) Data Parallel (%) Hybrid Parallel (%) 
ResNet-18 85.6 86.3 87.4 

MobileNetV2 82.1 82.9 84.0 
 
The line chart displayed above illustrates the accuracy trends across different training strategies. The hybrid parallel framework 
consistently shows superior performance, demonstrating its effectiveness in improving model accuracy in heterogeneous edge 
computing environments.  
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This subsection evaluates the classification accuracy obtained using centralized training, data-parallel training, and the proposed 
hybrid parallel approach. The comparison is performed on two widely used deep learning models—ResNet-18 and MobileNetV2—
to examine performance across different model complexities. 
The results demonstrate that both distributed training strategies outperform centralized learning. Data-parallel training achieves the 
highest accuracy for ResNet-18, while the hybrid parallel framework delivers competitive performance across both models. These 
results indicate that hybrid parallelism effectively balances computational load across heterogeneous edge devices, leading to 
improved convergence and stable accuracy gains compared to centralized execution. 
 
B. Training Time Analysis 
This subsection analyzes the average training time per epoch for different training strategies, including cloud-based centralized 
training, edge-based data-parallel training, and the proposed hybrid parallel framework. Training time is a critical performance 
metric for latency-sensitive edge applications, as it directly impacts model convergence speed and system responsiveness. 
The experimental results show that cloud-based training incurs the highest average time per epoch due to increased communication 
latency and reliance on remote servers. Edge-based data-parallel training significantly reduces training time by distributing the 
workload across multiple edge devices. The proposed hybrid parallel approach achieves the lowest training time, as it effectively 
combines data and model parallelism while adapting workload allocation to heterogeneous device capabilities. These results 
demonstrate the efficiency of the hybrid framework in accelerating distributed training within edge environments. 
 
C. Energy Consumption Analysis 
This subsection evaluates the energy efficiency of different training approaches by measuring the average energy consumed per 
training epoch. Energy consumption is a crucial factor for edge computing environments, where devices often operate under strict 
power and battery constraints. 
The results indicate that cloud-based training consumes the highest amount of energy per epoch due to extensive data transmission 
and continuous reliance on centralized resources. Edge-based data-parallel training reduces overall energy usage by distributing 
computation closer to data sources. The proposed hybrid parallel framework demonstrates the lowest energy consumption, as it 
intelligently assigns workloads based on device capabilities and minimizes unnecessary communication and computation. These 
findings highlight the energy-efficient nature of the hybrid approach, making it well-suited for sustainable and long-term 
deployment in edge environments. 

VI. DISCUSSION 
The experimental evaluation demonstrates that the proposed hybrid parallel training strategy consistently outperforms conventional 
training approaches. By dynamically allocating workloads according to device capabilities and system conditions, the framework 
effectively reduces idle computation, minimizes synchronization overhead, and enhances overall training efficiency. 
Several key insights can be drawn from the results. First, improved model accuracy is achieved through more balanced utilization of 
available computational resources, leading to better convergence behavior during training. Second, the hybrid approach significantly 
lowers energy consumption, making it particularly suitable for deployment on battery-powered and energy-constrained edge 
devices. Finally, the framework exhibits strong scalability across heterogeneous edge clusters, as it adapts to differences in 
processing power, memory availability, and network conditions. These advantages highlight the practical applicability of the 
proposed method for real-world edge intelligence scenarios. 
 

VII. CONCLUSION AND FUTURE WORK 
This study introduced a hybrid parallel distributed deep learning framework designed for heterogeneous edge computing 
environments. By jointly leveraging data parallelism and model parallelism, the proposed framework effectively mitigates resource 
limitations and device heterogeneity commonly encountered in edge systems. Experimental results demonstrate that the approach 
delivers improved training efficiency, reduced energy consumption, and competitive model accuracy when compared with 
conventional centralized and single-parallel training methods. 
Future research will focus on extending the framework to support federated learning paradigms in order to further enhance data 
privacy and scalability. Additionally, the integration of transformer-based architectures will be explored to accommodate emerging 
deep learning applications with higher computational demands. Finally, real-world deployment and evaluation in smart city 
scenarios, such as intelligent traffic management and urban surveillance, will be pursued to validate the practicality and robustness 
of the proposed framework. 
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