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Abstract: Distributed Denial of Service (DDoS) attacks are among the most prevalent and disruptive forms of cyberattacks, 
aiming to make a machine or network resource unavailable to its intended users. Traditional rule-based detection systems often 
fail to adapt to evolving attack strategies. This paper presents a machine learning-based hybrid framework for DDoS detection 
using Support Vector Machines (SVM), Bidirectional Long Short-Term Memory networks (BiLSTM), and Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN). The system uses NetFlow-inspired features extracted from live traffic captured 
in a virtualized Mininet environment. SVM is employed for supervised classification, BiLSTM for time-series based sequence 
learning, and DBSCAN for unsupervised anomaly detection. The results demonstrate that this hybrid approach provides robust 
detection accuracy, reduced false positives, and adaptability to unknown attacks. 
Keywords: DDoS Detection, Network Security, SVM, LSTM, DBSCAN, Machine Learning, Mininet, Anomaly Detection, Flow 
Features, Intrusion Detection 
 

I. INTRODUCTION 
In the modern digital world, online services and cloud-based platforms have become integral to daily life and critical infrastructure. 
This widespread adoption, however, has also increased vulnerability to cyberattacks. One of the most common and damaging types 
is the Distributed Denial of Service (DDoS) attack, wherein a target is overwhelmed with traffic from multiple sources, exhausting 
resources and rendering services inaccessible. 
Conventional DDoS detection techniques typically rely on predefined signatures or threshold-based rules. While effective against 
known threats, these methods fall short when facing novel or distributed attack patterns. Machine learning offers a promising 
alternative by learning traffic behavior from data and generalizing to unseen attacks. 
This paper explores a hybrid machine learning approach using three models—SVM, BiLSTM, and DBSCAN. The combination of 
supervised and unsupervised techniques enables both classification of known attacks and detection of new anomalies. Over 80 
features are extracted from packet flows and evaluated each model’s performance in terms of accuracy, precision, and detection 
time. 

II. LITERATURE REVIEW 
The detection of Distributed Denial of Service (DDoS) attacks has been extensively explored using both supervised and 
unsupervised machine learning techniques. Existing works focus on improving detection accuracy, handling data imbalance, and 
enhancing real-time adaptability within dynamic network environments. 
In [2], the authors evaluated multiple supervised machine learning algorithms—logistic regression, SVM, random forest, KNN, and 
XGBoost—for traffic classification in Software Defined Networks (SDN). Their experiments, conducted in an SDN framework, 
concluded that the random forest classifier achieved the highest accuracy of 98.97% with a False Alarm Rate (FAR) of just 0.023. 
However, this approach is highly sensitive to parameter tuning, suffers from scalability limitations, and shows potential vulnerability 
to model drift when faced with newer, unseen threats. 
To address the class imbalance often observed in DDoS datasets, the work in [1] introduced a hybrid model integrating DBSCAN, 
SMOTE, and LSTM. By applying unsupervised clustering and oversampling strategies, the proposed model reduced validation loss 
significantly (from 0.1934 to 0.0428) and achieved validation accuracy of 99.50%. Despite these improvements, the approach still 
faced challenges such as high false positive/negative rates and high computational complexity, particularly under real-time 
constraints. 
Similarly, [5] investigated imbalance handling techniques including SMOTE, TL, OSS, NearMiss, ROS, and RUS, alongside 
Convolutional Neural Networks (CNN). Their results validated SMOTE’s robustness, achieving over 99% in various performance 
metrics. However, limitations include overfitting due to oversampling, binary classification focus, and increased training time, 
making it less practical for real-time systems. 
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A novel architecture called ShieldRNN was proposed in [8], targeting IoT-based DDoS detection. It utilized varying sequence 
lengths, a seq2seq training framework, and majority voting for prediction. This method reached an F1-score of 99.919%, 
outperforming conventional RNN methods. Yet, the model introduced tradeoffs between sequence length and detection accuracy, 
increased server overhead, and scalability concerns in large IoT deployments. 
The work in [11] explored the use of SVM in a Mininet-simulated SDN environment, focusing on six flow-based features. While 
this method achieved an average accuracy of 95.24%, it lacked support for ICMP traffic and was heavily dependent on effective 
feature selection and realistic traffic generation. 
In contrast to the above studies, our proposed work aims to synergize the strengths of SVM, BiLSTM, and DBSCAN into a unified 
hybrid framework. By combining supervised, sequential, and unsupervised learning paradigms, our approach provides improved 
generalization to unknown attacks, efficient handling of imbalanced traffic, and real-time performance suitable for deployment in 
SDN and cloud environments. 

 
III. PROPOSED METHODOLOGY 

The proposed framework integrates supervised, sequential, and unsupervised learning techniques—Support Vector Machine (SVM), 
Long Short-Term Memory (LSTM), and Density-Based Spatial Clustering of Applications with Noise (DBSCAN)—to form a 
hybrid DDoS detection system. This ensemble leverages the individual strengths of each model and improves overall robustness, 
especially in identifying novel and evolving attack patterns. The system is evaluated using both simulated traffic and real-world 
datasets, with a focus on real-time detection and alerting capabilities.Fig1.1 illustrates the End-to-End DDoS Detection Workflow 

 
Fig 1.1  End-to-End DDoS Detection Workflow 

 

 
`Fig 1.2 Individual Peer Architecture 
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A. Dataset Generation and Traffic Simulation 
To simulate a realistic network environment, we utilize Mininet, a lightweight virtual network emulator capable of running real-time 
network topologies. Traffic is generated between multiple hosts and switches, including both legitimate and malicious flows. Attack 
scenarios such as TCP SYN flood, UDP flood, and ICMP flood are orchestrated using tools like hping3, while normal traffic 
includes HTTP, DNS, and file transfer sessions. 
The packet data is captured using Wireshark or tcpdump at the victim node, from which flow-level statistics are derived. 
In addition to simulation, datasets such as CICDDoS2019 and a Kaggle DDoS dataset  
(https://www.kaggle.com/datasets/devendra416/ddos-datasets ) are used to train and validate the system. This combination ensures a 
mix of synthetic and real-world traffic, covering a broad spectrum of DDoS variants. 
 
B. Network Topology and Data Collection 
A simulated environment is created using Mininet, with a tree topology consisting of 100 hosts and 5 switches. This allows 
emulation of a moderately complex network suitable for both benign and malicious traffic flows. Legitimate traffic (HTTP, DNS, 
FTP, etc.) is generated using custom scripts and tools like iperf , while DDoS attack traffic will be introduced using tools like 
hping3. 
 
C. Feature Extraction 
Packet-level data is captured at the victim host using Wireshark or tcpdump and aggregated into flows using 5-tuple identifiers. For 
each flow, 84 NetFlow-like features are extracted, covering: 
 IP and Transport Information: Source/destination IPs, ports, and protocol 
 Time-based Features: Flow duration, inter-arrival times (IATs), active/idle time 
 Volume Metrics: Total packets and bytes in/out, average packet size 
 TCP Flags and Control Features: Count of SYN, FIN, ACK, URG, RST 
 Statistical Metrics: Mean, variance, skewness, kurtosis of intervals and sizes 
 Subflow Dynamics: Packet/byte counts within subflows, header sizes 
The extracted feature set is normalized using MinMaxScaler for the BiLSTM and SVM models to maintain consistent scale. For 
DBSCAN, dimensionality is reduced using Principal Component Analysis (PCA) to minimize noise and speed up clustering. 
 
D. Model Architecture 
1) Support Vector Machine (SVM) 
SVM is trained as a binary classifier to distinguish between attack and normal flows. It employs a radial basis function (RBF) 
kernel, with hyperparameters optimized using grid search. The normalized 84-feature input improves decision boundary modelling 
in high-dimensional space. This model is effective for detecting clearly separated attack patterns but may struggle with time-
dependent features. 
 
2) Bidirectional Long Short-Term Memory (Bi-LSTM) 
Bi-LSTM is employed to capture both past and future contextual dependencies within traffic flows, making it especially powerful 
for sequential data where attack patterns are influenced by both earlier and upcoming packets. Each input sequence is a series of 84-
feature flow records processed in both forward and backward directions. The architecture includes a Bidirectional LSTM layer, 
followed by dropout for regularization, and a dense layer with softmax activation for binary classification. This enables the model to 
learn temporal relationships from both directions of the flow timeline, thus improving detection accuracy in complex and evasive 
attack patterns. The model is trained over multiple epochs with early stopping based on validation loss. The input features are 
normalized using MinMaxScaler to improve training stability and convergence speed. 
 
3) DBSCAN 
DBSCAN is utilized to detect anomalies in an unsupervised manner. The PCA-reduced feature set enhances clustering performance 
and reduces noise. DBSCAN does not require prior labels, making it effective in identifying previously unseen (zero-day) attacks 
based on low-density clusters in the feature space. Parameters such as eps (neighborhood radius) and min_samples (minimum points 
per cluster) are fine-tuned using visual inspection and silhouette scores. 
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E. Ensemble Strategy and Decision Logic 
The final detection system leverages a voting mechanism that combines the predictions of the three models. In case of disagreement, 
priority is given to BiLSTM for temporal context, followed by DBSCAN anomaly flagging. This strategy reduces false positives 
and allows early-stage detection of emerging threats. 
 
F. Deployment in Real-Time Environment 
The complete detection system is deployed as a live monitoring agent on the victim host. Packet capture and feature extraction run 
continuously, with predictions performed in near real-time and results logged for administrative action. 
 

IV. EVALUATION METRICS 
To evaluate the performance of the proposed hybrid DDoS detection system, multiple metrics are employed. These metrics provide 
insights not only into the accuracy of the predictions but also into the system’s reliability, robustness, and ability to handle class 
imbalance — a common issue in DDoS detection. 
 
A. Accuracy 
Accuracy is the most straightforward metric, measuring the ratio of correctly predicted instances (both attacks and benign flows) to 
the total number of instances: 

ݕܿܽݎݑܿܿܣ =
ܶܲ + ܶܰ

ܶܲ + ܶܰ + ܲܨ +  ܰܨ

Where: 
 TP = True Positives (correctly identified DDoS attacks) 
 TN = True Negatives (correctly identified benign traffic) 
 FP = False Positives (benign traffic misclassified as attack) 
 FN = False Negatives (attacks misclassified as benign) 

 
B. Precision 
Precision measures the proportion of predicted DDoS attacks that were actually DDoS attacks. It reflects the model’s ability to 
minimize false alarms. 

݊݋݅ݏ݅ܿ݁ݎܲ =
ݏ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ

+ݏ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ  ݏ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݏ݈ܽܨ

C. Recall (Sensitivity) 
Recall measures the model's ability to detect all actual DDoS attacks. A high recall implies fewer missed attacks (i.e., low false 
negatives), which is essential in cybersecurity. 
 

ܴ݈݈݁ܿܽ =
ݏ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ

ݏ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ +  ݏ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݏ݈ܽܨ

D. F1-Score 
F1-Score is the harmonic mean of precision and recall, providing a single metric that balances both false positives and false 
negatives. It is especially useful in imbalanced datasets where accuracy alone may be misleading. 
 

ܴ݈݈݁ܿܽ =
ݏ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ

ݏ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ +  ݏ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݏ݈ܽܨ

 
E. Confusion Matrix 
The confusion matrix provides a granular view of classification performance by visualizing true/false positives and negatives. It 
helps identify whether a model has a tendency to over-predict one class over another. 
 
F. ROC Curve 
The Receiver Operating Characteristic Curve score reflects the model’s ability to distinguish between attack and benign traffic 
across different threshold settings. A score closer to 1 indicates excellent separability. 
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G. Precision – Recall Curve 
The Precision-Recall Curve evaluates a model’s ability to correctly detect attacks while minimizing false alarms. Precision measures 
the accuracy of positive predictions, while Recall measures how many actual attacks were detected. A higher and more right-skewed 
PR curve indicates better performance, especially important for imbalanced datasets like DDoS detection. 
 

V. RESULTS AND ANALYSIS 
The models were evaluated using standard classification metrics: Accuracy, Precision, Recall, and F1-Score. We also measured 
Detection Time per Flow to assess real-time applicability. 
 

Table I : Model Evaluation Metrics 
Model Accuracy Precision Recall F1-Score Detection Time (ms) 

SVM 99.89% 99.88% 100% 99.94% 0.021995 

BiLSTM 98.42% 98.40% 100% 99.19% 0.249360 

DBSCAN 96.95% 96.95% 100% 98.45% 0.508962 

Ensemble 98.41% 98.39% 100% 99.19% 18346.541343 

 
A. Performance Metrics 
 

 
Fig 1.3 Accuracy, Precision, Recall, F1-Score for SVM, BiLSTM, DBSCAN,Ensemble 
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Fig 1.4 Confusion Matrix for Ensemble, SVM, BiLSTM, DBSCAN Model 

 

 
Fig 1.5 ROC Curve for BiLSTM,SVM 

 

 
Fig 1.6 Precision-Recall Curve for BiLSTM , SVM 
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B. Comparative Analysis 
 

Table II : Comparison with other papers 
Paper Methodology Used Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Paper 1 DBSCAN + SMOTE + LSTM 96.12 93.6 96.2 98.3 

Paper 2 Random Forest (SDN) 98.97 98.33 96.37 97.34 

Paper 8 ShieldRNN (Seq2Seq + Voting) 97.998 97.992 97.983 97.993 

Paper 11 SVM (Mininet + 6 features) 95.24 93.20 96.10 94.63 

Our Proposed 
model SVM + LSTM + DBSCAN (Hybrid) 98.41 98.39 100.0 99.19 

 
 SVM outperformed other models with high accuracy and low detection latency. 
 LSTM showed strong temporal pattern recognition, especially useful in bursty or sustained attacks. 
 DBSCAN effectively identified outliers but had limitations in precision due to unsupervised nature. 
 All models performed well in detecting SYN and UDP floods; slight drop in performance observed for ICMP floods due to their 

similarity with benign ping traffic. 
 Real-time timeout and alert mechanism worked as intended across all simulated scenarios. 

 
VI. CONCLUSION AND FUTURE SCOPE 

This research highlights the effectiveness of a multi-model framework for DDoS detection. By leveraging the strengths of 
supervised (SVM), deep learning (LSTM), and unsupervised (DBSCAN) models, we achieve a balance between accuracy and 
adaptability. The extracted flow-based features capture essential traffic behavior and enable real-time detection. 
Future work includes deploying the system in a live Software Defined Network (SDN) environment and integrating an automated 
mitigation module to block malicious IPs dynamically. Enhancing feature extraction for encrypted traffic and exploring federated 
learning models are also potential directions. 
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