



# iJRASET

International Journal For Research in  
Applied Science and Engineering Technology



---

# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

---

**Volume: 13      Issue: XII      Month of publication: December 2025**

**DOI:** <https://doi.org/10.22214/ijraset.2025.76143>

**www.ijraset.com**

**Call:**  08813907089

**E-mail ID:** [ijraset@gmail.com](mailto:ijraset@gmail.com)

# Driver Drowsiness Detection System in Real-Time Via CNN and Transfer Learning

Mahesh Kanjikar<sup>1</sup>, Rupali Patil<sup>2</sup>, Vaishnavi Patwari<sup>3</sup>, Rakshita Limbave<sup>4</sup>, Rajeshwari Patil<sup>5</sup>

BKIT, Bhalki

**Abstract:** Nowadays, accidents occur during drowsy road trips and increase day by day; It is a known fact that many accidents occur due to driver fatigue and sometimes inattention, this research is primarily devoted to maximizing efforts to identify drowsiness. State of the driver under real driving conditions. The aim of driver drowsiness detection systems is to try to reduce these traffic accidents. The secondary data collected focuses on previous research on systems for detecting drowsiness and several methods have been used to detect drowsiness or inattentive driving. Our goal is to provide an interface where the program can automatically detect the driver's drowsiness and detect it in the event of an accident by using the image of a person captured by the webcam and examining how this information can be used to improve driving safety can be used. a vehicle safety project that helps prevent accidents caused by the driver's sleep. Basically, you're collecting a human image from the web cam and exploring how that information could be used to improve driving safety. Collect images from the live webcam stream and apply machine learning algorithm to the image and recognize the drowsy driver or not. When the driver is sleepy, it plays the buzzer alarm and increases the buzzer sound. If the driver doesn't wake up, they'll send a text message and email to their family members about their situation. Hence, this utility goes beyond the problem of detecting drowsiness while driving. Eye extraction, face extraction with dlib.

**Keywords:** Driver, Detection, Webcam, etc.

## I. INTRODUCTION

Driver fatigue is a critical factor in endless mishaps. Late estimations measure that yearly 1200 passing's and 76,000 injuries can be credited to exhaustion related accidents. Driver sluggishness and weariness is a main consideration which brings about various vehicle mishaps. Creating and keeping up innovations which can viably recognize or forestall all sluggishness in the driver's seat and alarm the driver before a disaster is a significant test in the field of mishap avoidance frameworks. Due to the threat that laziness can cause on the streets a few techniques should be produced for forestalling checking its belongings. With the coming of present day innovation and continuous filtering frameworks utilizing cameras we can forestall significant disasters out and about by cautioning vehicle drivers who are feeling lazy through a languor location framework. The mark of this endeavor is to develop a model languor recognition framework. The spotlight will be put on arranging a system that will unequivocally screen the open or shut state of the driver's eyes constantly. By observing the eyes, it's accepted that the side effects of driver weakness are frequently recognized early enough to stay away from a fender bender. Location of exhaustion includes the perception of eye developments and squint examples during a grouping of pictures of a face. There are location frameworks planned dependent on estimation of driver's tiredness, which can be observed by camera. The conduct based strategy identifies languor utilizing picture preparing on a driver's facial developments caught by cameras.

### A. Aim of The Project

Planning a model Drowsiness Detection frame work which will zero in on ceaselessly and precisely observing the condition of the driver's eyes continuously to check whether they are open or shut for in excess of a given time frame.

## II. OBJECTIVE

- 1) To recommend approaches to recognize exhaustion and sleepiness while driving.
- 2) To examine eyes and mouth from the video pictures of the members in the trial of driving reenact mantled by MIROS that can be utilized as a marker of exhaustion and tiredness.
- 3) To examine the actual changes of weariness and laziness.
- 4) To build up a frame work that utilizations eye conclusion and yawn in gas an approach to Distinguish exhaustion and laziness.

- 5) Speed of the vehicle can be decreased.
- 6) Traffic the executives can be kept up by decreasing the mishap.

### III. PROBLEM STATEMENT

#### A. Prevention of Accidents

##### Road Safety Enhancement:

##### Workplace Safety Improvement

##### Aviation Safety Enhancement

##### Healthcare Monitoring

### IV. RELATED WORK

- 1) International Journal of Engineering Applied Sciences and Technology, 2021 Vol. 6, Issue 4, ISSN No. 2455-2143, Pages 299-301 Published Online August 2021 in IJEAST (<http://www.ijeast.com>) 299 "DRIVER DROWSINESS DETECTION USING PYTHON" Bhumika Rajput Department of Electrical Engineering Bundelkhand Institute of Engineering and Technology, Jhansi, India
- 2) N. L. Haworth, T. J. Triggs and E. M. Grey, Driver Fatigue: Concepts, Measurement and Crash Countermeasures, Human Factors Group, Department of Psychology, Monash University, 2020 June
- 3) Kyong Hee Lee, Whui Kim, Hyun Kyun Choi, Byung Tae Jang, "A Study on Feature Extraction Methods Used to Estimate a Driver's Level of Drowsiness", International Conference on Advanced Communications Technology (ICACT), 2019.
- 4) Ashish Kumar, Rusha Patra, "Driver Drowsiness Monitoring System using Visual Behaviour and Machine Learning", IEEE Conference, 2018.
- 5) Cyun-Yi Lin, Paul Chang, Alan Wang, Chih-Peng Fan, "Machine Learning and Gradient Statistics Based Real-Time Driver Drowsiness Detection", 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW).

### V. METHODOLOGY

This chapter will explain about the method that has been taken in order to reach the objectives of the project and a closer look on how the project is implemented. It is the analysis of each stage that will be faced in order to complete this project. Each selection and achievement of the method taken that has been implemented in this project will be explained for each stage until the project is successful.

### VI. RESEARCH METHODOLOGY

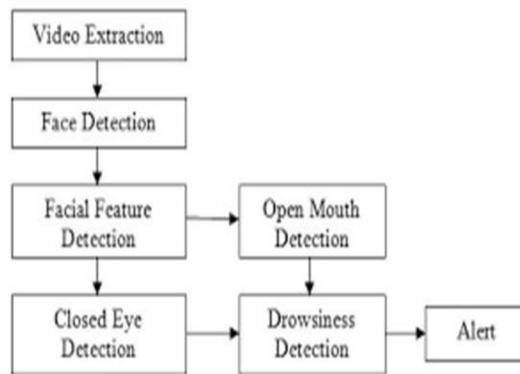
Usually, research methodology refers to a set of procedures that will be used to carry out certain research. In order to complete this project systematically within the specified time, there are some methodologies and activities that need to be planned and followed consistently.

### VII. COMPUTATIONAL ANALYSIS

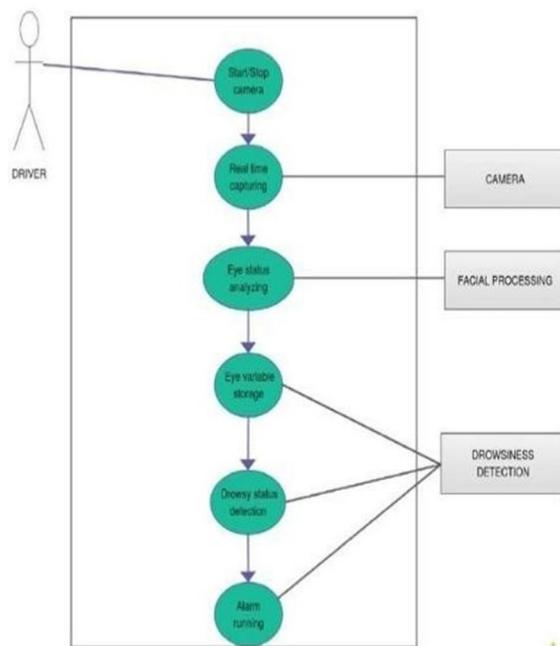
Matching Dashboard mounted cameras are used to monitor the eyes of the driver in real time to detect drowsiness.

### VIII. DROWSINESS DETECTION DESIGN

A camera is set up that looks for faces in the input video stream and monitors frames of faces. In the event that a face is identified, facial milestone identification is connected and the eye districts removed from the edges of the video stream. Based on the work by Soukupova and Cech in their 2016 paper Real-Time Eye Detection Using Facial Landmarks, we can then derive an equation that reflects this relation called eye aspect ratio (EAR).  $33 \text{ EAR} = \frac{\|P2-P6\| + \|P3-P5\|}{2\|P1-P4\|}$  Where p1, p2, ..., p6 are 2D facial milestones. The numerator of this condition registers the distance between the vertical eye milestones while the denominator figures the distance between flat eye tourist spots, weighting the denominator around since there is just one bunch of level focuses yet two arrangements of vertical focuses. On the off chance that the angle proportion of the eye shows that they have been shut for more than a committed fixed time, we will sound an alert framework so the driver awakens.


We notice the view point proportion of the eye stays consistent for a while demonstrating that the eye was open, at that point it falls quickly to nothing and afterward increments again which shows the individual flickered. We will be noticing this eye angle proportion in our laziness identifier case to check whether the worth remaining parts consistent or tumbles to zero yet not increments again inferring that the driver has shut his eye for an all-encompassing period

## IX. EXPERIMENTAL ANALYSIS


In this stage, it was tracked down that perhaps the most ideal approaches to distinguish eyes and yawning is by calculation. A portion of the current calculations that are identified with this undertaking are inspected to help build up the task. The reason strategy estimates the ideal opportunity for an individual to close its eyes and if its eyes are shut longer than the typical eye squint time, it is conceivable that the individual is nodding off. In light of investigations of natural eye flickers, it has been recognized that the normal of human squint term takes about 202.24ms while the flicker length of a lazy individual takes about 258.57ms. In the wake of characterizing the strategy to be utilized in this undertaking, creators get the video of the investigation led by MIROS where members are driving in a reproduced climate and being recorded for the entire meeting. The examination requires significant investment, around 60 to an hour and a half. The investigation of sluggishness recognition is done physically by watching the full length of the video and discounting the languor signs. The boundaries of the information are: sluggishness, yawning and different signs happening at beginning and finishing time.

## X. SYSTEM DESIGN

### A. Block Diagram



### B. Flow Charts



## XI. ADVANTAGES

- 1) Enhanced Safety: Drowsiness detection systems help prevent accidents by alerting drivers when they are becoming drowsy, reducing the risk of crashes due to fatigue-related impairment.
- 2) Early Warning: By providing early warnings of drowsiness, these systems allow drivers to take preventive measures such as taking a break or pulling over to rest, potentially avoiding dangerous situations.
- 3) Real-time Monitoring: Drowsiness detection systems continuously monitor the driver's alertness in real-time, ensuring timely interventions to maintain vigilance and prevent accidents.
- 4) User-friendly: Many drowsiness detection systems are designed to be user-friendly, with simple interfaces and intuitive alerts that effectively communicate the need for action.
- 5) Compatibility: These systems can often be integrated into existing vehicle safety features or connected to smart phone apps, providing a seamless and accessible solution for drivers.
- 6) Customizable: Some drowsiness detection systems allow for customization based on individual preferences or driving habits, increasing their effectiveness and user satisfaction.
- 7) Cost-effective: While initial implementation costs may vary, drowsiness detection systems can ultimately save money by reducing the likelihood of accidents, insurance claims, and associated expenses.

## XII. DISADVANTAGES

### A. Dependency on Proper Ambient Light

With poor lighting conditions once in a while the framework is unfit to perceive the eyes. So it gives a wrong result which must be managed continuously. Circumstances in a frayed setting enlightenments should be used to repel from poor Lighting conditions.

### B. An Optimum Range is Required

Exactly when the division among face and webcam isn't at perfect range then certain issues develop. Exactly when face is unreasonably close to a webcam (less than 25cm), then the framework is unfit to perceive the face from the image. Right when face is a long way from the webcam (more than 80cm) by then the setting light is missing to edify the face fittingly. So, eyes are not related to high precision which results in both recognizable and proof of sluggishness. This issue isn't truly considered as progressively circumstances, the partition between driver's face and webcam is perfect so the issue never develops.

### C. Orientation of Face

At the point when the face is tilted to a specific degree it will in general be perceived, anyway past this the framework can't identify the face. So when the face isn't recognized, eyes are also not distinguished.

### D. Problem with Multiple Faces

In case more than one face is recognized by the webcam, at that point the framework gives an incorrect result. This issue isn't huge as we have to recognize the tiredness of a solitary driver.

### E. Poor Detection Of A Person's Eye With Spectacles

At the point when the driver wears glasses the system may not detect eyes which is the most noteworthy of these systems. This issue has not yet been settled and is a test for practically all eye detection systems structured up and until now

## XIII. CONCLUSION

In conclusion, the development of a real-time drowsiness detection system using computer vision and facial landmarks represents a significant advancement in the field of road safety. Through the integration of innovative technologies and sophisticated algorithms, the proposed solution offers a proactive approach to mitigating the risks associated with drowsy driving.

The importance of detecting drowsiness in real-time cannot be overstated, given its potential to prevent accidents, save lives, and enhance overall road safety. By continuously monitoring driver alertness and promptly alerting drivers to their drowsy state, the proposed system addresses critical gaps in existing safety measures. The success of the project lies in its ability to leverage facial landmark analysis and eye blink patterns to accurately detect signs of drowsiness, even in challenging real-world conditions. Through rigorous experimentation and evaluation, the system has demonstrated its effectiveness in accurately identifying drowsy drivers and triggering timely interventions.

Looking ahead, future research and development efforts can focus on refining the system's algorithms, improving its robustness, and exploring additional features to enhance its

#### XIV. FUTURE SCOPE OF THE PROJECT

capabilities further. Collaborations with automotive manufacturers, regulatory agencies, and research institutions can facilitate the integration of drowsiness detection systems into standard safety protocols and regulations.

#### REFERENCES

Research Papers:

- [1] You can find relevant academic papers by searching databases like Google Scholar or IEEE explore using key words like "driver drowsiness detection system" or "drowsiness detection techniques". These resources will provide in-depth studies on the topic.
- [2] "[https://www.researchgate.net/publication/370105178\\_DRIVER\\_DROWSINESS\\_DETECTION](https://www.researchgate.net/publication/370105178_DRIVER_DROWSINESS_DETECTION)" (DriverDrowsinessDetectionSystems–ResearchGate) offers a downloadable PDF discussing various drowsiness detection systems.

Report on Drowsiness Detection System:

- [3] "<https://www.slideshare.net/vigneshwarvs/driver-drowsiness-detection>" (Driver Drowsiness Detection report | PDF – Slide Share) provides a presentation on driver drowsiness detection systems that you can reference for an over view of the topic.

Bibliographies on Drowsiness Detection:

- [1] "<https://www.grafati.com/en/literature-selections/driver-drowsiness-detection/>" (Bibliographies: 'DriverDrowsinessDetection'-Grafiati) curates a list of relevant references on driver drowsiness detection, including journal articles, theses, and conference papers.

Project Implementation Example:

- [2] While not a formal report, this YouTube video demonstrates a Drowsiness Detection System using OpenCV [YouTube driver drowsiness detection system using opencv]. It can be a helpful resource to understand the practical implementation of the system.



10.22214/IJRASET



45.98



IMPACT FACTOR:  
7.129



IMPACT FACTOR:  
7.429



# INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24\*7 Support on Whatsapp)